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Abstract— This paper presents a model for an unreliable 
production line, which is operated according to demand with constant 
work-in-process (CONWIP). A simulation model is developed based 
on the discrete model and several case problems are analyzed using 
the model. The model is utilized to optimize storage space capacities 
at intermediate stages and the number of kanbans at the last stage, 
which is used to trigger the production at the first stage. Furthermore, 
effects of several line parameters on production rate are analyzed 
using design of experiments. 

Keywords—Production line simulator, Push-pull system, JIT 
system, Constant WIP, Machine failures. 

I. INTRODUCTION

IMULATION has been extensively used in modeling and
analyzing production control systems. A particular type of 

production control, which has become a common trend in 
industry, is just in time (JIT) or “pull” system of production 
control. In a JIT system, production is initiated according to 
demand for finished products at each stage to produce what is 
needed at the right time and in the right quantity. Alternative 
to a purely pull system is the hybrid push-pull system, where 
the production at the first stage is scheduled according to the 
demand for the products in the last stage. Withdrawal of 
finished products from the last stage triggers the production at  
the  first  stage  by  an information signaling card, called a 
kanban. Intermediate operations are performed by a push 
system. Push-pull systems are commonly used in electronics 
assembly operations. Several studies have been carried out on 
the implementation and efficiency of JIT systems. 

 [1]-[6] have analyzed JIT systems from different 
perspectives using simulation as well as  other meta modeling 
approaches, including neural network models. [7]-[10] studied 
a hybrid push-pull system and presented a control algorithm 
for multi-stage, multi-line production systems. [11] compared 
three pull control policies, namely the kanban, base stock, and 
generalized kanban.  

The effects of kanbans and other factors on JIT system 
performance have been investigated mostly for pull types of 
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production control strategy. Countless number of other JIT 
applications and related models can be seen in the literature. 
Most of the literature deals with the efficiency of JIT systems 
under different operational conditions. Either mathematical 
models are developed based on restrictive assumptions or 
simulation models are utilized in the analysis of JIT systems. 
In relation to the effects of intermediate buffer capacities on a 
push type of serial production line and optimum allocations of 
buffers on the line, several papers have been published. In 
particular, papers related to buffer allocations include [12]-
[22].  

In this paper, we developed a discrete mathematical model 
to analyze a push-pull system of production with constant 
work-in-process (CONWIP). When a final product is 
withdrawn from the finished products inventory in the last 
stage, a kanban is signaled to the first stage to start the 
production. Fig. 1 illustrates operation of such a system.  

1              1       M1      2          M2    ………..     m     Mm      m+1

                                                  Demand 

Fig. 1 A Push-pull production control system 

Successive operations are carried out by completion of each 
product at each station (Mi) and its delivery to the succeeding 
station or its buffer store ( i), if the station is busy. It is 
assumed that the intermediate buffer sizes, which represent 
maximum work-in process at each stage, are limited in 
capacity. Thus, when the storage of finished units in the final 
products inventory reaches a specified maximum capacity, the 
last station stops its production. Similarly, when an 
intermediate buffer i is filled up to its maximum capacity, the 
preceding station, Mi-1, stops its production or the completed 
part stays on the station until a part is removed from the 
succeeding buffer. The capacity of buffer i is zi. 

In production systems, which operate according to demand, 
equipment availability is important since machine failures 
significantly delivery time of products. While equipment 
failures due to wear-outs can be eliminated, failures due to 
random causes could not be eliminated. When optimizing 
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numbers of kanbans and the sizes of in-process buffers, it is 
necessary to consider equipment reliability in model 
development. In the following section, we present a discrete 
mathematical model, which is based on the flow of discrete 
parts or batches from stage to stage. The model is used to 
analyze the behavior of the push-pull system under various 
operational conditions including equipment availabilities and 
randomness in demand. 

