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Accurate Optical Flow Based on Spatiotemporal
Gradient Constancy Assumption

Adam Rabcewicz

Abstract—Variational methods for optical flow estimation are
known for their excellent performance. The method proposed by Brox
et al. [5] exemplifies the strength of that framework. It combines
several concepts into single energy functional that is then minimized
according to clear numerical procedure. In this paper we propose
a modification of that algorithm starting from the spatiotemporal
gradient constancy assumption. The numerical scheme allows to
establish the connection between our model and the CLG(H) method
introduced in [18]. Experimental evaluation carried out on synthetic
sequences shows the significant superiority of the spatial variant of
the proposed method. The comparison between methods for the real-
world sequence is also enclosed.

Keywords—optical flow, variational methods, gradient constancy
assumption.

I. INTRODUCTION

Estimation of optical flow is one of the most challenging
problems among all computer vision tasks. Variational tech-
niques consist in minimization of the energy functional which
represents the assumptions concerning constancy of some
features in the sequence as well as smoothness of the resulting
flow. They have a nice advantage over other approaches —
thanks to regularizer in the energy they are able to estimate
the optical flow at locations where an image information is
not available.

The work by Brox et al. [5] is undoubtly a significant
progress among variational techniques that have been invented
recently. These authors have developed an algorithm that
incorporates a number of ideas that arose over the years
starting from the classical work by Horn and Schunck [11].
This includes: a preservation of motion boundaries ([9], [16],
[3], [21]), a penalization of outliers in the data ([4], [10]),
coarse-to-fine strategies ([4], [1], [14]), spatiotemporal regu-
larizers ([15], [22]) and robustness with respect to illumination
changes ([20], [19], [17]).

A theoretical clarity of this approach as well as its impres-
sive results cause researches to make an effort to improve
it. Bruhn and Weickert in [6] have refined the method by
separate robustification of the data terms what leads to slightly
smaller angular error of the results. Amiaz and Kiryati [2]
have embedded the energy of the method within an active
contour segmentation framework. They have showed that such
segmented optical flow is much more accurate.

In this paper we present yet another modification of that
algorithm. Our goal is to impose a spatiotemporal gradient
constancy assumption upon the model. In order to deeply
explore this kind of assumption, the brightness constancy
condition has been given up in the functional. We show that
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with some special approximation of image derivatives this
model leads to the data term of some nice form. This allows to
establish a connection of our model with the CLG(H) method
introduced in [18] and provokes a discussion on the motion
tensors terminology.

Our paper is organized as follows. In the next section our
variational model is introduced. The numerical scheme is
then described in Section III. In Section IV the connection
with the CLG(H) method is established and the notion of
motion tensors is discussed. Section V reports the results of
experimental evaluation. Finally, the last section contains short
summary and some concepts for future research.

II. MODEL

Let f : Ω× [0, T ] → R denote an image sequence (Gaussian
presmoothed with parameter σ), where Ω ⊂ R

2 is a rectan-
gular domain. We wish to determine the optical flow field
w(t) := (u(t), v(t), 1)T , u(t), v(t) : Ω → R at fixed time t
which matches objects in subsequent frames at times t and
t + 1.

We assume that spatiotemporal gradient ∇3f :=
(fx, fy, ft)T is unchanged while moving. This condition can
be expressed as

∇3f(x + w) = ∇3f(x − w). (1)

where x := (x, y, t). Note that two non-consecutive frames
are used in the formula (1). This is necessary to utilize the
temporal constancy of gradient in the algorithm. It will be
shown later that it uses, in fact, three successive frames to
compute the optical flow field at time t. It can be regarded as
the result flow for the two first or the two last frames.

Our model is based on the following energy functional:

E(w) =
∫

Ω

Ψ
(∣∣∇3f(x + w) −∇3f(x − w)

∣∣2)
+ αΨ

(|∇w|2) dx dy. (2)

Here |∇w|2 := |∇u|2 + |∇v|2 and the symbol ∇ denotes ∇2

for the spatial variant and ∇3 for the spatiotemporal one. In
the latter case one should replace the symbol Ω with Ω×[0, T ]
under the integral. The function Ψ is the modified L1 norm,
Ψ(s2) :=

√
s2 + ε2.

