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Abstract—The noteworthy point in the advancement of Brain 
Machine Interface (BMI) research is the ability to accurately extract 
features of the brain signals and to classify them into targeted control 
action with the easiest procedures since the expected beneficiaries 
are of disabled. In this paper, a new feature extraction method using 
the combination of adaptive band pass filters and adaptive 
autoregressive (AAR) modelling is proposed and applied to the 
classification of right and left motor imagery signals extracted from 
the brain. The introduction of the adaptive bandpass filter improves 
the characterization process of the autocorrelation functions of the 
AAR models, as it enhances and strengthens the EEG signal, which 
is noisy and stochastic in nature. The experimental results on the 
Graz BCI data set have shown that by implementing the proposed 
feature extraction method, a LDA and SVM classifier outperforms 
other AAR approaches of the BCI 2003 competition in terms of the 
mutual information, the competition criterion, or misclassification 
rate.
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I. INTRODUCTION

RAIN Machine Interfaces (BMIs) or Brain Computer 
Interfaces (BCIs) are devices designed with the intention 

of helping people who are disabled in nature. This device 
enables a disabled person to communicate with a computer or 
machine using their brains’ electrical activities as the only 
medium. 

Various techniques are available for capturing brain 
activities, which includes electroencephalogram (EEG), 
functional Magnetic Resonance Imaging (fMRI), Magneto- 
encephalography (MEG), Position Emission Tomography 
(PET). Among these techniques, EEG is the most preferred 
for BCI designs, because of its non-invasiveness, cost 
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effectiveness, and easy implementation [1, 2, 3]. This was 
among the reasons which encouraged us to concentrate in the 
design of an EEG-based BCI for this research. 

A BCI’s design is usually realized by using visual evoked 
potentials (VEP) or movement related potentials (MRP). The 
work presented in this paper concentrates in the usage of 
MRPs for the EEG-based BCI. Clear representations of MRP 
can be observed in the EEG’s mu-rhythm (8-12Hz) and/or 
Beta rhythm when a person performs a motor activity or 
imagines a motor activity [4]. Such an activity can be easily 
captured from the EEG’s channel C3, and C4 [5]. 

Current designs of BCI usually consists of four main stages, 
which are, raw signal acquisition, signal pre-processing or 
conditioning, feature extraction and finally classification of 
features into intended actions. Among these stages, feature 
extraction and classification methods plays an important role 
because, a successful BCI depends on its ability to extract 
EEG features according to different tasks and to efficiently 
classify them in a real time environment [6]. 

One of the most challenging tasks in designing a BCI is in 
choosing the relevant features from the EEG signals, which 
are chaotic in nature. Accurate feature extraction method is 
very important in determining the performance of a classifier. 
Incorrect features could lead the classifier to have poor 
generalization, computational complexity and requires a large 
number of training data set to achieve a given accuracy [7]. 
So, the goal of this paper is to develop and efficient feature 
extraction methodology. 

In an EEG-based BCI, time frequency analysis methods are 
usually employed. Feature recognition in this paradigm, could 
be realized by implementing estimation procedures, which are 
categorized as parametric and non-parametric. Parametric 
approaches such as the Autoregressive (AR) and its variant 
Adaptive Autoregressive (AAR) modeling are the most 
commonly used [8,9] in the analysis of EEG signals. 
Parametric approaches’ using AR model is well studied and is 
attractive because of its capability to summarize information 
concisely and translates them into feature vectors. Besides 
that, AR parameters are also mainly used due to its ability to 
describe the stochastic nature of EEG and it does not require 
any priori information of any relevant frequencies. Estimation 
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of AR parameters can be done using a wide range of 
stationary process such as the Burg’s and Yule-Walker 
algorithms, [10] but EEG signals are well known for its non-
stationary behavior. So, a moving window is usually 
employed on the signal to estimate its AR parameters. This 
method becomes computationally intensive, depending on the 
size and shift of the window. In order to overcome this 
problem, the kalman filtering method [11] is used instead of 
moving windows to estimate the non-stationary AR 
parameters. Kalman filter is an efficient recursive filter that 
estimates the state of a dynamic structure from a non-
stationary signal like the EEG. The Kalman filter requires 
only information of the prior state of the signal and thus 
becomes computationally efficient. The combination of 
Kalman filtering in estimating AR parameters produces the 
methodology of Adaptive Autoregressive (AAR) modeling. 

