
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

499

Abstract—Defense and Aerospace environment is continuously

striving to keep up with increasingly sophisticated Information
Technology (IT) in order to remain effective in today’s dynamic and
unpredictable threat environment. This makes IT one of the largest
and fastest growing expenses of Defense. Hundreds of millions of
dollars spent a year on IT projects. But, too many of those millions
are wasted on costly mistakes. Systems that do not work properly,
new components that are not compatible with old ones, trendy new
applications that do not really satisfy defense needs or lost through
poorly managed contracts.
 This paper investigates and compiles the effective strategies that
aim to end exasperation with low returns and high cost of
Information Technology acquisition for defense; it tries to show how
to maximize value while reducing time and expenditure.

Keywords—Iterative process, acquisition management,
project management, software economics, requirement analysis.

I. INTRODUCTION
EFENSE and Aerospace sector had adopted waterfall
standard, but they experience significant failure(estimates

of about 70% of IT projects are long overdue or unusable),
unfortunately the legacy of waterfall still confuses IT projects
in Defense.

The largest contribution to this failure is to attempt full
requirements definition at early stage. In defense and
aerospace projects, there is a long gap before these
requirements are delivered.

Our survey results agree with literature that on average 25%
of the requirements change on IT projects. Thus, spending
significant portion of time, budget and effort trying to define
requirements to the maximum level is inappropriate and
wasteful.

The results of our survey showed that 45% of the features
defined at the requirements analysis stage were useless. Figure
1 shows the graphical presentation of the survey results.

Manuscript received October 14, 2005.
Ahmet Denker is with the Electronics Engineering Department, Ankara

University, Besevler, Ankara, 06100 Turkey (e-mail:
denker@eng.ankara.edu.tr).

Hakan Gürkan is with the Electronic Warfare Department, Turkish
Airforce, Etimesgut, Ankara, 06100 Turkey (corresponding author to provide
phone: +90-312-212 67 20 ext.1466; fax: +90-312-212 54 80; e-mail:
hgurkan@science.ankara.edu.tr).

45%

13%

19%

16%

7%
very useful

fairly useful

slightly useful

useful

useless

Fig. 1 Utility of the requirements defined at the analysis stage

II. WHY IT PROJECTS ARE DIFFERENT
 IT projects are different from other projects because they
are domain dependent(Fig. 2). That’s, it is not sufficient to
manage the project itself, but they also require the
management domain level. When the domain is defense
environment, the task is even more difficult to achieve. Why?
• There is only one customer.
• There is a different corporate culture.

Fig. 2 IT projects are domain dependent

 There are many different types of approaches at domain,
methodologies, and models utilized in application
development, but all have a common basis in IT development
that involve defined steps to include: project evaluation and
planning, requirements development (analysis and
specification) and definitions, system design, program design,
program implementation (coding), unit testing, integration
testing, system testing (verification and validation), system
delivery (implementation) and system maintenance, similar to

Iterative Way to Acquire Information
Technology for Defense and Aerospace

Ahmet Denker, and Hakan Gürkan

D

DOMAIN

DEFENSE ENVIRONMENT

IT PROJECTS

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

500

those described in the IEEE/EIA 12207 or ISO software life
cycles and the Software Engineering Institute Capabilities
Maturity Model (CMM) [1,2]. In discussing government and
industry standards we feel it relevant to touch on the evolution
of Defense software standards, specifically MIL-STD-498
“Software Development and Documentation,” which endorsed
Defense standards being converted to non-government
standards and maximize the use of commercial practices in
government software projects. MIL-STD-498 required
industry to participate during the proposal phase of IT projects
and recommend commercial solutions. Based on the
processes, methods, and software engineering environments;
MIL-STD-498 incorporated industry’s best practices to
include new developmental methodologies. MIL-STD-498
was later replaced by IEEE/EIA Standard 12207 in May,
1998. The “commercial” IEEE/EIA 12207 Standard expanded
the scope of MIL-STD-498 to include: Standard for
Information Technology: Software life cycle processes, Life
cycle data, Implementation considerations, and it also specify
the acquisition process from pre-contractual initiation of a
project to acceptance and completion. The standard details a
sequence of steps that the user and developer must undertake
to assure a quality IT product [3]. This transition from
Defense specific software requirements to commercial
standards illustrated the basic need to combat the ever
increasing cost associated with government IT projects (and
the critical drivers specific to IT and methodologies in
general) while taking advantage of the common software
improvement activities in industry. With the advent of new
technologies and the need for systems that focus on
information intensive applications, there is a driving need for
new iterative developmental approach that can rapidly adapt
to the changing environment.