The Euler-Lagrange equations corresponding to the energy
(2) read as follows:

Ψ′ ((fxz)2 + (fyz)2 + (ftz)2
)
(fxxfxz + fxyfyz + fxtftz)

− α div
(
Ψ′(|∇w|2)∇u

)
= 0,

Ψ′ ((fxz)2 + (fyz)2 + (ftz)2
)
(fxyfxz + fyyfyz + fytftz)

− α div
(
Ψ′(|∇w|2)∇v

)
= 0
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with reflecting boundary conditions. Here we use the following
abbreviations:

fxx := ∂xxf(x + w) + ∂xxf(x − w),
fxy := ∂xyf(x + w) + ∂xyf(x − w),
fyy := ∂yyf(x + w) + ∂yyf(x − w),
fxt := ∂xtf(x + w) + ∂xtf(x − w),
fxz := ∂xf(x + w) − ∂xf(x − w),
fyt := ∂ytf(x + w) + ∂ytf(x − w),
fyz := ∂yf(x + w) − ∂yf(x − w),
ftz := ∂tf(x + w) − ∂tf(x − w).

(3)

Note that the subscript t denotes the temporal derivative in
contrast to z, which appears in expressions that arise as
differences and are sought to be minimized.

III. NUMERICAL APPROXIMATION

We will follow the construction of the numerical scheme
performed in ([5]). The first step is to introduce the fixed point
iteration on w. Denote by wk = (uk, vk, 1)T the solution of the
system at the iteration step k and let fk

∗∗ be the abbreviations
defined in (3) for the variable wk. An implicit scheme for
the smoothness term and a semi-implicit scheme for the data
term have been applied. This gives the following system of
equations at the iteration step k + 1:

Ψ′((fk+1
xz )2 + (fk+1

yz )2 + (fk+1
tz )2

)
× (

fk
xxfk+1

xz + fk
xyfk+1

yz + fk
xtf

k+1
tz

)
− α div

(
Ψ′(|∇uk+1|2 + |∇vk+1|2)∇uk+1

)
= 0,

Ψ′ ((fk+1
xz )2 + (fk+1

yz )2 + (fk+1
tz )2

)
× (

fk
xyfk+1

xz + fk
yyfk+1

yz + fk
ytf

k+1
tz

)
− α div

(
Ψ′(|∇uk+1|2 + |∇vk+1|2)∇vk+1

)
= 0.

(4)

Next stage is to remove the nonlinearity from components
fk+1
∗z using Taylor expansions

f∗(x + wk+1) = f∗(x + wk)

+ f∗x(x + wk)duk + f∗y(x + wk)dvk,

f∗(x − wk+1) = f∗(x − wk)

− f∗x(x − wk)duk − f∗y(x − wk)dvk,

where the unknown iteration variable wk+1 was split into
the known variable wk and an unknown update dwk :=
(duk, dvk, 1). Therefore

fk+1
∗z = fk

∗z + fk
∗x duk + fk

∗y dvk (5)

and applying the notation

(Ψ′)k
D := Ψ′((fk

xz + fk
xx duk + fk

xy dvk)2

+ (fk
yz + fk

yx duk + fk
yy dvk)2

+ (fk
tz + fk

xt duk + fk
yt dvk)2

)
,

(Ψ′)k
S := Ψ′(|∇(uk + duk)|2 + |∇(vk + dvk)|2)

the system (4) can be written as

(Ψ′)k
D

(
fk

xx(fk
xz + fk

xx duk + fk
xy dvk)

+ fk
xy(fk

yz + fk
yx duk + fk

yy dvk)

+ fk
xt(f

k
tz + fk

xt duk + fk
yt dvk)

)
− α div

(
(Ψ′)k

S∇uk+1
)

= 0,

(Ψ′)k
D

(
fk

xy(fk
xz + fk

xx duk + fk
xy dvk)

+ fk
yy(fk

yz + fk
yx duk + fk

yy dvk)

+ fk
yt(f

k
tz + fk

xt duk + fk
yt dvk)

)
− α div

(
(Ψ′)k

S∇vk+1
)

= 0.