However, in reality EEG are generated by a non-linear 
system which consists of post synaptic neurons firing action 
potentials,[6] that make the signal very noisy and chaotic. 
Thus making the signal to have many sinusoidal components 
of different features and through nonlinear interactions, the 
signal produces one or more sinusoidal components at sum 
and difference frequency [12]. This makes the characterization 
process of features by the AR/AAR models completely 
difficult and could lead to very bad classification 
performances. 

To overcome this problem, this paper introduces a new 
method of feature extraction, which incorporates AAR 
parameters and Adaptive Recursive Bandpass Filter (ARBF) 
to produce better classification results. Figure 1 depicts the 
BCI design using the proposed method. The ARBF is 
designed to trail the centre frequency of the dominant EEG 
signal and requires only one coefficient to be updated [13,14]. 
This is done in order to adjust the centre frequency of the 
filter band pass and to be approximated with the input signal 
[13, 14]. The time function of the coefficient then represents 
the dominant EEG signal. These signals are then introduced to 
the AAR models to estimate its parameters which will be used 
for classification. The ARBF method makes the 
characterization process of the autocorrelation functions in the 
AAR models better, as it enhances the EEG signal.   

To evaluate the effectiveness of the proposed method, the 
support vector machine (SVM) and linear discrimination 
analysis (LDA) was used to classify the Graz BCI dataset 
which was used in the BCI Competition 2003 [15]. The 
objective of the competition is to classify imagined left or 
right hand performed at a particular time or trial.  The 
performance of the classifiers are usually determined by its 
error rate, however, it only considers the sign of the classifier 
output but not the degrees of memberships of patterns 
belonging to each class. Therefore, error rate just provides the 
classification accuracies of the used classifier but not the 
information of how much confidence about the classification 
result is [6]. So, in order to overcome this limitation, entropy 
based mutual information (MI) was used as the evaluation 
criterion on the Graz data set for the BCI competition 2003 

[10, 16]. The MI enables us to view the combination of 
classification accuracy and confidents of the classifier’s 
output. Higher MI of the classification result indicates that the 
classifier produces results with higher confidence. In this 
paper, the classification results obtained from the proposed 
method is compared with results from the BCI competition 
2003.

Fig. 1 (Top) BMI design using AAR for feature extraction.
(Bottom) BMI design using proposed method for feature extraction 

II. FEATURE EXTRACTION

A. Adaptive Recursive Bandpass Filter (ARBF) 
The adaptive recursive bandpass filtering as proposed by 

Gharieb is employed to estimate and track the centre 
frequency of the dominant signal of each EEG channel [13]. 
In this paper we concentrate in detecting the mu-rhythm (8-
12Hz) since it is the dominant signal from the EEG channels 
C3, and C4. The ARBF updates only one coefficient in order 
to adjust the centre frequency of the filter band pass to be 
matched with the input signal. The time function of the 
coefficient represents the dominant frequency of the signal, 
which is feasible to be used as input for the AAR model.  

B. Filter Structure 
A fourth order Butterworth band pass filter is employed as 

the adaptive filter. The filter function, T (z) could be 
expressed as [17,19]. 

T(z)=
2 4

0 2 4
1 2 2 3 41 ( ) ( ( ) ' ) ( )1 2 2 3 4

D D Z D Z

F C n Z F C n F Z F C n Z F Z             (1)
where
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4 ,1 3 0D D D 2 (2 2) ,1 0F l l D
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The coefficient C (n) could be expressed as
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cos( ( ( ) ( ))2 1( )
cos( )

H n H n
C n

BP                                            (2) 
where

( )1H n = normalised low cut off frequency, 
( )2H n = normalised high cut off frequency, 

BP      = normalised bandwidth of the filter 

BP  is assumed to be a constant value. Based on equation 1 
and 2, it can be seen that ( )C n  is the only coefficient that has 
to be updated by the adaptive filter since it is also the only 
coefficient which is dependant with the centre frequency, 
( ( )1H n + ( )2H n )/2. Hence the filter has only one centre 
frequency dependent, ( )C n to be updated.

C. Adaptive Algorithm 
The output power of the filter is maximised in order for the 

filter, T (z) to be self-adjusted to the centre frequency of the 
input signal, the adaptive filter coefficient, ( )C n  is updated 

for the maximization of the expected output power 2{ ( )}E y n
[13,14]. This step can be applied by implementing a standard 
gradient approach [13, 14]. An algorithm called recursive 
maximum mean-squared (RMXMS) is used to update the filter 
coefficient [13,14]. The RMXMS algorithm can be described 
as:

2( 1) ( ) 0.5 ( { ( )})C n C n E y nn                             (3) 
where,

n >0 = Normalized step size. 
2( { ( )})E y n = True gradient respective to ( )C n .

