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Abstract—Several numerical schemes utilizing central difference 
approximations have been developed to solve the Goursat problem. 
However, in a recent years compact discretization methods which 
leads to high-order finite difference schemes have been used since it 
is capable of achieving better accuracy as well as preserving certain 
features of the equation e.g. linearity. The basic idea of the new 
scheme is to find the compact approximations to the derivative terms 
by differentiating centrally the governing equations. Our primary 
interest is to study the performance of the new scheme when applied 
to two Goursat partial differential equations against the traditional 
finite difference scheme. 
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I. INTRODUCTION 
OST realistic models of physical and other phenomena 
are nonlinear in nature and can be described using 

nonlinear partial differential equations. These nonlinear partial 
differential equations, usually relating space and time 
derivatives, need to be solved in order to gain a fuller and 
deeper understanding of the problem. Due to the nonlinearity, 
analytical methods cannot be utilized and numerical methods 
such as the high-order compact discretizations need to be 
applied. 

The hyperbolic partial differential models known as the 
Goursat problem have been investigated and the solutions of 
this problem for both linear and nonlinear problems using the 
aid of numerical methods have been proposed by many 
researches like [7], [11], [14], [16] and [21]. Applications of 
the Goursat problem can be found in many science problems, 
e.g. inverse acoustic scattering problem [13], wave equations 
in nonhomogeneous media [15], sine-Gordon equation [18] 
and electric field problem [20]. 

Traditional numerical discretization scheme for 
approximating the Goursat problem usually employ forwarded 
differentiating for the mix derivatives term [14], [16]. The 
existing scheme (AM scheme-standard scheme) had been used 
arithmetic mean averaging of functional values in finite 
difference approximation. [16] and [14] have been used 
geometric and harmonic mean averaging of functional values, 
the so-called GM and HM schemes respectively for the 
Goursat problem. 
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However all this schemes have been neglecting the higher 
order terms of the expansions of Taylor series. Eventhough it 
will simplify the discretization activities, but the accuracy will 
be reduced. 

In recent years, high order compact finite difference 
approximations have been applied to solve several differential 
equations, e.g. convergence for second-order elliptic equations 
[1], nonlinear dispersive waves problem [2], compressible 
Navier-Stokes equations [3], financial applications of 
symbolically [4], dispersive media problem [5], elliptic 
equations on irregular domains and interface problems and 
their applications [6], unsteady viscous incompressible flows 
[8], numerical solution of partial differential equation [9] and 
initial boundary problems for mixed systems [10]. 

A class of high-order compact finite difference scheme 
exhibits higher accuracy at the grid points in that applies a 
compact stencil. The governing differential equations will be 
used to approximate leading truncation error terms in the 
central difference scheme [12]. In this paper we present the 
compact finite difference scheme for the Goursat problems. 
With the aid of computational software the scheme was 
programmed for determining the relative errors of nonlinear 
Goursat problems. 

II. FINITE DIFFERENCE SCHEME AND THE GOURSAT PROBLEM 
The Goursat problem is of the form [14]: 
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The established standard finite difference scheme is, 
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Here, the function value at grid location )2/1,2/1( ++ ji  is 
approximated by: 
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The derivation of the left hand side of (2) is instructive and is 
as follows: 
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where yxh Δ=Δ= . 
 

Studies of the use of finite difference schemes utilizing 
alternatives to the arithmetic mean have been reported by [16] 
and [14]. However for linear problem these alternative 
schemes will result in non-linear scheme whereas the standard 
scheme utilizing the arithmetic mean preserves linearity. 

III. THE GOURSAT PROBLEM AND THE HIGH-ORDER 
COMPACT METHOD 

We assumed the unknown function u to be continuously 
differentiable and have the required partial derivatives on the 
rectangular domain. 
 
By manipulating the expansions of Taylor series in two 
independent variables [17]. It can be written that  
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Thus for the mixed central derivatives of xyu , the expression 

is as follows. 
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Substituting (6) into (1) leads to 
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We rewrite the (7) in indexing form as follows: 
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where hyx =Δ=Δ  and ji,φ  is the truncation error evaluated 

at node ),( ji  and given as 
 

)()(
12
2

)(
12
2

4
,

32

,
32

,

herroruh

erroruh

jiyx

jiyxji

Ο++

++=

δδ

δδφ
           (9) 

 
The relations for jiyx u ,

3δδ  and jiyx u ,
3δδ  can be constructed by 

differentiating (1) centrally to get 
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In a like manner 
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The central difference scheme for Goursat problem (1) is 

obtained by neglecting ji,φ  in (8). The truncation error at grid 

point ),( ji  is )( 2hΟ , corresponding to the leading term in 
(9). The basic idea behind the high-order compact finite 
difference approach is to find compact approximations to the 
derivatives in (9) by differentiating centrally the governing 
equation. This relations (10) and (11) substituted into (9) to 
get the new trunction error expression, 
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Successively higher-order compact finite difference 

schemes could be devised by repeating the above procedure to 
obtain a scheme that is of some arbitrary high-order [12]. 

