
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

430

 

 

  
Abstract—In this paper we present a Feed-Foward Neural 

Networks Autoregressive (FFNN-AR) model with genetic algorithms 
training optimization in order to predict the gross domestic product 
growth of six countries. Specifically we propose a kind of weighted 
regression, which can be used for econometric purposes, where the 
initial inputs are multiplied by the neural networks final optimum 
weights from input-hidden layer of the training process. The 
forecasts are compared with those of the ordinary autoregressive 
model and we conclude that the proposed regression’s forecasting 
results outperform significant those of autoregressive model. 
Moreover this technique can be used in Autoregressive-Moving 
Average models, with and without exogenous inputs, as also the 
training process with genetics algorithms optimization can be 
replaced by the error back-propagation algorithm. 
 

Keywords—Autoregressive model, Feed-Forward neural 
networks, Genetic Algorithms, Gross Domestic Product 

I. INTRODUCTION 
MPIRICAL analysis in macroeconomics as well as in 
financial economics is largely based on times series. The 

existence of unexpected shocks or innovations to the economy 
plus measurement errors, strongly suggest that economic 
variables are stochastic. This approach allows the model 
builder to use statistical inference in constructing and testing 
equations that characterize relationships between economic 
variables. A forecast might be judged successful if it is close 
to the outcome but that judgment may also depend on how 
close it is measured. Depending upon the degree of forecast 
uncertainty, forecasts may range from being highly 
informative to utterly useless for the tasks at hand. A measure 
of forecast uncertainty provides an assessment of the expected 
or predicted uncertainty of the forecast errors which helps to 
qualify the forecasts themselves and to give a picture of the 
expected range of likely outcomes. 

Aryal and Yao-Wu [1] applied a MLP network with 3 
hidden layers to forecast the Chinese construction industry 
and they compare the forecasting performance of the MLP 
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networks with that of ARIMA. and they found that the RMSE 
of the MLP estimation is 49 percent lower than the ARIMA 
counterpart. Li et al. [2] applied an AR model containing 
Autoregressive Moving Average and Generalized 
Autoregressive Conditional Heteroscedastic process combined 
with Generalize Regression Neural Network (GRNN) 
suggesting that the forecasting performance is improved 
considerably in comparison with simple Generalized 
Autoregressive Conditional Heteroscedastic processes. 
Swanson and White [3]-[4] applied neural networks to 
forecast nine seasonally adjusted US macroeconomic time 
series and they found generally neural networks outperform 
the linear models, while Tkacz [5] has found that neural 
networks produce lower forecasting errors for the yearly 
growth rate of the real Canadian GDP relative with the linear 
and univariate models. 

In this paper we compare the forecasting performance of 
Autoregressive (AR) and Feed-Forward Neural Networks 
Autoregressive (FFNN-AR) models in the case of Gross 
Domestic Product growth rate. The optimization training is 
done based on genetic algorithms.  A problem with 
backpropagation optimisation is that it can be trapped in a 
local minimum of a nonlinear objective function, because it is 
derivative based algorithm. Genetic algorithms are derivative-
free, stochastic optimisation methods, and therefore less likely 
to get trapped. They can be used to optimise both structure 
and parameters in neural networks. The structure of the paper 
has as follows. In section II we present the methodology of 
stationarity and unit root tests, as well as the estimating and 
forecasting procedure for both Autoregressive and FFNN 
Autoregressive models. In section III the frequency and the 
type of data are described. In section IV the estimated and 
forecasting results are reported, while in the last section the 
concluding remarks of this study are presented.  