Using the instantaneous gradient 2{ ( )}y n as a stochastic 

approximate for the true gradient 2( { ( )})E y n , the following 
equation is obtained: 

( 1) ( ) ( ) ( )C n C n y n nn                                       (4) 

where the ( ) ( )n y n  and the filter output ( )y n is given 
by: 

( ) ( ) ( 2) ( 4) ( ) ( 1)0 2 4 1
2( ( ) ' ) ( 2) ( ) ( 3)2 2 3

( 4)4

y n D x n D x n D x n F C n y n

F C n F y n F C n y n

F y n
(5)

and
( )

( )
( )

y n
n

C n
 can be computed from the equation 

above, which yields: 

( ) ( 1) 2 ( ) ( 2) ( 3)1 2 3
2( ) ( 1) ( ' ( ) ( 2))1 2 2

( ) ( 3) ( 4)3 4

n F y n F C n y n F y n

F C n n F F C n n

F C n n F n
      (6) 

The normalized step-size n is given by / ( )p nn
where  is a fixed positive step size. ( )p n is a recursive 

estimate of the power of the gradient with the equation: 

2( ) ( 1) ( )p n p n n                                               (7) 

Where 0 1 is a forgetting factor and finally it proves 
that the stability is guaranteed if the update | ( 1) | 1C n ,
then ( 1) ( )C n C n .

The adaptive filter further enhances the feature and 
provides good on-line information of the feature’s distinct 
behaviour. The adaptive filter becomes unstable for some low 
frequency waves. This is because the adaptive filter is a band 
pass filter and the EEG signal is a low pass signal [13,14]. So, 
in order to solve this problem a high frequency shifting 
process is employed to shift the EEG frequency to the highest 
ones before the adaptive filtering [13,14]. The time function, 
C (t) of the updated co efficient C (n) is then introduced to the 
AAR model to extract features. 

Fig. 2. Average of 10 trial realisations of raw motor imaginary 
signals from channel C3 (Top). Mean values of the extracted features 
after performing ARBF (bottom). 
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Fig. 3. Average of 10 trial realisations of raw motor imaginary 
signals from channel C4 (Top). Mean values of the extracted features 
after performing ARBF (bottom). 

D. AAR Parameters 
An AAR model with nth order can describe the time 

function, C(t), of the coefficient which represents the 
dominant frequency of the signal in the following form 

( ) ( ) * ( 1) ( )tx i y i z i w ij                                            (8) 
i = discrete time index 
x = C(t),EEG signal after passing through the ARBF 
y = nth element column vector of AR coefficient 
z = last element vector of nth EEG samples 

jw = zero mean, white noise process 

( ) ( 1) ( )y i y i w in                                                     (9) 
wn = zero mean white noise 

From equation 1 we could observe that the AR co-efficient 
changes with time, t in order to capture the non-static behavior 
of the EEG signal. Equation 1 can also be considered as the 
measurement model of the kalman filter, [19] while equation 2 
describes the dynamics of the kalman model and we could 
also observe that it is modeled as random walk with an 
assumption of small changes in the state. The AAR estimation 
using Kalman filtering algorithm is shown in equation 3 to 7. 

( ) (1 ) * ( 1)A i uc A i                                                 (10) 
( ) ( 1). ( ) / ( )B i M i z i A i                                              (11) 

ˆ ˆ( 1) ( ) ( ) ( )y i y i B i i                                                (12) 
( ) * ( ( 1)) /N i V trace M i n                                        (13) 

( ) ( 1) ( ) . ( 1). ( 1) ( )tM i M n B i z i M i N i           (14) 

( )A i = Innovation process variation 
( )B i = kalman gain 
( )M i = Predicted error matrix 

( )z i = measurement matrix of last, n, samples of signal, x.
( )y i = Estimates of AAR parameter 
( )N i = process noise variance 

V = Updated coefficient 
( )i = innovation process 

The best estimation of AAR parameters for EEG signal, x,
depends on the updated coefficient, V, and model order ,n.
These parameters could be obtained by minimizing the 
variance of the prediction error. The relative error variance, R,
[20] was used in this case. 

2( )
( ) / var ( )

i
R iance x

S
                                         (15) 

Equation 8 demonstrates the mean squared error normalized 
by the signal variance, where S is the number of samples in 

the trial. This results a feature vector ( )D i
t  with a dimension 

of 2*n for every trial i and every sampling point t.