(6)

In that way we have obtained the system of equations with
respect to dw. However, it is still nonlinear due to components
Ψ′

D and Ψ′
S . So, the last step consists in removing this

nonlinearity by applying another, nested fixed point iteration
loop. Let the superscript l denote the internal fixed point
loop iterator. At each step we compute the iteration variable
dwk,l+1 as the solution of the linear system

(Ψ′)k,l
D

(
fk

xx(fk
xz + fk

xx duk,l+1 + fk
xy dvk,l+1)

+ fk
xy(fk

yz + fk
yx duk,l+1 + fk

yy dvk,l+1)

+ fk
xt(f

k
tz + fk

xt duk,l+1 + fk
yt dvk,l+1)

)
− α div

(
(Ψ′)k,l

S ∇(uk + duk,l+1
)

= 0,

(Ψ′)k,l
D

(
fk

xy(fk
xz + fk

xx duk,l+1 + fk
xy dvk,l+1)

+ fk
yy(fk

yz + fk
yx duk,l+1 + fk

yy dvk,l+1)

+ fk
yt(f

k
tz + fk

xt duk,l+1 + fk
yt dvk,l+1)

)
− α div

(
(Ψ′)k,l

S ∇(vk + dvk,l+1
)

= 0
(7)

with the initialization dwk,0 = 0. Terms f(x + wk) and f(x−
wk) are obtained by bilinear interpolation after finishing the
outer iteration step at level k.

Remarks about discretization:

1) Spatial derivatives fk
xx, fk

xy , fk
yy . They have been

discretized using twice the sixth-order approxima-
tion of the first-order derivative given by the stencil
(−1, 9,−45, 0, 45,−9, 1)/60.

2) Differences fk
xz , fk

yz . They are simply the differences
of two first-order spatial derivatives which have been
computed using the stencil from the Remark 1. One
should note that such temporal difference is itself a
(doubled) standard second-order approximation of the
derivative.

3) Spatiotemporal derivatives fk
xt, fk

yt. First we have
discretized the temporal derivative of ∂∗tf(x+wk) using
the first-order forward difference and of ∂∗tf(x − wk)
using the backward difference, i.e:

∂∗tf(x + wk) = ∂∗f(x + wk) − ∂∗f(x),

∂∗tf(x − wk) = ∂∗f(x) − ∂∗f(x − wk).
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By substitution of the above in the definitions of fk
∗t we

show that, in practise, fk
∗t = fk

∗z .
4) Temporal derivative fk

tz . Similar procedure applied to
fk

tz gives the standard second-order central difference

fk
tz = f(x + wk) + f(x − wk) − 2f(x).

One should note that here we utilize the data from the
middle frame which does not occur in the energy of the
model.

Using these remarks one can discretize the system (7) with
finite differences. This leads to a sparse linear system that can
be solved using common numerical methods, e.g. SOR.

IV. SECOND-ORDER MOTION TENSOR

A. The CLG(H) method

The CLG(H) method [18] is the first variational method
for optical flow estimation which employs the spatiotemporal
gradient constancy assumption. The key observation was that

((∇3fx)T w)2 + ((∇3fy)T w)2 + ((∇3ft)T w)2 = wT H2w,
(8)

where H denotes the Hessian matrix of f . The left hand side
of (8) arises by embedding the result of the linearization of the
gradient constancy condition (1) into a variational framework.

The CLG(H) energy functional is the following:

ECLG(H)(w) =
∫

Ω

(Ψ(wT H2
ρw) + α Ψ(|∇w|2)) dx dy.

Here H2
ρ = (Kρ ∗ H)2. The convolution H with a Gaussian

kernel Kρ was introduced to impose some local gradient
constancy assumption.

This technique is itself a modification of the CLG method
proposed by Bruhn et al. [8] which bases on the brightness
constancy assumption. Formally functionals differ only in the
matrix in the data term — there is a structure tensor Jρ in
CLG instead of H2

ρ . What is interesting is that in spite of
fundamental model differences they have the same elegant
form.

B. Connection between the new technique and the CLG(H)
method

Equation (5) can be written as

fk+1
∗z = (dwk)T∇fk

∗ .

Thus the expression inside (Ψ′)k
D has the form

(fk+1
xz )2 + (fk+1

yz )2 + (fk+1
tz )2

= ((dwk)T∇fk
x )2 + ((dwk)T∇fk

y )2 + ((dwk)T∇fk
t )2

= (dwk)T (Hk)2dwk.

The last equality follows from (8) and it is true modulo dis-
tinguishing the t-derivatives and the z-differences. However,
this identification is acceptable thanks to Remarks 2, 3 and 4.

Denote by (hij) elements of the matrix H2. The equations
(6) can be rewritten as

Ψ′((dwk)T (Hk)2dwk)
(
h11 duk + h12 dvk + h13

)
− α div

(
Ψ′(|∇wk+1|2)∇uk+1

)
= 0,

Ψ′((dwk)T (Hk)2dwk)
(
h12 duk + h22 dvk + h23

)
− α div

(
Ψ′(|∇wk+1|2)∇vk+1

)
= 0.