 

II. METHODOLOGY 
 

A. Unit Root and Stationary Tests 
 
It is possible that the variables are not stationary in the 

levels, but probably are in the first or second differences. To 
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be specific we confirm this assumption by applying 
Augmented Dickey-Fuller-ADF [6] and KPSS stationary test 
[7]. The ADF test is defined from the following relation: 
 

tptpttt tyyyy εβφφμ ++Δ++Δ++=Δ −−− ....γ 111  (1) 

, where yt is the variable we examine each time. In the right 
hand of (1) the lags of the dependent variable are added with 
order of lags equal with p. Additionally, (1) includes the 
constant or drift μ and trend parameter β. The disturbance 
term is defined as εt. In the next step we test the hypotheses: 
 

H0: φ=1, β=0 =>  yt ~ Ι(0) with drift 

against the alternative 

H1: |φ|<1         =>  yt ~ Ι(1) with deterministic time trend 

 
The KPSS statistic is then defined as: 
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, where p is the truncation lag, wj( p) is an optional weighting 
function that corresponds to the choice of a special window 
[8]. Under the null hypothesis of level stationary,  
 

dxrVKPSS 21

0 1 )(∫→                                                         (4) 

 
, where V1(x) is a standard Brownian bridge: V1(r) = B(r) – 
rB(1) and B(r) is a Brownian motion (Wiener process) on r ∈ 
[0, 1]. Because (4) is refereed in testing only on the intercept 
and not in the trend and as we are testing with both intercept 
and trend we have the second-level Brownian bridge V2(x) and 
it is: 

dxrVKPSS 21

0 2 )(∫→                                                       (5) 

, where  V2(x) is given by: 
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B. Autoregressive (AR) Models    

 
We consider a series y1, y2, . . . , yn. An autoregressive 

model of order p denoted  AR(p), states that yt is the linear 

function of the previous p values of the series plus an error 
term: 

tptpttt yyyy εφφφφ +++++= −−− ....22110         (7) 

 
, where φ1, φ2 . . . ,φp are weights that we have to define or 
determine, and εt denotes the residuals which are normally 
distributed with zero mean and variance σ2 [9]. Various 
procedures have been suggested for determining the 
appropriate lag length in a dynamic model such as based on 
information criteria  Akaike, Schwartz and Hannan-Quinn or 
based on the t-student statistics indicating that the last added 
lagged dependent variable is significant. Specifically we 
choose Akaike criterion which is defined as: 
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, where e denotes the residuals, T is the sample and p indicates  
the lag number. We examine Akaike criterion up to 5 lags. 
Conditioned on the full set of information available up to time 
i and on forecasts of the exogenous variables, the one-period-
ahead forecast of yt would be 
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B. Feed-Forward Neural Networks Autoregressive (FFNN-

AR) Models with Genetic Algorithms 
 
The Feed-Forward Neural Networks model is a widely used 

approach known for its speed and accuracy. In Fig. 1 we 
present a feed-forward neural network with an input layer of 
m0 nodes for n=1…. m0, one hidden layer and a single output 
layer. The input layer includes the input variables, which in 
the case we examine are the lags of the dependent variable of 
(1) and specifically the Gross Domestic Product of each 
country. The hidden layer consists of hidden neurons or units 
placed in parallel. Each neuron in the hidden layer performs a 
weighted summation of the weights which then passes an 
activation function. The output layer of the neural network is 
formed by another weighted summation of the outputs of the 
neurons in the hidden layer [10]. 

 

 
 
Fig. 1. A Feed-Forward neural networks with one hidden layer and 
one output layer 
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The cost function which is minimized is defined as: 
 

)()()( nyndne kkk −=                                                   (10) 
 
, where  ek(n) is the error signal, yk(n) is the neural network 
output signal and dk(n) is the desired target, which is the real 
value of the Gross domestic Product growth rate. The purpose 
of the neural network learning process is to apply corrective 
adjustments to the synaptic weight of neuron k in order to 
make the output yk(n) to come closer to the desired response 
dk(n) in a step-by-step manner. The minimization of the cost 
function is:  
 

)(
2
1)( nenf k=                                                                (11) 

 
We denote the wkj(n) as the value of the synaptic weight wkj 

of neuron k excited by element xj(n) on the signal input vector 
xj(n) at time step n, where input vector contains the 
independent variables we examine. We test three transfer 
functions, from input to hidden layer, the logistic, hyperbolic 
tangent and linear On the other hand the linear transfer 
function, from hidden to output layer, is used in all three tests.  
The logistic, hyperbolic tangent and linear transfer functions 
are defined respectively by expressions (12)-(14) 
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The tests show that all functions give satisfying forecasts. 