( ) ( ), 4ˆ[ ]( ), 3
i i CD yt i C                                                           (16)                   

III. CLASSIFICATION

LDA and SVM linear classifiers are used to classify the 
imagined hand movements in order to show the performance 
of the proposed method. 

A. LDA Classifier 
The feature vectors ( )i

tD are first mapped into a linear 

transformation, where a weight vector tw  and offset 0w  were 

found with which the distance d was computed as the 
following equation: 

( ) ( )
0

i iTd w D wt t t                                                    (18) 

The tw  and 0w  were obtained by maximizing the ratio of 
between-class variance and within-class variance to ensure the 
maximal distinction [21]. The within-class variance could be 
equated as : 

( )( )
1 1

LK i l l TJ D D
w i ii l                                (19) 
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Where, 
K = number of classes 

i =mean of class i
Li =number of samples within class i

Whereas, the between-class variance could be equated as : 

( )( )
1

K TJ i ib i                                        (20) 

Where, 
=mean of the training samples set. 

The obtained distance ( ) 0idt  and ( ) 0idt shows that the 

trial i  is classified as imagined left and right trial respectively. 

B. SVM Classifier 

The aim of a SVM classifier is to use a discriminant hyper 
plane in order identify different classes [22, 23]. SVM 
maximizes the margins of the hyper plane (distance from the 
nearest training point) in order to increase the generalization 
capabilities [22, 23]. A regularization parameter is also used 
by SVM that enables accommodation to outlier and allows 
error on the training set [24]. This type of SVM enables 
classification using linear decision boundaries and also known 
as linear SVM. Non-linear decision boundaries can also be 
created by using the ‘kernel trick’, where it consists of 
implicitly mapping the data into another space by using a 
kernel function. The output of a binary SVM can be equated 
as follows: 

sgn( ( , ) )
1

N
Q Q K x x bi i ii

                                           (21) 

Where, 

{ , } 1
Nx Qi i i     = training samples 

dx Ri        = input vector 

{ 1,1}Qi  =class labels 

0i          = Langarian multipliers, obtained from quadratic 
optimization problem 
b                 = bias 

( , )k x xi j      = kernel function of SVM 

The most commonly used kernel function in BCI 
classifications is the Gaussian or radial basis function (RBF), 
which could be expressed as below: 

2

( , ) exp 22

x xi j
K x xi j                                     (22) 

SVM has several advantages in terms of good 
generalization properties [23,25] because of the margin 
maximization and regularization and insensitive to over 
training [25].

IV. EXPERIMENTAL RESULTS

A. Data Set 
The proposed method was trialed on the BCI Competition 

2003, dataset IIIb [15]. The data set was provided by the 
Department of Medical Informatics, Institute for Biomedical 
Engineering, University of Graz. The signals were obtained 
from a 25-year-old female relaxing on a chair with armrest. 
The task was to control a feedback bar by means of imagining 
left hand of right hand movements. The data was acquired 
from the EEG channels C3, Cz, and C4 (Figure.5), which was 
band pass filtered for a frequency range of 0.5 to 30Hz and 
sampled at 128 Hz. The experiment consists of 7 runs with 40 
trials each. All runs were conducted on the same day with 
several minutes break in between. The data has a total of 280 
trials, which consists of 140 labeled and 140 unlabeled trials 
with an equal number of left hand and right hand movements. 
Each trial consists of duration of 9 seconds. At the 3rd second 
a visual cue (Figure.4), an arrow pointing left or right is 
presented to indicate left or right motor movements is to be 
imagined.  

Fig. 4. The timing scheme 

Fig. 5. Electrode positions on the scalp 
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Feedback period with Cue

32

321C3 Cz C4

1

5 cm



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:5, 2007

316

B. Signal Analysis 

In order to begin the signal analysis, the EEG signals of 
channel C3 and C4 from the data set are extracted. Signals 
from channel Cz is ignored because it contains very little 
significant discriminative features [26]. Signals from EEG 
channel C3 and C4 are first pre-processed by using a 5th order 
low pass Butterworth filter where the pass band is 12Hz with 
less than 1 dB of ripple with at least 6 dB of attenuation. 

 Then the pre-processed signal is introduced to the ARBF 
in order to track the dominant wave existing in the signal. The 
observed signal is composed of mu-rhythm (8-12Hz) for a 
period of 9 seconds for each trial. Based on the definition of 
section 2.1, the normalized carrier frequency is set to 0.30, 
while the forgetting factor and step size are set to 0.9 and 0.95 
respectively. The normalized frequency bandwidth, B, is set to 
0.15. The initial values of r(0) and w(0) is set to 100 and 0.0 
respectively. Fig.2 and Fig.3 shows the results of the ARBF 
for the training data set. Investigating the results we could see 
that the time frequency of the adaptive coefficient, w(t), gives 
clear representation of the EEG signals.

