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Abstract—In this paper, a novel adaptive fuzzy sliding mode 

control method is proposed for the robust tracking control of robotic 
manipulators. The proposed controller possesses the advantages of 
adaptive control, fuzzy control, and sliding mode control. First, system 
stability and robustness are guaranteed based on the sliding mode 
control. Further, fuzzy rules are developed incorporating with 
adaptation law to alleviate the input chattering effectively. Stability of 
the control system is proven by using the Lyapunov method. An 
application to a three-degree-of-freedom robotic manipulator is 
carried out. Accurate trajectory tracking as well as robustness is 
achieved. Input chattering is greatly eliminated. 
 

Keywords—Fuzzy control, sliding mode control, robotic 
manipulator, adaptive control.  

I. INTRODUCTION 
OBOTIC manipulators are complicated nonlinear 
dynamical systems with inherent unmodeled dynamics and 

unstructured uncertainties. These dynamical uncertainties 
make the controller design for manipulators a difficult task in 
the framework of classical control method. Therefore, the 
development of intelligent control for robotic manipulators has 
received considerable interest. Many control techniques have 
been proposed for robotic manipulators, such as the adaptive 
control, the sliding mode control, the fuzzy control, etc [1-6].  

In general, the adaptive control method has a fixed structure, 
and is very effective in coping with structured uncertainties and 
maintaining a uniformly good performance over a limited range. 
It could not solve the problem of unstructured uncertainties [5]. 
The sliding mode control method is a nonlinear control scheme 
that is effective in dealing with the parameter variations and 
external disturbances [6-9]. However, the input chattering 
problem is a major drawback. The boundary layer technique 
can be used to avoid chattering phenomena. However, the cost 
of this technique is a reduction of the accuracy of the tracking 
performance [10, 11].  

One of the most popular intelligent control approaches is the 
fuzzy control (FC). The merit of the fuzzy control is that it can 
explicitly use human knowledge and experience in its control 
strategy. Fuzzy control using linguistic information possesses 
several advantages such as robustness, model free, universal 
approximation theorem, and rule-based algorithm [12]. Thus, 
FC methods have attracted more attention to deal with the 
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complex control problem such as robots, chaotic systems, servo 
systems, and so on [13–15]. Fuzzy logic (FL), which was first 
proposed by Zadeh [16], has proven to be a valid method for 
controlling ill-defined or parameter-variant plants. Very often, 
the approximation capabilities of a fuzzy logic system (FLS) 
are used [17] for compensating the unknown dynamics such as 
model uncertainties [18], and an influence of the friction and 
payload variation [19]. The drawback of FC is that there is no 
rigorous analysis of stability for the general fuzzy control 
systems [4].  

To overcome the demerits and to take advantage of the 
attractive features of conventional control and intelligent 
control, this paper proposes an adaptive fuzzy sliding mode 
controller (AFSMC) for the robust tracking control of robotic 
manipulators. Besides the advantage of stability and robustness 
of sliding mode control is maintained, the proposed method 
suppresses the input chattering when the control system is in 
the sliding mode. Further, an adaptive tuning algorithm is 
developed so that the control parameters can be adjusted online. 
Therefore, better control result could be obtained. The stability 
and the convergence of the tracking error are guaranteed by 
using the Lyapunov method. An application to a 
three-degree-of-freedom SCARA robotic manipulator is 
carried out. Simulation results demonstrate that tracking error 
is eliminated rapidly. Satisfactory tracking performance and 
robustness are achieved effectively.  

II. CONTROL METHODOLOGY 

A. Dynamic Model 
The dynamic model of an n-link robotic manipulator can be 

expressed as 
 )(),()(),()( tuqqFqGqqqCqqM =+++ &&&&& , (1) 

where nR∈q  is the joint position, nR∈q&  is the joint velocity 

vector, nR∈q&&  is the joint acceleration vector; nnR ×∈qqqC && ),(  

stands for the Coriolis and centrifugal torques, nnR ×∈)(qM  is 

the inertia matrix, nR∈)(qG  is the gravity vector; 
nnR ×∈),( qqF &  is the unstructured uncertainties of the 

dynamics including other disturbances and exterior friction; 
and nnR ×∈)(tu  is the control input vector representing the 
torque exerting on joints. 