We randomly choose the logistic function and therefore we 
present only the results of the last function. 

The Genetic Algorithm (GA) works with a fixed-size 
population of possible solutions for a problem, called 
individuals, which are evolving in time. A GA uses 3 principal 
genetic operators: selection, crossover, and mutation. During 
each step, called a generation, in the reproduction process, the 
individuals in the current generation are evaluated by a fitness 
function, which is a measure of how well the individual 
solution solves the problem. Then each individual solution is 
reproduced in proportion to its fitness; higher fitness means a 
greater chance to participate in mating, which is the cross-over 
stage, and to produce an offspring. A small number of 
newborn offspring i.e., new solutions, undergo the action of 
the mutation operator. After many generations, only those 
individuals –solutions with the best genetics or from the point 
of view of the fitness function survive. The best individual 
provides an optimum or near optimum solution to the 
problem. Genetic algorithms are essentially probabilistic. In 
contrast, traditional optimization methods are essentially 

deterministic. The probabilistic nature of evolutionary 
computations allows them to explore areas in the search space 
that may appear improbable at first glance. Bad solutions- 
individuals are not thrown out from the population. Instead, 
they have some finite probability of mating and of giving 
future generations some genetic features that could be very 
useful in creating true elite offspring. Thus, the GA avoids 
local optima and can find a true global solution to the problem 
[11]-[12]. We minimize (11) in order to find the optimum 
parameters. The steps for genetic algorithm are [11]-[12]: 

1. Start with a randomly generated population of n 
chromosomes, which are the candidate solutions. . It 
should be noticed that we could obtain binary 
encoding incorporate the rules. We preferred to take 
real numbers encoding and the random population is 
generated based on the range of the actual values, 
because the results are superior than those we could 
have if we had taken binary encoding. Moreover in 
neural networks real number encoding is more 
appropriate because we are trying to find the 
optimum weights [11]-[12].  

2. Calculate the fitness f(x) of each chromosome x in the 
population 

3. Repeat the following steps until n offspring have 
been created:  

a. select a pair of parents chromosomes of the 
current population and compute the 
probability of selection being an increasing 
function of fitness. In this case we take the 
roulette wheel selection algorithm. Also the 
selection process is one with replacement 
meaning that the same chromosome can be 
selected more than once to become a parent.  

b. The next step is the crossover. We use one-
point crossover process with probability pc 
cross over the pair at a chosen point. If no 
crossover takes place we form two offspring 
that are exact copies of their respective 
parents. 

c. Mutate the two offspring with probability pm 
and place the resulting chromosomes in the 
new population. We use uniform mutation. 

4. Replace the current population with the new 
population. 

5. Go to step 2.   
 

Finally we propose the following neural network 
regression: 
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, where for i=1,2…p is the number of lags as in the case of 
AR models, kj

Aw )(  are the optimized weights from hidden to 
input layer and b is the bias which is a vector of ones as in the 
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case of  the ordinary least squares method. So we regress the 
initial dependent variable y, which denotes the GDP growth 
rates, on the weighted inputs, forming a kind a weighted 
regression. The forecasting performance of Autoregressive 
(AR) models and Feed-forward neural networks 
Autoregressive (FFNN-AR) models in both in-sample and 
out-of- sample periods is counted based on the Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE) 
described respectively by (16) and (17).  
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III. DATA 
 