 The signals are then used to estimate the AAR 
parameters. A model order, n=5 and update coefficient, 
V=0.0055 are used. The AAR parameters were estimated for 
every sample time point for the EEG channels C3 and C4 
respectively. This resulted in a feature vector with a 
dimension of 2*5 for every trial and every sampling point. 
The features were extracted for all the 280 trials of 9 seconds 
each, in which 140 is the training data set and 140 is test data 
set.

 In this paper, we used the Gaussian kernel based SVM 
[27]. In order for SVM to find the optimal Gaussian 
parameter, and the regularization parameter C, the genetic 
algorithm (GA) was used to select the suitable hyper-
parameters [6]. The MI [10, 16] was used as a criterion to 
evaluate the performance of the proposed method with the 
results of BCI competition 2003’s AAR parameters method. 

 As mentioned in section 3.1, the data set used for our 
experiments consists of 140 training and 140 test dataset. In 
order to further evaluate the performance of our proposed 
method, we first tested on the 140 training dataset. A 5 fold 
cross validation approach was employed for this procedure. 
The data set (140 trials) were split into five parts with equal 
number of trials. This procedure is repeated for five times, 
where for each time five different parts were trained and the 
remaining part was used for testing. This leave one out 
method is done in order to increase the validity of the 
classification results. Next, we used another Graz BCI motor 
imaginary dataset [28], to validate the proposed method. The 
data set was generated with different experimental settings 
from 3 subjects. Further information of the data set can be 
obtained from [28]. In our experiments, we used the data set 
from only one subject, O3 and 120 sample trials we chosen 
randomly. A 5 fold cross validation approach was also 
employed similarly to the previous experiment.  

  Finally, in order to test the proposed method on the BCI 

Completion data set,   we used the 140 training data set to 
train the classifiers and then we used the remaining 140 test 
data set to test the classifiers. 

TABLE I
EXPERIMENTAL RESULT OF THE PROPOSED METHOD ON THE 140 TRAINING 

TRIALS USING 5 FOLD  CROSS VALIDATION APPROACH

Feature
Extraction AAR ARBF+AAR 

Classification Error
(%) MI SNR Error

(%) MI SNR 

SVM 17.1 0.27 0.45 12.1 0.51 1.04 
LDA 18.6 0.27 0.46 11.4 0.53 1.09 

TABLE II
EXPERIMENTAL RESULT OF THE PROPOSED METHOD ON THE O3 DATA SET

USING 5 FOLD  CROSS VALIDATION APPROACH

Feature
Extraction AAR ARBF+AAR 

Classification Error
(%) MI SNR Error

(%) MI SNR 

SVM 22.5 0.24 0.39 10.8 0.46 0.88 
LDA 24.2 0.25 0.41 13.3 0.44 0.85 

TABLE III
EXPERIMENTAL RESULT OF THE PROPOSED METHOD AND THE BCI

COMPETITION 2003 METHODS USING THE AAR PARADIGM .

Methods MI Error
(%) 

SNR

ARBF+AAR+LDA 0.49 14.10 0.97 
ARBF+AAR+SVM 0.46 14.30 0.90 
BCI_Competition 2003 (GroupF) 
AAR+LDA

0.46 15.71 0.90 

BCI_Competition 2003 (GroupB) 
AAR+LDA

0.45 17.14 0.86 

BCI_Competition 2003 (GroupG) 
AAR+ NEURAL NET 

0.29 17.14 0.50 

V. CONCLUSION

In this paper a new feature extraction method was 
introduced in order to classify EEG signals according to left or 
right hand motor imaginary. The feature extraction method 
includes the combination of ARBF and AAR models to 
produced better features for classification. Experimental 
results have shown that the proposed method, which is by 
introducing the ARBF before estimation of AAR parameters 
increases the performances of the autoregressive 
characterization function in AR models. This leads to a better 
classification results, especially with the usage of LDA and 
SVM as classifiers. Experimental results have also shown that 
the proposed methods are suitable to used for an efficient 
Brain Machine Interface design. 
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Fig. 6. MI of the BCI Competition 2003 results. 

Fig. 7. (a) MI for proposed method with LDA as classifier, (b) MI for 
proposed method with SVM as classifier. 
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