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Abstract— Calcium [Ca2+] is an important second messenger 

which plays an important role in signal transduction. There are 
several parameters that affect its concentration profile like buffer 
source etc. The effect of stationary immobile buffer on Ca2+ 
concentration has been incorporated which is a very important 
parameter needed to be taken into account in order to make the 
model more realistic. Interdependence of all the important parameters 
like diffusion coefficient and influx over [Ca2+] profile has been 
studied. Model is developed in the form of advection diffusion 
equation together with buffer concentration. A program has been 
developed using finite volume method for the entire problem and 
simulated on an AMD-Turion 32-bit machine to compute the 
numerical results. 
 
Keywords— Ca2+ profile, buffer, Astrocytes, Advection diffusion, 
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I. INTRODUCTION 
ALCIUM [Ca2+] is an important second messenger, found 
in almost all types of cell. The dynamics of calcium Ca2+ 

is very important in cellular physiology because Ca2+ binds to 
many proteins and regulates their activity and interactions. For 
reference see [1-8] and the reference therein. Waves of 
elevated cytosolic calcium that travel both within individual 
astrocytes as well as between then constitute a newly 
discovered form of non-synaptic long-range signalling in the 
brain. Astrocytes are found to modulate and be modulated by 
neuronal and axonal activity. Consequently, these finding 
transformed the classical view of astrocytes from that of 
passive, structural, and supportive cells to one in which these 
cells may actively participate in information processing and 
hence in brain functioning.  

The precise mechanism governing the initiation and 
propagation of astrocytic Ca2+ waves are not completely 
understood. Experimental studies have shown that 
intercellular wave propagation is critically dependent on the 
coupling of adjoining astrocytes by functional gap junction 
[7]. Ca2+ waves are dependent on the diffusion of Ca2+ ions 
both within and possibly between the cells; modulating Ca2+ 
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ion diffusion may predictably alter the spatial and temporal 
character of the Ca2+                                                                                      
wave [7]. In cultured astrocytes monolayers calcium waves 
exposed to a range of cell-permeant, selective calcium-
buffering agents having a variety of Ca2+ affinities, binding 
kinetics and structures. The astrocytic Ca2+ signalling depend 
of Ca2+ buffering.  

This effect is a function of both the Ca2+ affinity and the 
quantity of the exogenous buffer. Experimentally Wang et al 
(1997) first reported and illustrate directly that cytoplasmic 
calcium buffering constitutes an important and powerful 
mechanism for modulating astrocytic Ca2+ waves. Most of this 
work has been done on neuron cell [2-5]. From literature 
survey it is observed that no investigation has been found 
using FVM to study calcium diffusion in Astrocytes. In 
review of above an attempt has been made to study the effect 
of buffer on cytosolic calcium diffusion for a one dimensional 
case. 

 
II. MATHEMATICAL FORMULATION 

Calcium kinetics in astrocytes is governed by a set of 
reaction-diffusion equations which can be framed by 
assuming the following bimolecular reaction between Ca2+ 
and buffer species: 
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where [Bj] and [CaBj] are free and bound buffer 
respectively , and ‘j’ is an index over buffer species. The 
resulting partial differential equations for equation (1) using 
Fickian diffusion can be stated as (Smith, 1996). 

 

2
2 2

Ca j
j

Ca
D Ca R

t

+
+

⎡ ⎤∂ ⎣ ⎦ ⎡ ⎤= ∇ +⎣ ⎦∂ ∑                            (2) 

 
2

j

j
B j j

B
D B R

t

⎡ ⎤∂ ⎣ ⎦ ⎡ ⎤= ∇ +⎣ ⎦∂
                                   (3) 

 
2

j

j
CaB j j

CaB
D CaB R

t

⎡ ⎤∂ ⎣ ⎦ ⎡ ⎤= ∇ −⎣ ⎦∂
                         (4) 

Where 

 
2[ ][ ] [ ]j j j j jR k B Ca k CaB+ + −= − +                             (5) 

, ,
j jCa B CaBD D D are diffusion coefficients of free calcium, free 

buffer and Ca2+ bound buffer respectively. 
jk + and 

jk− are 
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association and dissociation rate constants for buffer ‘j’ 
respectively. 2Ca +

∞
⎡ ⎤⎣ ⎦  

is background calcium concentration.  

For stationary immobile buffers or fixed 
buffers 0

j jB CaBD D= = . Further equation (2-5) can be written 

as  
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Here main objective is to study the calcium distribution in 
form of advection diffusion equation. Most of the authors 
studied the buffered calcium concentration in form of reaction 
diffusion equation [2-4]. Few attempts are reported which 
shows that advection diffusion of calcium occurs in the 
presence of mobile buffer [10]. The advection and diffusion 
are independent process because diffusion is to be random 
process due to calcium molecular motion. Due to the diffusion 
each calcium molecule will move one step to the right in given 
time and due to advection each calcium molecules also move 
v tδ in the cross flow direction. This process is clearly 
additive and independent. The presence of cross flow does not 
bias the probability that the molecule will take a diffusion step 
to the right. It just adds something to the step. The next 
movement to calcium molecules will be v t xδ δ+ . Thus total 
flux in x-direction xJ  including the advective transport and a 
Fickian diffusion term will be 

 
x x Ca
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∂
                                          (7) 