The data are in quarterly frequency and are referred in 

Gross Domestic Product (GDP) growth rates for quarter-by-
quarter. The period examined is 1991-2009 for Canada, 
France, Italy, Japan, UK and USA. Moreover the period 1991-
2006 is obtained as the in-sample for AR model or as the train 
period for the FFNN-AR model, while period 2007-2009 is 
taken as the out-of-sample period. Moreover, we apply a four- 
step ahead period forecasting. Specifically in the one-step 
ahead prediction both models present a very similar and high 
performance. The purpose is to extend the step forecasting 
period because it is much more useful. Firstly, we estimate the 
forecasts for 2007, then we replace the forecasting values with 
the actual the forecasts for 2008. The same procedure is 
followed for year 2009. It should be noticed that more than 
four step periods ahead the forecasting performance of the 
models becomes poor.   
 

IV. EMPIRICAL RESULTS 
 

In Table I we present the results of ADF and KPSS tests. 
The results are ambiguous among the two tests as for example 
we accept the hypothesis that the Canadian GDP is stationary 
in levels, according to ADF test, but it is stationary in first 
differences based on KPSS test. Generally according to ADF 
test and for α=0.01 all time series we examine are I(1), with 
the exception that of Canadian GDP, while the GDP in Japan 
and UK are are I(0) in α=0.05 and the GDP of Italy and USA 
are I(0) in α=0.10. Βased on KPSS and again for α=0.01 only 
GDP of Italy and Japan are I(0).  

In Tables II and III the Autoregressive (AR) and Feed-
Forward Neural Networks Autoregressive (FFNN-AR) 
regression estimations are reported The maximum number of 

genetic iterations is set up at 50,  the crossover rate pc at 0.2 
and the mutation rate pm at 0.01.  

 
TABLE I 

ADF UNIT ROOT AND KPSS STATIONARY TESTS 
Countries ADF test KPSS test 

 In Levels In First 
differences 

In Levels In First 
differences 

Canada -4.29  0.1542 0.0928 
France -2.039 -6.25 0.1270 0.0342 
Italy -3.26 -6.40 

 
0.0697  

Japan -3.56 -4.07 0.0988  
UK -3.81 -6.70 0.1797 0.0739 

USA -3.17 -6.45 0.1499 0.0685 
Critical 

values for 
ADF1 

-4.110  
for α=0.01 

-3.482 
 for α=0.05 

-3.169  
for α=0.10 

Critical 
values for 

KPSS2 

0.216  
for α=0.01 

0.146  
for α=0.05 

0.119  
for α=0.10 

 

  1 MacKinnon [13], 2 Kwiatkowski et al.,[7]  
 
 

TABLE II 
. AUTOREGRESSIVE (AR) MODEL ESTIMATIONS 

 Estimated parameters 
 φ1 φ2 φ3 φ4 φ5 

Canada 0.9114 
(0.1072) 
[8.501]* 

0.1542 
(0.1471) 
[1.047] 

-0.1429 
(0.1470) 
[-0.971] 

-0.4483 
(0.1461) 
[-3.068]* 

0.5124 
(0.1064) 
[4.816]* 

France 1.3021 
(0.1231) 

[10.577]* 

-0.1914 
(0.2002) 
[-0.956] 

-0.1955 
(0.1243) 
[-1.572] 

  

Italy 1.3204 
(0.1231) 

[11.197]* 

-0.3020 
(0.2002) 
[-1.550] 

-0.1743 
(0.1243) 
[-1.379] 

  

Japan 1.0447 
(0.1220) 
[8.565]* 

-0.1479 
(0.1758) 
[-0.841] 

-0.1001 
(0.1219) 
[-0.821] 

  

UK 1.631 
(0.1216) 

[13.423]* 

-0.600 
(0.2293) 

[-
2.620]** 

-0.1376 
(0.2416) 
[-0.571] 

-0.2674 
(0.2514) 
[-1.063] 

0.3503 
(0.1503) 

[2.330]** 

USA 1.316 
(0.1186) 