The following properties for the dynamics of a robotic 
manipulator are required [20]: 
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Property 1: The inertia matrix )(qM  is symmetric and 
positive definite. It is also bounded as a function of q : 

21 )( mm ≤≤ qM , nR∈∀q , where 1m  and 2m  are positive 
constants. 

Property 2: ),(2)( qqCqM && −  is a skew symmetric matrix, and 
satisfies 

 [ ] 0),(2)( =− xqqCqMx &&T , nR∈∀x , (2) 
where x  is an 1×n  nonzero vector. 

Property 3: The gravity vector )(qG  is bounded, and 

 bg)( ≤qG , nR∈∀q , (3) 

where bg  is a known positive constant. 

B. Sliding Mode Control 
Consider the sliding mode control system as shown in Fig. 1. 

The objective is to drive the joint position vector q  to track the 
desired position vector dq . Let the tracking error vector be 
 dqqe −= , (4) 

where T
neee ],,,[ 21 L=e . Define the sliding surface function 

as 
 Λees += & , (5) 
where ],,,[ 21 mdiag λλλ L=Λ , iλ , mi ,,2,1 L= , are 
positive constants. Differentiating (5) with respect to time, one 
can obtain 
 eΛqqs d &&&&&& +−= . (6) 

 
Fig. 1 Block diagram of the control system with SMC 

Let the control input be 
 st uuu += 0)( , (7) 

 AsGΛeqCeΛqMu dd −+−+−= ˆ)(ˆ)(ˆ
0 &&&& , (8) 

 )sgn(sKu −=s , (9) 
where ],,,[ 21 naaadiag L=A  is a diagonal positive definite 

matrix, and 1>ia , ni ,,2,1 L= . In (8), M̂ , Ĉ  and Ĝ  are 
the estimation of M , C  and G , respectively. Let 

MMM Δ+= ˆ , CCC Δ+= ˆ , and GGG Δ+= ˆ , where (.)Δ  
stands for the estimation error. In order to simplify the equation, 
we define fΔ  as a lumped function with all the uncertainties of 
the n-link robot manipulator (1), i.e., 

−Δ+−Δ−=Δ dd qCeΛqMf &&&& ()((  )) FGΛe +Δ+ . Let ifΔ  be 
the ith row of fΔ . Suppose that ifΔ  is bounded, i.e., 

boundii ff Δ<Δ . Choose ],,,[ 21 nkkkdiag L=K , where 

boundii fk Δ> , ni ,,2,1 L= . 

Define a Lyapunov function candidate as 

 MssT

2
1

=V . (10) 

Differentiating (10) yields 

 sMssMs TT &&&
2
1

+=V . (11) 

Applying (1), (4) and (6) to (11), together with Property 2 in (2), 
implies 

sCseΛqqMs T
d

T )2(
2
1)( ++−= &&&&&&V  

 ))(( eΛqMus d
T &&& −−= CssFGΛeqCs T

d
T +++−− ))(( & .(12) 

Substituting (7), (8) and (9) into (12), one obtains 

AssT−−Δ= ∑
=

)]sgn([
1

iii

n

i
i skfsV&  

 AssT−−Δ< ∑
=

)(
1

ii

n

i
i kfs . (13) 

Because A  is a positive definite matrix and 0<− AssT , thus, 
 0<V& . (14) 
Equation (14) promises the decay of the energy of s  as long as 

0≠s . Thus, the tracking control is guaranteed. 