III. IT ACQUISITION PROCESS
Acquisition includes design, engineering, test and

evaluation, production, operations and support of defense
systems. As used herein, the term “Defense acquisition”
generally applies only to weapons and information technology
systems, processes, procedures, and end products. Our goal is
to make Project IT Acquisition process more efficient by
decreasing the necessary time and expense for development.

Defense software-intensive systems are those for which
software is the largest segment of the system development
cost, development risk, functionality, or development time.
Such systems are complex and must satisfy a wide spectrum
of user requirements gleaned from diverse user communities.
Defense software-intensive systems can be broken into the
following three broadly generic categories: 1) Automated
Information Systems; which include classic Information
Technology and Management Information Systems for which
privacy is typically a critical requirement; 2) Command,
Control, Communications, Computers, and Intelligence
Systems; those systems that assist mission planners and
combat commanders in mission planning, control,
deployment, and employment of defense for which security is
typically a critical requirement; and 3) Weapons Computing

Systems those embedded computer systems that are typically
high performance, real-time systems designed as an integral
part of a larger weapons system, and used by the Army for
combat missions for which safety is typically a critical
requirement.

 Typically, a Software Development Plan (SDP) or an
equivalent management plan has been used in Defense
acquisition programs by developers to formally document
their plans for the software development. Prepared by the
developer, SDPs typically address:

The development process to be used, standards for products,
reusable software, The handling of critical requirements
(safety, security, and privacy assurance), computer hardware
resource utilization and allocation, provisions for acquirer
access during development, program planning and oversight,
software testing, joint technical and management reviews,
schedules, activity networks, program organization and
resources.

Other plans, depending on the life cycle management
standard being used (e.g., JSTD-016 or IEEE/EIQ 12207) may
be placed upon the developer by contract in the form of such
items as a software test plan, a software quality assurance
plan, and/or a software safety plan, among other developer-
prepared plans. A key acquirer-prepared plan that, while not
required by defense policy, is encouraged at the service level,
is a Computer Resources Life Cycle Management Plan
(CRLCMP). Format of the CRLCMP varies widely, but it
typically includes identification of major computer resource
acquisition management and support risks, identification of
critical issues, metrics and measures [4].

IV. ACQUISITION BY ITERATIVE METHOD
Building prototypes is an essential part of the Iterative

Method. Prototype enables users and developers to examine
some aspects of the proposed system and decide if it is
suitable or appropriate for the finished product [5]. It is a
technique for reducing risk by buying information.
Knowledge is gained through creating a physical model
without adding the effective means for communicating with
the user community or the implementation details [6].
Prototyping ensures that the desired standards and
requirements will be met by the final product. It can also aid
developers in evaluating which model approach is most
advantageous for a specific task and identifying the main
requirements of a system [7].
 We mostly visualize prototyping as constructing a scaled-
down version of the system under development, which usually
has limited functionality. Sometimes this is done to help
stakeholders identify requirements and to aid the developers in
determining if they are on the right track with the design or
taking the correct approach. Generally, the current thinking on
prototype development follows this model. A prototype is
built, and then it is appraised for its functionality. It usually
receives feedback from the stakeholders, who evaluate the
functionality and determine from there any improvements that
can be made. Subsequently, they either incorporate these

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

501

Partial System

Partial System

Implementation

Design

Requirements

Partial System
Implementation

Design

Requirements

Implementation

Design

Requirements

changes into a second prototype or incorporate the knowledge
gained to the actual production model. In order to get to this
point, developers use one or more of the process models listed
below.

