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Abstract—Several numerical schemes utilizing central difference
approximations have been developed to solve the Goursat problem.
However, in a recent years compact discretization methods which
leads to high-order finite difference schemes have been used since it
is capable of achieving better accuracy as well as preserving certain
features of the equation e.g. linearity. The basic idea of the new
scheme is to find the compact approximations to the derivative terms
by differentiating centrally the governing equations. Our primary
interest is to study the performance of the new scheme when applied
to two Goursat partial differential equations against the traditional

finite difference scheme.
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|. INTRODUCTION

OST realistic models of physical and other phenomena

are nonlinear in nature and can be described using
nonlinear partial differential equations. These nonlinear partial
differential equations, usually relating space and time
derivatives, need to be solved in order to gain a fuller and
deeper understanding of the problem. Due to the nonlinearity,
analytical methods cannot be utilized and numerical methods
such as the high-order compact discretizations need to be
applied.

The hyperbolic partial differential models known as the
Goursat problem have been investigated and the solutions of
this problem for both linear and nonlinear problems using the
aid of numerical methods have been proposed by many
researches like [7], [11], [14], [16] and [21]. Applications of
the Goursat problem can be found in many science problems,
e.g. inverse acoustic scattering problem [13], wave equations
in nonhomogeneous media [15], sine-Gordon equation [18]
and electric field problem [20].

Traditional ~ numerical  discretization  scheme  for
approximating the Goursat problem usually employ forwarded
differentiating for the mix derivatives term [14], [16]. The
existing scheme (AM scheme-standard scheme) had been used
arithmetic mean averaging of functional values in finite
difference approximation. [16] and [14] have been used
geometric and harmonic mean averaging of functional values,
the so-called GM and HM schemes respectively for the
Goursat problem.
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However all this schemes have been neglecting the higher
order terms of the expansions of Taylor series. Eventhough it
will simplify the discretization activities, but the accuracy will
be reduced.

In recent years, high order compact finite difference
approximations have been applied to solve several differential
equations, e.g. convergence for second-order elliptic equations
[1], nonlinear dispersive waves problem [2], compressible
Navier-Stokes equations [3], financial applications of
symbolically [4], dispersive media problem [5], elliptic
equations on irregular domains and interface problems and
their applications [6], unsteady viscous incompressible flows
[8], numerical solution of partial differential equation [9] and
initial boundary problems for mixed systems [10].

A class of high-order compact finite difference scheme
exhibits higher accuracy at the grid points in that applies a
compact stencil. The governing differential equations will be
used to approximate leading truncation error terms in the
central difference scheme [12]. In this paper we present the
compact finite difference scheme for the Goursat problems.
With the aid of computational software the scheme was
programmed for determining the relative errors of nonlinear
Goursat problems.

I1.FINITE DIFFERENCE SCHEME AND THE GOURSAT PROBLEM
The Goursat problem is of the form [14]:

Uy = F(X, y,u,u,,uy)

u(x,0) = #(x), u(0, y) = w(y), 4(0) =y (0) (@)

0<x<a0<y<b

The established standard finite difference scheme is,

Uity j+1 T Ui j —Uisg,j Ui ja

2
h . @
:Z(fi+l,j+l+ fij+ fiaj+ fi,j+1)

Here, the function value at grid location (i+1/2, j+1/2) is
approximated by:

1
Z(fi+1,j+1+ fij+figjt+ fi,j+1) @)

The derivation of the left hand side of (2) is instructive and is
as follows:
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0 (u(x+AX,y)—-u(x,y)
_5[ AX )

1 0
:EE(U(X+AX, y)—u(xy)) (4)

[ (U(X+AX, Y + Ay) —u(X + AX, y))
1 Ay

Ax| (u(x, y +Ay)—u(x,y))

L Ay

1 [u(x+AX, y +Ay) —u(X + AX, y)) —
T2 [u(x y+Ay)+u(x,y) }

where h=Ax=Ay .

Studies of the use of finite difference schemes utilizing
alternatives to the arithmetic mean have been reported by [16]
and [14]. However for linear problem these alternative
schemes will result in non-linear scheme whereas the standard
scheme utilizing the arithmetic mean preserves linearity.