II. MATHEMATICAL MODEL FOR THE PUSH-PULL SYSTEM

The basic principal of the discrete model is to determine the 
total time a batch of parts n spends in station i, the time instant 
at which batch n is completed in station i, and the time instant 
at which batch n leaves the station i. Storages 2,……., m are 
called intermediate buffer storages, having finite capacity zi,
i=2,…,m. Initial input storage is assumed to have unlimited 
capacity for the raw material, while the final output storage 
has limited capacity for completed batches of products with 
attached kanbans. The final buffer (m+1) is assumed to be the 
finished products storage with time between part departures 
being equal to time between demand. The following notations 
are used in the formulation: 

in= Time duration that nth batch stays on the ith station not 
considering imposed stoppages due to equipment failures;  
i=1,2,…..,m. 

m =  Number of stations on the line. 
in =  Processing time of batch n on station i (this may be a 

random variable with certain distribution) 
in = Repair time of the ith station required for correction of 

a failure during processing of the nth batch. Time to failures 
and the repair times are assumed to follow certain 
distributions, which are generated and incorporated into the 
model when the model is solved iteratively. 

in = Instant of time at which processing of the nth batch is 
completed on the ith station. 

in = Instant of time at which nth batch departs from the ith

station.  
0n = Instant of time at which nth  batch enters the first 

station. 
in = Instant of time at which ith station is ready to process 

the nth batch.  
m+1,n= Instant of time at which nth batch departs from the 

final buffer m+1. 
n = Mean time between demand for batches n-1 and n from 

the final buffer. This time may also be a random variable with 
certain distribution.   

A part stays in a station for three reasons: (i) The part is 
being machined; (ii) The machine has failed during machining 
of the part and a repair is taking place; (iii) The successive 
buffer is full and the part can not be transferred to the next 
station due to an imposed stoppage. The residence time of the 
nth part on the ith station, in, without considering imposed 
stoppages is given as follows: 

                    ininin                                       (1)              
The discrete mathematical model of the push-pull system 

consists of calculating part completion times, in, and part 
departure times, in, in an iterative fashion. The following 
formulation is developed for in and in to be used in iterative 
calculations. 

Processing of batch n cannot be started on station i until the 
previous batch, n-1 leaves station i. Therefore the time instant 
at which ith station is ready to begin  the nth batch, denoted by 

in, is given by in = i,n-1. If, i-1,n< in, then the nth batch must 
wait in buffer i, since it has left station i-1 before station i is
ready to accept it. Therefore, processing of the nth batch in the 
ith station will start at the instant in. If however, i-1,n in,
then processing of the nth batch in the ith station can start 
immediately at the time instant i-1,n. Considering both cases 
above, one gets the relation for the ready time of the nth batch 
to be processed in the ith station as follows: 

in = max[ i-1,n, i,n-1]                             (2)   
Since the nth batch will stay in station i for a period of in

time units, its processing will be completed by the time instant 
in given by: 

         in= max[ i-1,n, i,n-1] + in = in+ in             (3)   
where i=2,3,……,m. 

In case of the first station, a kanban must arrive before the 
batch can be processed. The arrival of a kanban from storage 
m+1 is modeled as follows: 

Let =n-L2  where, L2=Total number of batches initially in 
stations S2 and storages 2,….., m. Then,   

            1n= max[ 1,n-1, m+1, ] + 1n                   (4)   
Time instant at which nth batch is ready to enter the first 

station is assumed to be 0n< 1,n-1 since we assumed that there 
are always batches of parts available in front of the first 
station. However, a kanban must arrive from the buffer (m+1) 
to start the process at station 1. Now, it remains to determine 
the time instant at which nth batch departs from the ith station, 

in. It is found by considering two cases.  
Let    k = n– zi+1–1                                        (5)    
In the first case,     kini ,1,            (6) 

which indicates that the nth batch has been completed on the ith 

station before processing of the (n-zi+1)th batch has started on 
the (i+1)th station. Since buffer i+1, which is between station i 
and i+1 with capacity zi+1, is full and station i has completed 
the nth batch, the nth batch may leave the ith station only at the 
instant of time at which the (n–zi+1)th batch of the (i+1)th

station has started processing.  
Therefore, kini ,1,                                           (7)  

In the second case, kini ,1,                                     (8) 

which indicates that, at the instant in there are free spaces in 
buffer i+1 and therefore part n can leave machine i 
immediately after it is completed; that is, in= in holds under 
this case. 
Considering both cases above, we have the following relations 
for in:

1if 1,, inini zn                   (9)      

kinini ,1,, ,max             (10) 
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if  n > zi+1+1;   i =1, 2, 3,……, m-1,  where k = n–zi+1–1 and, 
    kmnmnm ,1,, ,max              (11)  

Where, m+1,k= Departure time if the kth batch from the final 
buffer m+1. Departure time of a finished product from the 
final buffer (m+1) depends on two conditions and calculated 
as follows:  