Therefore calcium profile has been taken in the form of 
incompressible fluid flow with advection diffusion of calcium 
as given below; 
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Where v is velocity of calcium flux, for a steady state case the 
equation (8) is reduced in the form : 
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Along with the boundary conditions as: 
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The finite volume scheme is employed to solve equation (9) 
together with (10) and (11). In order to apply the finite 
volume method the domain is divided into discrete control 
volumes (Figure 1). taking 30 nodal points in the space 
between A and B. Each node is surrounded by a control 
volume or cell. A general nodal point is identified by P and its 
neighbours in a one-dimensional geometry, the nodes to the 

west and east, are identified by W and E respectively. The 
west sides face of 

 
 
 
 
 
 
 
 

Fig. 1 discretized the domain into number of nodes 
 

the control volume is referred by w and the east side control 
volume face by e. The distances between the nodes W and P, 
and between nodes P and E, are identified by xδ . Similarly the 
distance between face w and point P and between P and face e 
are denoted by / 2xδ . Nodal values to the east and west are 
available at nodal values 2, 3, 4............29.   Now equation (9) 
can be written in one dimensional case. 
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Integration of equation (12) over control volume gives: 
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TABLE I 
VALUES OF BIOPHYSICAL PARAMETERA USED 

Symbol Parameter Values 

DCa 

jk +
 

(EGTA) 

jk +
 

(BAPTA) 
 
v 
 

[ ]B∞
 

 

diffusion coefficient 
 
buffer association 
rate 
 
buffer association 
rate 
 
velocity of calcium 
flux 
total buffer 
concentration 

200-300 µm2/s 
 
1.5µM-1s-1 
 
 
600µM-1s-1 
 
 
10-20µm/s 
 
30-200µM 

M = meter, s = second, M = molar,  

δx δ δx/δ δ

3
0
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Where A is a cross section area. Subsequent division by 
cross sectional area A and the calcium concentration 2Ca +⎡ ⎤⎣ ⎦   

is replaced by u for convenience. Equation (14) becomes 
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                        (15) 
This can be rearranged as  
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The general form for the interior nodal point 2, 3, 4........29 is 
given by:

 P P W W E E ua u a u a u S= + +                               (17)      
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We apply the boundary conditions at node points 1and 30. At 

node 1 west control volume boundary is kept at specified 
concentration 
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Similarly at node 30 east control volume boundary is at 
specified concentration. 
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Substituting the values from equation (18-20) in equation 
(17), obtained a system of algebraic equation as below where 

Au  and 
Bu  be the specified boundary conditions in terms of 

calcium concentration. 
                              AU B=                                                   (21) 

Here, 
1 2 30, ..................U u u u=  represents the calcium 

concentration, A is system matrices and B is the system 
vector. 

 
III RESULTS AND DISCUSSION 

In this section we have shown the numerical results for 
calcium profile against different biophysical parameters. The 

biophysical parameters used in the model are as stated in the 
table below unless stated along with figures. A program has 
been developed using finite volume method for the entire 
problem and simulated on an AMD-Turion 32-bit machine to 
compute the numerical results.  Figure 2 shows the variation 
of calcium with the space. To see the effect of buffer with 
different affinity the different values of dissociation constant 
is taken. Dissociation constant is the ratio of disassociation to 
association rate 

 
Fig. 2 Effect of buffer with different values of Kd 

 We observe that calcium concentration falls down quickly 
up to 0x =  to 6x = and then gradually converges to 0.1 Mμ . 
This fall in concentration decrease with increase in the value 
of

jk + . Thus if  
jk +  is increases than the calcium concentration 

is decreases. 
Figure 3 shows the variation of calcium concentration with 

different values of diffusion constants. We have considered 
three different values of CaD , 200CaD = , 250CaD = and 

300CaD = . Hence as the diffusion coefficient increases more 
numbers of calcium ions get free as lesser number of calcium 
ions bind, hence the calcium concentration increases. Calcium 
concentration approaches to  0.1 Mμ  as we move away from 
the source. 

 
Fig. 3 Effect of different diffusion coefficient on calcium profile. 

Buffer concentration is taken 30 Mμ  
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In Figure 4 we have shown the variation of calcium 
concentration with amount of buffer. The amount of buffer 
has a profound effect on the calcium concentration as is 
evident in  

 
 
Fig. 4 Graph between Calcium Concentration and distance with 

different amount of buffer concentration 

the figure. As buffer concentration increases as net flow of 
calcium decreases. Diffusion coefficient is taken constant 
as 250CaD = . Calcium profile decrease rapidly and achieves 
the steady state as shown in the figure. 

 
Fig. 5 graph between Calcium Concentration and distance with 

different value of sigma 
Caσ  

 In Figure 5 we have shown the variation of calcium 
concentration with amount of sigma

Caσ . As amount of 
Caσ  

increases the net flow of calcium increases. Calcium 
concentration fall rapidly and achieves the steady state as 
moves far from the source.  
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