C. Adaptive Fuzzy Sliding Mode Control 
In (9), it is not easy to obtain the value of K  because the 

determination of K  depends on the bound of uncertainties. 
Although a large value of K  can overcome the effect of 
uncertainties, it causes input chattering. In order to deal with 
this problem, as shown in Fig. 2, an adaptive fuzzy sliding 
mode control is proposed. A fuzzy control gain is to replace the 
switching control input gain. In this paper, the fuzzy controller 
consists of fuzzifier, fuzzy rule base, fuzzy inference engine, 
and defuzzifier. The output of the fuzzy system can be 
described as 
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, (15) 

where Tlj ],,,[ 21 θθθθ L=  is the vector of the centers of 

output fuzzy variable and )( *
iA xj

i
μ  is the weighting of the 

membership function. Let Tl xxxx )](,),(),([)( 21 ψψψ L=Ψ , 

where 

∑∏

∏
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μ
ψ , and l  be the number of fuzzy 

rules. Note that the input chattering is induced from the 
discontinuous function )sgn(s  and the constant value of K . 
Now let the fuzzy gain vector fK  replace the control gain K . 

The fuzzy gain vector fK  is defined as 
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[ ]Tfnfff kkk ,,, 21 L=K , where fik  is the output of the fuzzy 

controller. A shifted sigmoid function [21] is used to further 
enhance the elimination of the chattering, i.e. 

 1
1

2)( −
+

=
− isi e

sh . (16) 

 
Fig. 2 Block diagram of the control system with AFSMC 

Hence, the control input becomes 
 )(ˆˆˆ sKAsGqCqMu(t) hf−−++= &&& . (17) 

The fuzzy rules are in the following simple format: 
 l

ifi
l
ii BkAs    is      THEN   ,       is      IF  

where l
iA  and l

iB  are fuzzy sets. Define the membership 
functions as NB, NM, NS, ZE, PS, PM, PB, where N represents 
negative, P represents positive, B represents big, M represents 
medium, S represents small, and ZE represents zero. Table I 
shows the fuzzy rules. 

TABLE I 
FUZZY RULE TABLE 

si NB NM NS ZE PS PM PB 
kfi NB NM NS ZE PS PM PB 

The membership functions are chosen to be Gaussian 
functions, i.e. 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

exp)(
i

ii
iA

ssl
i σ

αμ , (18) 

where iσ  is the width and iα  is the center. The parameters of 
the membership function of is  are pre-defined. The value of 

fik  is on-line updated. Therefore, the controller is an adaptive 

controller. The defuzzification fik  can be described as 

 )(
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1
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, (19) 

where [ ]Ti
l
kikikik ssss

iiii
)(,),(),()( 21 ψψψ L=Ψ , 

∑
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= l
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)(

μ
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ψ , and Tl

kkkk iiii
],,,[ 21 θθθ L=Θ . Define 

T
kid

Θ  so that )( ik
T
kfi sk

iid
ΨΘ=  is the optimal compensation for 

ifΔ . According to the Wang’s theorem [12, 22], there exists 
0>iω  satisfying 

 iik
T
ki sf

iid
ω≤Θ−Δ )(ψ , (20) 

where iω  can be as small as possible. Now define the 
estimation error as 
 

idii kkk Θ−Θ=Θ
~ . (21) 

Equation (19) can be rewritten as 
 )()(~

ik
T
kik

T
kfi ssk

iidii
ψψ Θ+Θ= . (22) 

Consequently, let the adaptive law to be 
 )( ikik ss

ii
ψ=Θ& . (23) 

Next, we verify the control law. Let the Lyapunov function 
candidate be 

 2

1

)~~(
2
1 ∑

=

ΘΘ+=
n

i
k

T
kL ii

V MssT . (24) 

Differentiating the equation (24) yields 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ΘΘ+ΘΘ+++= ∑