[11.099]* 

-0.2154 
(0.1958) 
[-1.099] 

-0.1892 
(0.1980) 
[-0.955] 

-0.3396 
(0.1991) 

[-1.70]*** 

0.4044 
(0.1233) 
[3.280]* 

 Diagnostic tests 
 F-statistic R2

adj Q-stat (2) Standard 
Error of 
Estimate 

 

Canada 16.601 
{0.000} 

0.4713 4.719 
{0.4510} 

0.8688  

France 202.969 
{0.000} 

0.8487 5.795 
{0.3744} 

0.6506  

Italy 225.929 
{0.000} 

0.8620 5.083 
{0.4230} 

0.7726  

Japan 88.907 
{0.000} 

0.7095 7.151 
{0.1281} 

1.2168  

UK 234.785 
{0.000} 

0.9304 2.677 
{0.6132} 

0.5540  

USA 113.928 
{0.000} 

0.8658 0.535 
{0.9700} 

0.6852  

Standard errors in parentheses, t-statistics in brackets, p-values in {},* denotes 
significance in α=0.01,** denotes significance in α=0.05, *** denotes 
significance in α=0.10, Q-stat is the Ljung-Box test on squared standardized 
residuals with 2 lags 
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TABLE III 
. FEED-FORWARD NEURAL NETWORKS AUTOREGRESSIVE 

(FFNN-AR) MODEL ESTIMATIONS 
 Estimated parameters 
 φ1 φ2 φ3 φ4 φ5 

Canada 1.5409 
(0.3196) 
[4.821]* 

0.3760 
(0.2424) 
[1.551] 

-2.0242 
(0.3879) 
[-5.218]* 

1.1981 
(0.1709) 
[7.011] 

-0.5953 
(0.1679) 
[-3.54]* 

France 0.0068 
(0.0381) 
[0.179] 

0.1468 
(0.0132) 

[11.100]* 

-0.4315 
(0.0354) 
[-12.17]* 

  

Italy 0.1916 
(0.0324) 
[5.908]* 

-0.2206 
(0.0266) 
[-8.295]* 

-0.2167 
(0.0175) 
[-12.35]* 

  

Japan 0.2127 
(0.0412) 
[5.164]* 

0.0027 
(0.0103) 
[0.265] 

-0.0621 
(0.0661) 
[-0.940] 

  

UK -0.9284 
(0.1832) 
[-5.067]* 

-1.8622 
(0.3616) 
[-5.149]* 

0.1860 
(0.5344) 
[3.348]* 

0.2107 
(0.0477) 
[4.412]* 

0.2391 
(0.0273) 
[8.739]* 

USA -0.2843 
(0.1274) 
[-2.23]** 

0.0258 
(0.0738) 
[0.3496] 

-0.3103 
(0.0363) 
[-8.549]* 

0.2753 
(0.1509) 

[1.82]*** 

0.3012 
(0.0668) 
[4.51]* 

 Diagnostic tests 
 F-

statistic 
R2

adj Q-stat (2) Standard 
Error of 
Estimate 

 

Canada 16.983 
{0.000} 

0.4810 1.7209 
{0.9321} 

0.8644  

France 218.906 
{0.000} 

0.8599 4.802 
{0.4889} 

0.6237  

Italy 212.073 
{0.000} 

0.8560 5.610 
{0.3205} 

0.7666  

Japan 92.243 
{0.000} 

0.7199 7.435 
{0.1146} 

1.1956  

UK 214.612 
{0.000} 

0.9253 2.677 
{0.6132} 

0.5495  

USA 119.111 
{0.000} 

0.8726 0.384 
{0.9837} 

0.6625  

Standard errors in parentheses, t-statistics in brackets, p-values in {},* denotes 
significance in α=0.01, ** denotes significance in α=0.05, *** denotes 
significance in α=0.10, Q-stat is the Ljung-Box test on squared standardized 
residuals with 2 lags 
 