In the first case, m,n m+1,n-1+ n. In this case,  
        m+1,n= m+1,n-1+ n.                              (12) 

In the second case, m,n > m+1,n-1+ n. In this case,    
             m+1,n= m,n.                            (13) 

Combining both cases above, the following general relation is 
obtained for m+1,n:

m+1,n= max[ m,n, m+1,n-1+ n]                    (14) 
In real-world situations, intermediate buffers may contain 

batches of parts that are often left from a previous shift or day. 
Therefore, it is important to start the iterations with some 
initial conditions as follows: 

Let: li=Number of batches initially in buffer i and station Si

and,
1m

ki
ik lL  Total number of batches on stations 

Sk,.….,Sm and storages k,.., m+1.
When iterations are started, one can assume that, at the 

initial time instant t=0, parts 1,2,…, Li+1 are already processed 
on station Si, since these batches are initially in the line right 
after station Si. Therefore, given the initial values of 
l1,….,lm+1, the initial values of  in and  in for n=1,2, ….,Li+1

are expressed by:  
in = in = 0;    i = 1, 2, ….., m.                           (15) 

In order to carry out iterative computations, a simulation 
procedure is developed and implemented on the computer to 
determine several production line performance measures, 
which include average number of batches completed by the 
line during a specified period, average number of batches 
completed by each station during the same time, percentage of 
time for which each station is up and down due to imposed or 
inherent stoppages. 

III. COMPUTATIONS OF THE MODEL

The discrete model is coded into a simulation program and 
implemented on the computer to calculate system performance 
measures. In addition to the variables described for the 
discrete model, the simulation allows several distributions, 
including: exponential, uniform, Weibull, normal, log normal, 
Erlang, gamma, beta and constant values to be specified for 
failure and repair times of the equipment in each station. 
Iterative simulation model basically calculates the time instant 
at which each part enters a station, duration of its stay, and the 
time it leaves the station. This is continued until, for example 
one shift, which is the specified simulation time Tsim, is 
completed. In order to obtain reliable results, several 
simulation runs have to be obtained and the average
performance measures should be calculated. The results of 
each iterative simulation are utilized with statistical tests to 
determine if the specified conditions are met to stop the 

number of simulation iterations (i.e., shifts). If the conditions 
are not met, simulation iterations are continued with further 
runs. For each simulation realization, calculations of in, in,

in, and m+1,n are performed iteratively with the consideration 
given to equipment failures and repairs as the parts flow 
through the system.  

Reliable results cannot always be obtained from a single 
simulation realization. Therefore, additional runs have to be 
performed and the results tested statistically until the error in 
the line production rate is less than an  value with a 
probability, both of which are predefined. This is 
accomplished by comparing the average production output 

rate from simulation ( Q ) to the expected value ( Q ) using 
the confidence interval calculation given below. Here,     

simT
NQ  and  

n

i
i nNN

1
            (16) 

where Ni=production output obtained from simulation run i 
and n is the number of simulation runs.   
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   (17)

The aim is to have an estimated output rate, Q , as close to 

the actual mean output rate Q as possible. To achieve this,   

QQVZ )(2 is minimized by obtaining more runs. As 

this value gets closer to 0,  Q Q with probability 1 – .
An  value is entered by the user; the simulation program 

calculates QQVZ )(2 after each iteration; compares 

this quantity with  and terminates the program if it is less 
than . If it is not less than  after a maximum number of runs, 
the program is still terminated to avoid excessive computation. 
The iterative simulation model allows one to determine 
various parameters and dependent variables with significant 
effects on productivity and other performance measures. 
Estimation indices are obtained for such variables as the total, 
inherent, and imposed time losses due to failures and 
stoppages for each station as follows:  

iinQ /60   is the nominal productivity of station i, where 

i is the cycle time for station i; sim/60 TNQ iir is the 

relative productivity of station i; niir QQiK /1)(loss is

the total loss factor of station i; )/(1)(inh firiri tttiK
is inherent loss factor of station i; and 

)()()( inhlossimp iKiKiK is the imposed loss factor for 

station i,  i = 1, 2, ….., m. The terms fit and rit are mean 

times to failure and to repairs, of station i respectively. After 
determining these loss factors, they are compared for all 
stations. The station with the highest total loss factor is then 
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chosen for improvement. If Kimp(i)>Kinh(i), stoppages are 
mainly due to blocking and starvation; therefore it is necessary 
to increase the capacity of buffers immediately preceding and 
succeeding it. If Kinh(i)>Kimp(i), stoppages are mainly caused 
by inherent failures, that is breakdowns; therefore, the 
reliability of station i, should be increased or its mean repair 
time should be decreased in order to gain improvement in total 
line productivity. After the suggested changes are made, 
iterative simulation is repeated to see the effects of the 
proposed changes in the design. 