A. Iterative Method
 The Iterative model (IM) performs the waterfall in
overlapping sections, thereby attempting to produce usable
functionality earlier in the project life cycle. This allows the
development team to demonstrate results earlier on in the
process and obtain valuable feedback from system users. As
some modules are completed before others, well-defined
interfaces are required. In addition, there can be a tendency to
push difficult problems to the future to demonstrate early
success to management. The Iterative Model can be used
when it is too risky to develop the whole system at once.

Fig. 3 The Iterative Model

The Iterative Model tackles many of the problems

associated with the Waterfall Model; however, it does present
new issues [2].
• Users need to be actively involved throughout the project.
While this involvement is a positive for the project, it is
demanding on time,and staff and can add project delay.
• Communication and coordination are a must during project
management, i.e. requests for improvement after each phase
may lead to confusion - a system for handling requests will
have to be used.
• The Iterative Model can lead to "scope creep," since user
feedback following each phase may lead to increased user
demands. As users see the system develop, they may realize
the potential of other system capabilities, which would
enhance their work. This is one of the big slow-down areas
when using this model, which of course, takes longer to get
the finished product to the market.
 Unlike the waterfall approach, the IM approach is dynamic
and provides capability to the users in varying increments or
stages. The IM approach provides an integrated process that
allows users, developers and PMs to interface and validate the
status of the program from fielding of the initial to the final
capability. Because the user is continually involved,

adjustments to the core requirements are fairly
straightforward. The major drawback to this approach is
uncertainty. Constantly improving and developing technology
creates difficulty in ascertaining risk associated with cost or
schedule. In short, technology is both the benefit and
weakness of the IM approach.

TABLE I
COMPARISONS OF THE WATERFALL AND ITERATIVE METHOD

Issue Waterfall model Iterative Model
Requirements Requirements are

known at the start and
remain stable
throughout the
program.

Requirements are broadly
defined. They evolve and are
refined as the program develops.

Design
/Technology

Determined Early in
the Program or when
mature.

The basic architecture and initial
functions are determined early,
but the detailed designs and
other functions evolve. Cutting
edge but fully tested.

Acquisition
Cost

Known based an
awarded contract.
Capped based on
contract type.

Known based on the Phase-I
contract. Follow-on phases are
estimated and capped.

Risk Performance: Higher
because of the single
step approach. One
chance at success.
Management: Lower
because requirements
are stable.
Cost: Lower because
technology is mature.

Performance: Lower because of
iterative approach. Several
opportunities for success.
Management: Higher because of
requirements uncertainty and
dynamic nature of project.
Cost: Higher because of
uncertainty and high cost of
cutting edge technology.

 With all the changes in today’s culture, nothing is ever fast
enough. Current software and system engineering research has
promoted rapid prototyping, which is a combination of both a
throwaway prototype and an evolutionary prototype, where
sections of the proposed system are built in order to determine
the viability of requirements. This type of prototyping, which
integrates requirements, design, completion, and testing in one
step, aids in understanding the requirements and determining
the ultimate design [5].
 Our survey results show that the above models have
become relatively obsolete and a revolutionary prototype for
software can be effectively designed, after requirements are
identified, that can essentially go straight into production after
testing, saving organizations significant amounts of both time
and money. The resulting iterative method is outlined as
follows:

Hata!

Fig. 4 Iterative Method Outline

System
Requirements
(Sometimes
informal or
Incomplete)

User review

Protype
Design

Test

Delivered
System

Protype
System

Revise
Protype

Protype
Requirments

List of
Revisions

List of
Revisions

List of
Revisions

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

502

 This model can be the foundation for a successful process
model where there is continual analysis so that the user,
developer, and customer are aware of what is needed and
anticipated. One or more of the loops for prototyping
requirements, design, or the system may be eliminated
depending on the goals of the prototyping [5]. In this model,
the prototype is developed, refined, tested, and sent on to
production. This model will save time for the developer. We
found that even though this model looks different, it
incorporates the benefits of the other models we researched
without the disadvantages. While using this model, the
prototype is iteratively being revised throughout each
development phase in the least amount of time without
sacrificing quality. This keeps the project moving, especially
when the scope or requirements from defense and aerospace
client would unexpectedly change.