 
We observe in Tables II and III that the hypothesis of 

autocorrelation in residuals existence is rejected.  
In Tables IV and V we present the MAE and RMSE 

measures for the in-sample and the out-of-sample period 
respectively of the estimated models. Only in one case AR 
model outperforms the FFNN-AR model in the in-sample 
period and more specifically in the case of UK, while in the 
remained cases we examine, RMSE and MAE are very close 
among the two models. On the other hand in the out-of-
sample period which is of greatest interest, FFNN-AR with 
genetic optimization outperforms significant the AR model. 
This can be shown in Fig. 2-7, where the forecasts generated 
of the two models examined versus the actual values of GDP 
for the out-of-sample period are reported. This indicates that 
FFNN-AR with genetic algorithms optimization is a good 
alterative choice in time series modelling. 

 
 
 

 
 

TABLE IV 
FORECASTING PERFORMANCE OF AR AND FFNN-AR 

MODELS FOR IN-SAMPLE PERIOD 
 AR FFNN-AR 
 MAE RMSE MAE RMSE 

Canada  0.6715 0.8376 0.6653 0.8303 
France  0.5201 0.6371 0.4729 0.5604 
Italy 0.5808 0.7566 0.5348 0.6346 
Japan 0.9243 1.4199 0.9014 1.1704 
UK 0.4196 0.5341 0.4251 0.5388 

USA 0.5481 0.6606 0.5381 0.6538 
 

TABLE V 
FORECASTING PERFORMANCE OF AR AND FFNN-AR  

MODELS FOR OUT-OF-SAMPLE PERIOD 
 AR FFNN-AR 
 MAE RMSE MAE RMSE 

Canada  1.8316 2.1814 1.1970 1.4836 
France  2.1385 2.5840 1.4401 1.7210 
Italy 2.3555 2.9334 1.8876 2.1612 
Japan 2.5912 3.1301 2.2356 2.7698 
UK 2.2230 2.8528 1.7563 2.2013 

USA 2.0581 2.5179 1.7242 2.1711 
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Fig. 2 Out-of-sample period forecasts with AR and FFNN-AR 
models for Canada 
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Fig. 3 Out-of-sample period forecasts with AR and FFNN-AR 
models for France 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

435

 

 

-8

-6

-4

-2

0

2

4

2007Q1 2007Q3 2008Q1 2008Q3 2009Q1 2009Q3

Actual
AR Forecast
FFNN-AR Forecast

 
Fig. 4 Out-of-sample period forecasts with AR and FFNN-AR 
models for Italy 
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Fig. 5 Out-of-sample period forecasts with AR and FFNN-AR 
models for Japan 

 

-4

-3

-2

-1

0

1

2

3

2007Q1 2007Q3 2008Q1 2008Q3 2009Q1 2009Q3

Actual
AR forecast
FFNN-AR forecast

 
Fig. 6 Out-of-sample period forecasts with AR and FFNN-AR 
models for UK 
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Fig. 7 Out-of-sample period forecasts with AR and FFNN-AR models for 
USA 
 

V. CONCLUSIONS 
 
The main conclusion of this paper is that the forecasting 

performance of the Feed-Forward Neural Networks 
Autoregressive (FFNN-AR) model is a little superior or very 
close in the in-sample period comparing with the simple 
Autoregressive (AR) model. On the other hand we have 
shown that FFNN-AR with genetic algorithms outperforms 
significant the Autoregressive model. The purpose of the 
paper was to compare only Feed-Forward Neural Networks 
Autoregressive (FFNN-AR) and Autoregressive (AR) model, 
while Feed-Forward Neural Networks can be extended as well 
as into Feed-Forward Neural Network Moving Average 
(FFNN-MA), or Autoregressive Moving Average (FFNN -
ARMA) or even Smoothing Transition Autoregressive 
(FFNN-STAR) model, opening a new research field in 
econometric literature.  
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