I1l. THE GOURSAT PROBLEM AND THE HIGH-ORDER
COMPACT METHOD

We assumed the unknown function u to be continuously
differentiable and have the required partial derivatives on the
rectangular domain.

By manipulating the expansions of Taylor series in two
independent variables [17]. It can be written that

U(X+AX, Y +AY) —U(X+ AX, Yy — Ay) —u(X — AX, Yy + Ay) +

(X 20, - 8) = 40y + 2 (A (W + )

% (AX)(AY) Uy, + O[(Ax + Ay)e]

Thus for the mixed central derivatives of Uyy the expression
is as follows.
U(X+AX, Y +Ay) —u(X + AX, y — Ay) —
u(X—AX, y + Ay) + u(x — Ax, y — Ay)
OO\ =
4(Ax)(Ay)

% (AX)*(578,u +error) —% (Ay)? (5, Fgu +error) + (6)

Ol: (A + Ay)°® }
4(Ax)(Ay)

Substituting (6) into (1) leads to

U(X+AX, Y+ Ay) —u(X + AX, y — Ay) —
U(X—AX, Yy +Ay) +U(X — AX, y — Ay)
4(Ax)(4y)

2 2
o (AX)? (535, u +error) — o (Ay)* (5, 55u+error)+  (7)

O{ (Ax+Ay)®
4(Ax)(Ay)

:I: f(x,y,u,ux,uy)

We rewrite the (7) in indexing form as follows:

Uiy jer ~Yivg j1 —Uicgjer FUicg a0 f ®)
2 (I N
4h

where Ax=Ay=h and 4, ; is the truncation error evaluated
atnode (i, j) and given as
_ 2. 9,3
é; _Eh (5X§yuiyj +error) +

9)
2 3 4
Eh (0xoyu;,j +error) +0(h™)

The relations for 536,u; ; and &,5,u

differentiating (1) centrally to get

i,j can be constructed by

535.u

Wi =05 i (10)

In a like manner
SO j =00 f; | (11)

The central difference scheme for Goursat problem (1) is
obtained by neglecting ¢ ; in (8). The truncation error at grid

point (i, j) is O(h?), corresponding to the leading term in
(9). The basic idea behind the high-order compact finite
difference approach is to find compact approximations to the
derivatives in (9) by differentiating centrally the governing
equation. This relations (10) and (11) substituted into (9) to
get the new trunction error expression,

# | :ihz(éx2 f; ; +error) +
, 12 12)
Eh2(§§ f; ; +error)+O(h*)

Successively higher-order compact finite difference
schemes could be devised by repeating the above procedure to
obtain a scheme that is of some arbitrary high-order [12].

IV. NUMERICAL EXPERIMENTS
We consider the nonlinear Goursat problems below:
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Problem 1:

Uy, =6
X X
u(x,0)==-=In(l+e")
2 (13)

u(O,y):%—In(l+ey)
0<x<4,0<y<4

The analytical solution of problem (13) is [14]:

u(x, y):izy—ln(ex+ey)

It is of interest to note that our R.H.S function of (13) can be
written is as follows:

f(u)=e® (14)

Differentiating (14) over x, evaluated at node (i, j) and omit
the errors that is relatively small gives

5. f . =25.u e
X ', XY, j , , (15)
=07 fi ;=200 €7 +4(S,u; ;)7e™

In a like manner

o,f

_ Zui,j
yfij =20,u; ;e

21,5 =282, ;0™ +4(5,u; )%™ oo
=0y fij=26,u; j&7 +4(5yu; ;)%e

Substituting terms (15) and (16) into (12), gives the
discretization of u,, =u i.e.

(17)

¢ hzezui,j {53[.1"] +55ul,j + }
(i ]

3 |2 )2+ @)

Manipulating the Taylor series expansions and evaluating at
node (i, j), we get

Uity j+1 T Uiy j1 t
Uig joa +Uig ja =405

Sup + 80U | = o (18)
Sy = Uiy, j+r HUivg j1 —Uicg, jo1 — Uiy j (19)

i ah

Upyg jag —Uing ig +Uj g 143 —Ujg
1j+1 1,j-1 Uiy je1 ~Yicg j
5 UI i — I+1, ]+ 1+1, ] I ]+ I ] (20)

M 4h

Hence, (17) becomes

Uisg jer Ui ja t
Uiy je1+ Uiy jo1 — 405

2h?
_ ,

Uity j+1 T Ui ja—

Uiy j+1 —Ui-g j1
hzezu” T

bhi="3 4h (21)
+2
2

Uity 1 —Yisg ja t

Uiy j+1 —Ui—g j1
+ . S —

4h

The new implicit scheme can be written as

Uisg jra —Uisg j1 ~Yigja tYig 1
4h?