(9)

Now it can be easily seen that the system (9) (and thus (6)) is
nothing else than Euler-Lagrange equations for the functional

E(dwk) =
∫

Ω

(Ψ((dwk)T (Hk)2dwk)+α Ψ(|∇wk|2)) dx dy.

Our algorithm solves the problem of minimizing the CLG(H)
functional with respect to dw at each outer fixed point iteration
step.

C. Motion tensors

Bruhn et al. in [7] introduce the terms motion tensors for
both brightness and spatial gradient constancy assumptions.
They are given by

J̃ = ∇̃3f∇̃3f
T , (10)

and
G̃ = ∇̃3fx∇̃3f

T
x + ∇̃3fy∇̃3f

T
y , (11)

respectively, where ∇̃3 denotes a variant of the ∇3 operator
with the temporal difference as the third component. As
we have shown, this distinction can be abandoned at the
implementation level, if only we treat the difference as an
approximation of the derivative. This permits us to introduce
a unified notation also for methods which start with linearized
constancy assumptions. Thus we have:

• First-order motion tensor Jρ. It is a consequence of the
gray level constancy assumption and is given by Jρ =
Kρ ∗(∇3f∇3f

T ). The more general form than (10) with
a Gaussian convolution allows for taking into account
methods which impose some local constancy conditions
such as the classical one by Lucas and Kanade [12]. See
also [8].

• Second-order motion tensor H2
ρ . As we have shown,

the spatiotemporal gradient constancy assumption leads
to the H2 tensor. It has more concise form than the G
tensor from (11). In analogy to the Jρ it is possible to
integrate some local conditions by convolution with a
Gaussian kernel [18].

V. EXPERIMENTAL RESULTS

The quantitive evaluation has been carried out on the same
synthetic sequences as in [5] to make a direct comparison
between the original and modified methods. This include
the most popular benchmark Yosemite with clouds and its
variant without the sky. The former, created by Lynn Quam,
combines the divergent motion of the mountains with the
translational motion of the clouds with changing illumination.
This region is well-known to create large angular errors in
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many optical flow methods thus a number of authors have
used the latter sequence where the cloudy region has been
removed. It is available at http://www.cs.brown.edu/
∼black/images.html.

In our experiments we have set the number of outer loop
steps to 40. We have found that, in our case, more iterations
are needed than suggested in [5] for the two inner loops to
get convergence . So, we have set the number of the inner
iteration steps to 32 and the SOR steps to 8. The presmoothing
parameter σ and the weight parameter α have been optimized.

The comparison between the methods has been made in
Table I. We have observed that increasing the η parameter
allows to obtain even more accurate results. Just to see it,
Table I includes also the results for η = 0.99.

As we can see our method gives significantly better results
for the Yosemite with clouds sequence. In case of non-cloudy
version we get slightly better result with the 2D variant and
much worse with the 3D variant. What is suprising, there is
almost no difference between the spatial and spatiotemporal
results. In fact, this difference is also quite slight in case
of the first sequence. It can be explained as a side-effect

TABLE I
COMPARISON BETWEEN THE ORIGINAL AND THE MODIFIED METHOD

USING VARIOUS SEQUENCES.

Yosemite Yosemite
with clouds without clouds

Method AAE STD AAE STD
Original (2D) 2.40◦ 6.90◦ 1.64◦ 1.43◦
Modified (2D) 1.94◦ 5.35◦ 1.62◦ 1.57◦
Modified (2D, η = 0.99) 1.79◦ 5.24◦ 1.54◦ 1.53◦
Original (3D) 1.78◦ 7.00◦ 0.98◦ 1.17◦
Modified (3D) 1.69◦ 5.23◦ 1.61◦ 1.53◦
Modified (3D, η = 0.99) 1.59◦ 5.28◦ 1.54◦ 1.52◦

of the specific construction of our model where the data
term contains two non-consecutive frames. This is not well
supported by the spatiotemporal regularization which prefers
soft temporal transitions of the data. So, although the 3D
result for Yosemite with clouds is still better from the original
method, the non-cloudy variant reveals this drawback. We
can conclude that our method works well in situations where
only few frames are available. It seems to be appropriate in
applications with a streaming data.

Table II shows a comparison of our results to several meth-
ods from the literature. As we can see, among 2D methods, the
proposed one is outperformed only by the approach by Amiaz
and Kiryati [2]. This is another modification of algorithm by
Brox et al. and the idea of this technique can be applied to
our model as well. This should give even better results and
will be implemented in the future.