IV. NUMERICAL EXPERIMENTS 
We consider the nonlinear Goursat problems below: 
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Problem 1: 
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The analytical solution of problem (13) is [14]: 
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It is of interest to note that our R.H.S function of (13) can be 
written is as follows: 
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Differentiating (14) over x, evaluated at node ),( ji  and omit 
the errors that is relatively small gives 
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In a like manner 
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Substituting terms (15) and (16) into (12), gives the 
discretization of uuxy =  i.e. 
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Manipulating the Taylor series expansions and evaluating at 
node ),( ji , we get 
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Hence, (17) becomes 
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The new implicit scheme can be written as 
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Now we consider another Goursat problem: 
Problem 2: 
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The exact solution of problem (23) is [19]: 
1)(sin),( 41.0 +++= xyeyyxu x  

 

We rewrite the (23) as follows 

 

[ ]
[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++

++++

−++=

=

1)(sin

1)(sin1.0

)(1.0)(cos1.0

),,(

41.0

341.0

31.0

xyey

xyey

uuey

yxufu

x

x

x

xy

         (24) 

 

By using the same procedure, for the problem (24), the new 
implicit scheme can be constructed as 

 

0
4

,,

2
1,11,11,11,1

=−

−
+−− −−+−−+++

jiji

jijijiji

f
h

uuuu

φ
         (25) 

 
where 
 

[ ]
[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++

++++

−++=

1)(sin

1)(sin1.0

))((1.0)(cos1.0

41.0

341.0

,
3

,
1.0

,

ijej

ijej

uuejf

i

i

jiji
i

ji

       (26) 

 
and 
 

6
)( ,

2
,

22

,
jiyjix

ji
ffh δδ

φ
+

=              (27) 

 
Here, 
 

[ ]

[ ][ ]
[ ] [ ]
[ ] [ ]
[ ][ ]
[ ] [ ]
[ ] [ ] ⎪

⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−

+++++

++++

−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+++

+++++

++++

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++
+

−

=+

ii

ii

ii

ii

ii

ii

jiyjixji

jiyjixji

ii

jiyjix

ejej

ijejej

ejijej

iejiej

ijejiej

iejijej

uuu

uuu

ejej

ff

1.01.0

241.01.0

1.041.0

21.0221.02

241.031.0

31.041.0

,
2

,
22

,

2
,

2
,,

1.01.03

,
2

,
2

)(sin)(sin

1)(sin31)(cos

1)(cos1)(sin6

1.0

12)(sin1.012)(sin1.0

1)(sin34)(sin1.0

4)(sin1.01)(sin6

1.0

))()(31(

)()(6
1.0

)(cos1.0)(cos1.0

δδ

δδ

δδ

  (28) 

 
with 

2
,1,11,1

1,11,1

,
2

,
2

2

4

h

uuu

uu

uu jijiji

jiji

jiyjix

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+

++

=+
−−+−

−+++

δδ       (29) 

 

h
jiji

jiji

jix
uu

uu

u
4

1,11,1

1,11,1

,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−+

=
−−+−

−+++

δ             (30) 

 

h4
1j,1i1j,1i1j,1i1j,1i

j,iy
uuuu

u −−+−−+++ −+−
=δ       (31) 

 

The programming development for the application of 
schemes (22) and (25)-(31) to find the relative errors of 
problems (13) and (23) respectively, need the usage of 
computing machine and technical coding software. The results 
are summarized and presented as below: 

It is clear that, for the nonlinear Goursat problems (13) and 
(23) and for the grid sizes investigated, the high-order 
compact finite difference scheme is more accurate than the 
standard scheme. 

 
V. CONCLUDING REMARKS 

High-order compact schemes have been applied by several 
researchers to solve partial differential equations. Numerical 
experiments on the two nonlinear Goursat problems indicate 
that the high-order scheme performed better than the standard 
scheme in the literature. 
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