V. ITERATIVE REQUIREMENTS DEVELOPMENT
 Gathering requirements plays a large role in prototyping.
Most of the time in systems application development,
requirements are not entirely known prior to the development
efforts of system prototypes. In most cases this tends to slow
the overall systems development cycle (as a direct result of the
lengthened time between prototype and production). However,
in systems where the requirements are more fully known, a
system could be produced with the “working prototype” put
into immediate production.
 Requirements development consists of the following three
related activities: gathering candidate requirements, specifying
requirements, and analyzing requirements. Gathering
candidate requirements are done by interviewing potential
customers about the system they want, reviewing competitive
products, building interactive prototypes, and so on [8]. This
statement may appear to be a generalization to the
inexperienced developer, but we feel it is perhaps the most
important aspect of requirements analysis. Major reasons for
the problematic nature (or resultant failures) of a software
project can be directly related to a lack of detailed
requirements or inadequate systems specifications; both of
which can lead to project creep of both scope and time…and
those two factors relate to increased cost.
 In order to extract significant requirements, the dynamics of
basic requirements principles must be identified and criteria
for measuring those requirements be established [9, 10]. The
basic principles of significant requirements are listed as
follows:

• Requirements extraction follows a formal process
• All customers, users, stakeholders are identified – different

viewpoints of the system are utilized
• Requirements are not simply taken as given but are re-

validated using in-depth interviews
• Requirements statements avoid methods of implementation
• Requirements are testable – testers are involved in

requirements definition
• Requirements are documented (hierarchical structure and

shows traceability of requirements)

• Documentation has version numbers A formal change
procedure is used

• Requirements are prioritized

VI. CONCLUSION
Defense technology is becoming increasingly complex and

diverse, demanding more flexible and shorter acquisition
procedures. Armed Forces are facing less predictable threats
and a wider range of tasks, so new technology needs to be
deployed more quickly. The Armed Forces can not keep pace
with the rate of technological change which in many areas
now commercially led. In the present procurement procedure
and organization, major weapons system are still taking some
twenty years to bring into service, cost continue to exceed
planned levels and reliability and maintainability of new
equipment frequently remains a problem.

The present acquisition process can not strike the right
balance between cost, time, and performance in the very early
stages of a project. Insufficient investment in the risk
reduction at this stage has cost more to Armed Forces later on.
The present procurement process and organization has
deficiency to give project managers sufficient delegated
authority. They have also failed to provide properly targeted
incentives to both contractors and staff [11].

Many Defense analysts believe the conduct of warfare is
entering a period of fundamental change, literally, a
“revolution in military affairs,” driven by advances in
information technology and precision guided weapons. Past
experience suggests that revolutions in military affairs are not
produced solely by rapid technological advancements, but also
require changes to prevailing operational concepts, doctrine
and force structure to fully harness the technology in a manner
to dominate the battlefield.

As corporations and government organizations continue to
downsize and outsource in an attempt to restructure cost, they
must rethink the way they exploit iterative acquisition method
in order to save their organizations both time and money. The
Ministry can certainly benefit by utilizing findings (from other
shared innovations that have been mutually beneficial between
the civil and government sectors) as it continues on a path of
transformation intended to radically improve its enterprise-
wide business processes.

Defense IT Acquisition Management has a great need for
iterative approaches, because it has significant investment in
current systems and a limited budget for innovation. It’s
important to point out the need for the development of
iterative approaches that are paramount to not only the future
of Defense operations, but to industry as a whole. The
requirement for increased innovation on limited budgets is a
reoccurring theme among many organizations regardless of
whether they are a Defense or commercial entity. Although
our initial focus discusses the requirements analysis phase, we
are in no way diminishing the relevance or importance of the
project evaluation and planning phase. The requirements
development process is where that critical link or relationship
between user and developer is consummated in order to
produce a clearly defined specification.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