Results with the scaling factor η = 0.99 have been also
enclosed in the table. One should note that they are non-
comparative because the other results of corresponding meth-
ods have been obtained with η = 0.95. However, they are
listed in order to show one another possibility of getting more
accurate flow field.

This table also contains the result of the multiresolution
variant of the CLG(H) method (Rabcewicz [18]). A more naive
algorithm has been applied there – second-order derivatives

have been computed directly at each warping level using
suitable stencils and the spatial derivatives were computed
using the middle frame. Section IV justifies that the proposed
technique is the appropriate approach for that task. So, it is
not suprising that it gives better results.

TABLE II
COMPARISON BETWEEN SEVERAL MODERN TECHNIQUES ON THE Yosemite

SEQUENCE.

Method AAE STD
Horn-Schunck, modified [11] 9.78◦ 16.19◦
Alvarez et al. [1] 5.53◦ 7.40◦
Mémin-Pérez [13] 4.69◦ 6.89◦
Bruhn et al. [8] 4.17◦ 7.72◦
Brox et al. [5] (2D) 2.46◦ 7.31◦
Bruhn-Weickert [6] (2D) 2.42◦ 6.70◦
Rabcewicz [18] 2.28◦ 6.18◦
Our method (2D) 1.94◦ 5.35◦
Brox et al. [5] (3D) 1.94◦ 6.02◦
Our method (2D, η = 0.99) 1.79◦ 5.24◦
Bruhn-Weickert [6] (3D) 1.72◦ 6.88◦
Our method (3D) 1.69◦ 5.23◦
Amiaz-Kiryati [2] 1.64◦ 5.82◦
Our method (3D, η = 0.99) 1.59◦ 5.28◦

In our last experiment we use the real-world Ettlinger Tor
sequence by Nagel. It is available at http://i21www.ira.uka.de/
image sequences/. In order to be able to make a qualitative
comparison, the results of original and modified methods have
been juxtaposed in Figure 1. The bottom left image depicts the
magnitude of the optical flow field computed by Brox et al. It
has been copied from the original work [5]. The bottom right
shows the same but computed with the proposed method. We
can see that both approaches give very good results in spite of
interlacing artifacts that are present in all frames. However,
some differences are visible. First, one can note that our
algorithm suffers from the lack of the brightness assumption
term. The flow corresponding to the bus is better estimated
with the original technique. It is taking a bend, so the gradient
constancy condition is not fulfilled. On the other hand, our
approach has computed the motion flow more accurately at
the background. It is solid and without any traces of the road
lines. Its color is dark gray, not black as one could expected.
This is a consequence of the fact that the background of the
sequence is not static within these three frames. There is some
motion – the camera moves slightly to the right and our model
detected it correctly. Note also that the shapes of the vehicles
are better matched with our method. It is clearly visible in
case of two cars in the left side of the image. It seems that
our algorithm does not suffer from the over-smoothing of flow
discontinuities effect described in [2] as much as the original
one.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented the algorithm for optical
flow estimation which exploits the spatiotemporal gradient
constancy. We have shown that this assumption even in non-
linearized form leads to the tensor of elegant form H2 which
we have called the second-order motion tensor. Therefore it is
the appropriate technique for implementing the multiresolution
variant of the CLG(H) method [18]. Experimental evaluation
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(a) (b)

(c) (d)

Fig. 1. (a) Frame 5 of the Ettlinger Tor sequence. (b) Frame 7. (c) Magnitude of the optical flow field computed between frame 5 and 6 with Brox et al.’s
method. (d) Magnitude of the optical flow computed using frames 5, 6 and 7 with our method.

shows the superiority of our algorithm over the original one in
case of spatial variants. Thus it is suitable for e.g. streaming
data.

There are several possibilities to improve our algorithm
basing on ideas from the literature:

• One can add the brightness constancy assumption to the
model as in the original algorithm. This should help
especially for sequences with irregular motions. It is
interesting to compare the brightness constancy spreading
on three frames, i.e. f(x + w)− f(x−w) with this from
the model by Brox et al.

• We have already mention the Amiaz and Kiryati [2]
algorithm. It combines the algorithm by Brox et al. with
the idea of an active contour segmentation framework.
This results in removing the over-smoothing of the optical
flow at the discontinuities and, in consequence, gives
much smaller angular error. This approach can be easily
adopted to our model.

• Bruhn et al. [6] have developed an efficient numerical
scheme for this kind of algorithms based on multigrid

methods. Such a strategy can be also applied to our
algorithm.
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