=

n

i
k

T
kk

T
kL iiii

V
1

~~~~
2
1 &&&&&& sMssMsMss TTT  

∑
=

ΘΘ+=
n

i
k

T
k ii

1

~~ &&sMsT  
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=

ΘΘ+−Δ+−=
n

i
k

T
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1

~~][ &KfAssT  

∑∑
==

ΘΘ+−Δ+−=
n

i
k

T
k

n

i
fiii ii

kfs
11

~~])[( &AssT  (25) 

Submitting (22) to (25) yields 

 ∑
=

Θ−Δ+−=
n

i
ik

T
kiiL sfsV

iid
1

)])([( ψAssT&  

 ∑
=

Θ+−Θ+
n

i
kiki

T
k iii

ss
1

)~)((~ &ψ . (26) 

Applying 
ii kk Θ=Θ && ~  and adaptive law equation (23) to (26), the 

derivative of Lyapunov function becomes 

∑
=

Θ−Δ+−=
n

i
ik

T
kiiL sfsV

iid
1

)])([( ψAssT&  

 ∑
=

Θ−Δ+−≤
n

i
ik

T
kii sfs

iid
1

))(( ψAssT . (27) 

Following (20), iω  can be chosen as small as possible such that 

 iiiik
T
ki ssf

iid
γω ≤≤Θ−Δ )(ψ ,  (28) 

where 10 << iγ . Further, multiplying (28) with is  yields 

 22)( iiiiik
T
kii sssfs

iid
γγ =≤Θ−Δ ψ . (29) 

Hence, one can obtain 

 ∑
=

+−≤
n

i
iisV

1

2γAssT& . (30) 

The right hand side of (30) is 
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 sΓAsT )()(
1

2 −−=+−∑
=

n

i
iii sa γ , (31) 

where ],,,[ 21 ndiag γγγ L=Γ . Since iia γ> , ni ,,2,1 L= , 
and )( ΓA −  is a positive matrix, it is clear that 

 0)(
1

22 ≤−−=+−≤ ∑
=

sΓAsT
n

i
iiii ssaV γ& . (32) 

In (32), )( ΓA −  is a positive matrix. The situation of  0=V&  
implies 0=s . Therefore, the adaptive control law guarantees 
the existence of sliding mode. In order words, 
 0)(limlim =+=

→∞→∞
Λees &

tt
. (33) 

This implies 
 dqq =

→∞t
lim . (34) 

Therefore, the proposed adaptive fuzzy sliding mode control 
law indeed achieves the tracking control effectively. 

III. SIMULATION RESULTS 
A three-degree-of-freedom SCARA robotic manipulator 

control system is applied to verify the advantage of the 
proposed control method. The dynamic equation of the 
considered robotic manipulator is acquirable by using the 
Euler-Lagrange method as presented in [21]. The desired 
trajectories of the three-degree-of-freedom SCARA robotic 
manipulator are 

 ))2sin()(sin(1.031 ttqd ++= , (35) 

 ))3sin()(sin(1.032 ttqd ++= , (36) 

 ))4sin()(sin(1.033 ttqd ++= . (37) 

The proposed AFSMC is applied. The results are shown in 
Figs. 3 to 6. In the simulation, [ ]1,1,1diag=A  and 

[ ]400,100,50diag=Λ  are chosen. As seen in Fig. 3, all the 
joint angles track the desired trajectories. The tracking 
performance is very good and maintained very well as shown in 
Fig. 4. The sliding function responses are shown in Fig. 5. All 
the sliding modes are reached and maintained in less than 0.5 
sec. Since the adaptive tuning algorithm with fuzzy logic is 
applied, the sliding surface functions are very smooth. It is 
worth noting that smooth sliding surface function implies 
smooth control input. Referring to Fig. 6, the control input 
chattering is effectively eliminated by using the proposed 
AFSMC. 
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Fig. 3 Joint angle tracking response with AFSMC 
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Fig. 4 Tracking error performance with AFSMC 

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

Time (sec)

s 1

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

Time (sec)

s 2

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

Time (sec)

s 3

 
Fig. 5 Sliding surface function response with AFSMC 
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Fig. 6 Control input performance with AFSMC 

IV. CONCLUSION 
This paper proposes an adaptive fuzzy sliding mode control 

method for the robust trajectory control of robotic manipulators. 
Consider that a large control input switching gain usually 
causes the chattering problem when the sliding mode controller 
works alone. In this study, an adaptive tuning algorithm with 
fuzzy logic is developed to online adjust the switching input 
gain. Chattering problem in the sliding mode is thus overcome. 
The convergence and stability of the proposed control system 
are proved by using the Lyapunov method. Computer 
simulation of a three-degree-of-freedom robotic manipulator is 
carried out. Simulation results show that the control input 
chattering can be eliminated by using the proposed adaptive 
fuzzy sliding mode control method. Robust tracking 
performance is achieved effectively.  
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