IV. STORAGE SPACE ALLOCATION

Optimum storage space or buffer allocation problem has 
been studied by several researchers with respect to allocation 
of a fixed amount of total buffer space on a serial production 
line. The problem can be stated as follows: Given a total 
amount of acceptable buffer space of Z units, allocate this 
total space to individual buffers S2,……,Sm+1, the quantities 
z2, z3,……..,zm+1 respectively such that the total production 
output rate of the line, Q(z), is maximized. The problem is 
stated as follows:  

Choose z2, z3,……..,zm+1 so as to
Maximize Q(z) 

Subject to:  Zz
m

i
i

1

2

                                   (18) 

zi 0 and integer (i=2,3,…..m+1) 
This problem has been discussed by [7] for production lines 

with exponential processing times in all stations. The 
optimization model is a linearly constrained integer nonlinear 
programming problem that is difficult to solve due to the fact 
that Q(z) has to be evaluated by either continuous time 
Markov chains or by some other stochastic processes
approximation. [7] evaluated Q(z) for the serial line using 
Markov chains approach and indicated that the number of 
states are too large and exceeds well over 20,000 equations to 
be solved to obtain the value of Q(z) for a given buffer size 
combination. Even if it was practical to solve the problem, it 
would not be still applicable to the cases with equipment 
failures and non-exponential process times. The buffer 
allocation model is applied to the push-pull system in this 
paper. However, we obtain the solution for Q(z) using the 
iterative solution procedure presented above. This procedure 
is not restricted to exponential process times and all reliable 
equipment, since it is based on simulation. A fixed number of 
buffers are specified and the iterative computations are 
performed to determine optimum combinations by evaluating 
all buffer combinations. The optimum corresponds to the 
maximum production output rate. For small size problems, 
such as lines with up to 8 stations and up to 10 buffer 
capacities, computational time is in the order of minutes, 
depending on the accuracy required. However, for larger 
problems, such as more than m=10 stations and more than 
Z=15 buffer capacities, computational time is relatively large 
since number of possibilities evaluated is large. If a small 
accuracy with 5% error is acceptable, large problems can also 

be solved in a reasonable time. 

V. SIMULATED CASE PROBLEMS  

The model is illustrated by several case problems. Table I 
and Table II are the input data and the output results obtained 
for a 5-station line with all stations available 85% of the time. 
Processing times, failure distributions, their parameters, repair 
distributions and their parameters are shown in Table I. 

TABLE I 
INPUT DATA FOR PRODUCTION LINE SIMULATION

Station Process 
Time 

No. of
Failures 

Failure 
Distrib. 

Repair 
Distrib. 

1 1.0 1 Expo(85) Normal 
(15, 2.25) 

2 1.0 1 Expo(85) Normal 
(15, 2.25) 

3 1.0 1 Expo(85) Normal 
(15, 2.25) 

4 1.0 1 Expo(85) Normal 
(15, 2.25) 

5 1.0 1 Expo(85) Normal 
(15, 2.25) 

           

The outputs for 2000 time units of simulation with =0.05, 
=0.005, and maximum iterations=100 are shown in Table II. 

The results include relative production rate of each station and 
various loss factors due to equipment failures as discussed in 
section III. The output also includes suggestions for line 
improvement. 