Uity jo1 T Ui ja +

Uiy jor + Uiy jo1 — AU

2h?
_ -
Uitg jr1 T Ui ja—
2.2u; i-1,j+1 ~ Yi-1,j-1 (22)
h e3 1 4h _e2uivj :O

+2 )
Uity jrr — Ui ja t

Uisg,j+1 — Uiy j1
+ . A —

4h

Now we consider another Goursat problem:
Problem 2:

Uy +g(u)=rl
on ﬁ:{(x,y)|0£x£0.5,0£ y <0.5},

0<x<05,y=0,
x=0,0<y<0.5, (23)

where g =-0.1(u®+u),

r1=0.1(cos y)e®™ -0.1(z% + z) and
0.1x

u=x*+1
u=1+y+siny,

z=(siny)e"™ +y+x*+1
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The exact solution of problem (23) is [19]:
u(x, y) = (sin y)e® +y + x* +1

We rewrite the (23) as follows

Uy = F(U,X,)
=0.1(cos y)e* +0.1(u* +u) — (24)
0 1{[(sin y)e 4y x? +1]3 +}

[(sin y)e 4y x4 +1]

By using the same procedure, for the problem (24), the new
implicit scheme can be constructed as

Uiy jor “Yisg j1 ~Yig jua Ui 1
4h? (25)
#i-fi;=0

where

f, j =0.1(cos )e® +0.1((u; ;)* +u; ;) —

o1 [in e+ j+i®+af + (26)

(sin j)e®Y + j+i*+1
| J

and
h2(52f. .+ 6521, )
= ) @)
Here,
0.13(cos j)e®¥ —0.1(cos j)e
2 2
Lol 6ui'j[(5xui,2j) J;(éyuu)z ]+
(L+3(u;, )6 ui § +6yU; )
6[(sin et 4+ j+it +1Io.1(sin j)et +4i3 ]
—0.14[0.1¢sin f)e®4 +4i |+ 3[(sin e’ + j+i¢ +1f
0.1%(sin j)e®t +12i2 |+ [0.0%sin j)e®t +12i2 |
6f(sin 1)e®t + j+i* +1icos jye®i +1]
~0.1][(cos j)e® + 1]+ 3[(sin jye® + j+i* +1f
- (sin j)e |- [isin je® ] (28)

with

Uisg jar T Uiy ja t
Uiy, jo1 Uiy, joo —4U;

é‘fuiyj +5§UH = 2h2 : (29)
[ui+l,j+1+ui+l,j—1 —]
U1 jr1— Uiy ja

Ol = - 7n (30)
Uirgjer —Uirgjr T Uigjr —Uigja

d Ui = an (31)

The programming development for the application of
schemes (22) and (25)-(31) to find the relative errors of
problems (13) and (23) respectively, need the usage of
computing machine and technical coding software. The results
are summarized and presented as below:

It is clear that, for the nonlinear Goursat problems (13) and
(23) and for the grid sizes investigated, the high-order
compact finite difference scheme is more accurate than the
standard scheme.

V.CONCLUDING REMARKS

High-order compact schemes have been applied by several
researchers to solve partial differential equations. Numerical
experiments on the two nonlinear Goursat problems indicate
that the high-order scheme performed better than the standard
scheme in the literature.

TABLE II
AVERAGE RELATIVE ERRORS OF PROBLEM (23)

Grid size (h) Standard scheme Compact scheme
0.0025 2.0022544e-09 2.1175816e-11
0.0050 8.0811486e-09 1.6795880e-10
0.0250 2.1667491e-07 2.0427646e-08
0.0500 9.4208567e-07 1.6287396e-07
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