503

 We identified what we believe is a pertinent development
strategy recommendation for requirements analysis for future
IT project applications. In gaining a greater understanding of
the requirements analysis phase of application or use of IT,
the first requirement is to understand the basics of the overall
use of IT cycle.
 The relative importance of a structure requirements analysis
approach is that it greatly enhances the strategy of system
development. Structured requirements analysis in combination
with the most promising and desired approaches and
methodologies of Prototyping, we believe will result in a
strategy that will allow any developmental initiative to
effectively take a concept from prototype to production the
most efficient and effective means.
 The iterative acquisition method was iteratively being
revised throughout each development phase in the least
amount of time without sacrificing quality. This kept the
project moving, especially when the scope or requirements
from our client would unexpectedly change.

REFERENCES
[1] IEEE/EIA 12207 Standard for Information Technology – Software Life

Cycle Processes or relevant International Standardization Organization
(ISO) standards. They define a set of recommended development
activities and documentation alternatives for software intensive systems.

[2] The Software Engineering Institute (SEI) Capability Maturity Model
(CMM) for software development - Feb., 1993.

[3] Barrow, Patrick D. M. and Mayhew, Pam J. “Investigating principles of
stakeholder evaluation in a modern IS development approach.” Journal
of Systems and Software 52, Iss. 2,3 (June 1, 2000): 95-103.

[4] PMI, A Guide to the Project Management Body of Knowledge
(PMBOK® Guide) First Edition Version 1.0 June 2003.

[5] Pfleeger, Shari Lawrence, Software Engineering: Theory and Practice,
Upper Saddle River: Prentice Hall, 2001.

[6] Hall, Elaine, M. Managing Risk: Methods for Software System
Development, Boston: Addison-Wesley, 1998.

[7] Housel, Thomas J. and Bell, Arthur H. Measuring and Managing
Knowledge. McGraw-Hill Irwin, 2001.

[8] Software Project Survival Guide, Requirements Development, Steven C.
McConnell, http://www.stevemcconnell.com/sgreq.htm

[9] Ralph R. Young, Effective Requirements Practices, pp82-83, Addison-
Wesley, 2001.

[10] Malhotra, Yogesh. “Knowledge Management for e-Business
Performance.” Information Strategy: The Executives Journal (2000).

[11] Strategic Defense Review, SDR, 1998.

Ahmet DENKER. B.S in EE, Bogazici University (1977); M.S. and Ph.D
Sussex University, England (1978-1981). Dr. Denker worked as a full time
professor at Bogazici University between years 1982 and 1999, gave lectures
on Control and Robotics and supervised several theses. He was entitled
“Chartered Engineer” (C.Eng.) by the Council of Engineering of U.K.. His
particular areas of interest are applications of industrial control and
Information Technology. He was a project manager at the Robotic Science
Division of TUBITAK (Turkish Scientific and Engineering Research Council)
Marmara Research Center between 1992 and 1996 whereby he lead a team
working on an industrial robot with visional capabilities. He held visiting
positions in Sussex University (U.K.), Open University (U.K.), Eastern
Mediterranean University (Cyprus) and Keio University (Japan). In 1996 he
was awarded a medal by Matsumae International Organization of Japan for his
contributions to science and peace. He acted as the General Manager of
HAVELSAN Inc. between years 1996 and 2003. Through his leadership,
Havelsan had undertaken critical responsibilities in initiating various e-
government, IT and defense industry projects which elevated HAVELSAN to
the top 100 defense companies world-wide as well as to number one IT
company in Turkey. Dr. Denker is a full time professor at Ankara University

since 2003 and giving lectures in Information Systems Engineering and
Management.

 Captain Hakan GÜRKAN currently serves as the chief of the Electronic
Warfare and Missile Systems Branch for Turkish Air force of the Air Logistic
headquarter in Ankara. He earned his BS and MS in Electronic Engineering
from Ankara University. He carries 8 years of high technology experience
where he worked as a project engineer, project manager and trainer of fighter
pilots. His research interests are project management as a system engineering
and Requirement Engineering.