In the second case problem, a push-pull production line 
with 5 serial stations is considered as before. All stations are 
assumed to be reliable, except one station which was placed at 

TABLE II 
UNITS 

Average Line Output (Parts/Time Unit.)=0.564975 
Standard Dev. of Line Output Rate=0.00281367 
Optimum Buffer Allocations for Buffers m=2 to 6 
are as Follows:  0       2        1       0        0 
Station Relative  

Prod. Rate 
Imposed 
Loss Factors 

Inherent 
Loss Factor 

1 0.564 0.150 0.285 
2 0.565 0.151 0.285 
3 0.565 0.148 0.287 
4 0.566 0.144 0.290 
5 0.566 0.143 0.291 
Suggestions: Station No. 1  has the Maximum Total 
Loss Factor. Down Time is Mainly Imposed. Increase 
the Capacity of  Storage Adjacent to This Station. Also 
Increase Reliability and Productivity of Adjacent 
Stations and Try Simulation Again.  
Error<Epsilon Is Reached at Iteration = 100 
Maximum Iteration Is Reached At Iteration = 100  
Total Computation Time = 104.39 Seconds 
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the beginning (B), in the middle (M), or at the end (E) of the 
line to see the effects of unreliable station at different 
segments of the line. Failure and repairs for the unreliable 
station are as in Table I. Standard deviation of the repair times 
was taken as 15% of the mean. Since availability is
A=MTBF/(MTBF+MTTR), selected parameters represented
85% equipment availability for the particular station, whose 
effect on the line was investigated. In other words, we wanted 
to see how the buffers would be allocated if the unreliable
station was at the beginning, at the middle or at the end of the 
line. The system was analyzed by the simulation over a period 
of 2000 time units. All intermediate buffer combinations, 
which add up to less than or equal to total buffer capacity Z 
(Z=0,1,23,5,10) are evaluated in order to determine line 
productivity, as shown in Fig. 2, and optimum buffer 
combinations (z2, z3, z4, z5), which resulted in maximum 
production rate, as shown in Table III, for three different 
locations of the unreliable equipment at the beginning (B), in 
the middle (M), and at the end (E) of the line. 

The corresponding production output rates are given as the 
percentage of nominal rate, which would be 100 if the line 
was all reliable, balanced with constant processing times. An 
important observation related to buffer size allocation can be 
seen in Table III. If the line has an unreliable station at the 
start or at the end, the buffer capacity available should be 
located immediately after the last station, except in the case of 
5 and 10 buffer sizes, in which case one unit is allocated to 
buffer 4, after station 3 in the center of the line.  A similar 
observation is seen in the case if the center station is 
unreliable. In this case if there is one buffer space to be 
allocated on the line, it is preferred to be at buffer 3, 
immediately after station 2. 
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Fig. 2 Line productivity as a function of Z 

Additional buffer sizes are mostly allocated to the end of 
the line after station 5, except in the case of 2 and 10 buffer 
sizes, in which case one space is allocated after the center 
station. The main reason that the buffer spaces are mostly 
allocated to the end of the line could be due to the fact that the 
line is operated as a push-pull system and therefore the first 
station can not start processing a part unless a part or batch is 
withdrawn from the last station. Buffer spaces after the last 
station helps increasing part availability during demand. The 

same three cases were evaluated for a purely push type of 
production line, where the last station does not have a limit on 
outputting its product and the first station can start without 
waiting for a part withdrawal from the last station. The results, 
which are not shown here, are almost opposite of what is 
obtained for the push-pull system and the buffer allocation is 
preferred to be immediately after the first station near the start 
of the line in all cases.  

VI. EFFECTS OF LINE CONFIGURATIONS, MAINTENANCE 
POLICIES AND LINE PARAMETERS ON LINE PERFORMANCE

In order to see effects of various production related 
parameters and factors on line performance measure, such as 
the production rate, several experiments were set up and 
results were obtained. In particular, the following production 
line factors were taken into consideration:  
1. Production line length (3, 5 ,and 9 stations);  
2. Buffer capacities between stations (0, 2, 4,  6, 8);  
3. Process time variability measured by its coefficient of 
variation (CVpt=0, 0.2, 0.5, 0.7);  
4. Demand interval variability (CVdm=0, 0.2, 0.5, 0.7); 
5. Type of maintenance applied (Design out maintenance 
resulting in full reliability [REL], reliability centered 
maintenance [CM-PM], corrective maintenance [CM]) 
 Process time at each station was assumed to be normally 
distributed with mean of 3.0 time units and varied according 
to the coefficient of variation (CVpt) selected. Similarly, time 
interval between the demands for withdrawal of products from 
the finished products storage was assumed to be normally 
distributed with mean of 3.0 time units and also varied 
according to the coefficient of variation (CVdm) selected. The 
production lines are simulated over 2400 time units. 10 runs 
are carried out for each combination and average values are 
recorded. Figures 3-5 illustrates the production output rate as 
a function of various line configuration and factors mentioned 
above. CM-i, CM-PM-i, and REL-i represent two levels of 
maintenance and full reliability case for each station i. 
 In order to compare effects of corrective maintenance (CM) 
only to the CM with preventive maintenance (PM), reliability 
centered maintenance (RMC) concept was incorporated  into 
the model. Under RMC, equipment is subjected to PM just 
before a failure is expected. Mean time between failures 
(MTBF) must be determined in advance. In this case, it is 
assumed that failures due to wear outs are eliminated and only 

TABLE III 
BUFFER CAPACITY DISTRIBUTION TO STATIONS

  Beginning Middle End 
Z z2 z3 z4 z5 z6 z2 z3 z4 z5 z6 z2 z3 z4 z5 z6

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1  0  0  0  0  1  0  1  0  0  0  0  0  0  0  1 
2  0  0  0  0  2   0  1  0  1  0   0  0  0  0  2  
3  0  0  0  0  3  0  1  0  0  2  0  0  0  0  3 
5  0  0  0  0  5  0  1  0  0  4  0  0  1  0  4 
10  0  0  0  0  10  0  1  0  1  8  0  0  1  0  9 
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random failures remain. This idea can be implemented 
analytically if time between failures are uniformly distributed. 
This concept has been explained in detail by Savsar[23].  
 Following is a mathematical procedure to separate random 
failures from the wear-out failures. This separation is needed 
in order to be able to see the effects of maintenance on the 
productivity and availability of a line when simulating the 
system. 
Let  f(t) = Probability distribution function (pdf) of time 
between failures. 
  F(t) = Cumulative probability distribution function (cdf) 
of time between failures. 
  R(t) = Reliability function (Probability that the
equipment survives by time t). 
  h(t) = Hazard rate (or instantaneous failure rate). 
Hazard rate h(t) consists of two components, the first due to 
random failures and the second due to wear-out failures as: 
  h(t) = h1(t) + h2(t)                                 (19) 

h1(t) = Hazard rate due to random failures. 
h2(t) = Hazard rate due to wear-out failures. 

 Since the equipment failures are either due to chance causes 
or wear-outs, reliability of the equipment, which is the 
probability that equipment survives by time t, can be 
expressed as follows: 

   R(t) = R1(t) R2(t)                                   (20) 
where, R1(t) = Reliability due to chance causes (or random 
failures) and R2(t) = Reliability due to wear-outs. 
Since the hazard rate due to random failures is independent of 
time and therefore constant, we let h1(t)= . Thus, the 
reliability of the equipment due to random failures with 
constant hazard rate would be as follows: 

R1(t) = e- t                                     (21) 
h(t) =  + h2(t)                             (22) 

It is known that  
  h(t) =f(t)/R(t) = f(t)/[1-F(t)] =  + h2(t)      (23) 
  h2(t) = h(t) - h1(t) = f(t)/[1-F(t)] -         (24) 

                       (25) 
  R2(t) = R(t)/R1(t) = [1-F(t)]/ e- t                     (26) 
  h2(t) = f2(t)/R2(t)                                (27) 
           

These derivations show that, total time between failures, f(t) 
can be separated into two distributions, time between failures 
due to random causes [f1(t)] and time between failures due to 
wear-outs [f2(t)]. Since the failures due to random causes 
could not be eliminated, we must concentrate on the failures 
due to wear-outs in order to eliminate them by appropriate 
maintenance policies. By the procedure described above, it is 
possible to separate the two types of failures and develop the 

best maintenance policy to eliminate the wear-out failures. 
This separation is analytically possible for uniform 
distribution. However, it is not possible analytically for other 
distributions. It is assumed that when a preventive
maintenance policy is implemented, failures due to wear-outs 
are eliminated and only failures due to random causes remain. 
These random failures are assumed to follow exponential 
distribution with constant hazard rate since they are 
completely random with unknown causes and the memoryless
property of exponential is applicable.  

For uniformly distributed time between failures, t, in the 
interval 0<t< , probability distribution function of time 
between failures without introduction of PM is given by:  

/1)(tf .                   (28) 
If we let =1/ , then, reliability is given as 1- t and 

the total failure rate is given as: 
h(t)=f(t)/R(t)= /(1- t).                    (29) 
Let us assume that hazard rate due to random failures 

is a constant given by h1(t)= , then the hazard rate due to 
wear-out failures could be determined by:  

h2(t)=h(t)-h1(t)= /(1- t)- = 2t/(1- t)      (30) 
The corresponding time to failure probability density 

functions for each type of failure rate is: 
        tetf t 0)( )(

1     (31)                

       tettf t 0,)( )(2
2      (32)  

The reliability function for each component would be is as 
follows:  

       tetR t 0)( )(
1       (33) 

        tettR t 0,)1()(2      (34) 

                )()()( 21 tRtRtR           (35) 
    When the preventive maintenance (PM) is introduced, 
failures due to wearouts are eliminated and thus the 
machinery fails only due to random causes, which are 
exponentially distributed as given by f1(t). Sampling for the 
time to failures in simulations is thus based on exponential 
distribution with mean  and a constant failure rate of 

=1/ . In case of CM without PM, in addition to the 
random failures, wear-out failures are also present and thus 
the time between equipment failures is uniformly distributed 
between 0 and  as given by f(t). The justification behind 
this assumption is that uniform distribution implies an 
increasing failure rate with two components, namely, failure 
rate due to random failures and failure rate due to wearout 
failures as given by h1(t) and h2(t) respectively. Initially 
when t = 0, failures are due to random effect with a constant 
rate =1/ . As the equipment operates, wearout failures 
come into play and thus the total failure rate h(t) increases 
with time t. Sampling for the time between failures in 
simulation is based on a uniform distribution with mean /2 
and an increasing rate, h(t). 
  In the simulation experiments considered, time to failure 
is assumed uniformly distributed between 0 and 200 time 
units with a mean of 100 time units for all stations for the 
case of CM only. In the case of PM, wearouts are 
eliminated and time to failure extends; it becomes 
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exponentially distributed with a mean of 200 time units. 
Time to repair was assumed normally distributed with mean 
of 15 time units and standard deviation of 3 time units. 

Fig. 3 illustrates simulation results for the case when 
CV=0.0 for process time (CVpt) and the demand (CVdm).
As it is seen in fig. 3, 800 units  (2400/3.0) are produced on 
any length of line if the line is fully reliable and there is no 
other source of variability. However, if the line is under 
failures with CM only, production rate is significantly 
reduced when line length is increased. When PM is 
introduced in addition to CM, production rate is between 
the CM and REL cases. It can be seen from figure 3 that 
between the cases of unreliable lines, the lowest production 
rate is for a 9-station line with CM only, while the highest 
rate is for a  3-station line with CM and PM together.       

Fig. 4 shows the results for CVpt=0.0 and CVdm=2.1; fig. 
5 shows the results for CVpt=2.1 and CVdm=0.0; fig. 6 
shows the results for CVpt=2.1 and CVdm=2.1. As it can be 
seen from figs. 3-6, as the process time and demand
variability increase, production rate decreases. It is also 
clear from figs. 5 and 6 that as the process time becomes 
variable, the production rate can no longer reach to the 
maximum level of 800 units even for the reliable line. In all 
cases however, as the line length increases and the buffer 
capacities decrease, production rate decrease. Also, in all 
cases CM only results in lower production rate.   
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Fig. 3 Line production rate under different factors  
(CVpt=CVdm=0.0) 
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Fig. 4 Line production rate under different factors  
(CVpt=0.0; CVdm=2.1) 

VII. EXPERIMENTAL DESIGN  
 In order to see significance of the effects of significant 
factors on line production rate, a general factorial design was 
set up with five factors each at three levels. Thus, line lengths 
of 3, 5, and 7; buffer capacities of 0, 2, and 6; process time 
CV of 0, 0.2, and 0.7; demand CV of 0, 0.2, and 0.7; and 
maintenance policies of REL, CM, and CM-PM cases were  

Fig. 5 Line production rate under different factors (CVpt=2.1; 
CVdm=0.0) 
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Fig. 6 Line production rate under different factors (CVpt=2.1; 
CVdm=2.1) 

considered. The ANOVA results shown in Table IV indicate 
that following factors are significant: A: Line length: B: 
Buffers; D: Demand CV: E: Maintenance policy; and three 
interactions AE, BD, and DE. 97.56% of the variation is 
explained by these significant terms. It is interesting that 
process time variation was not a significant factor for this 
model. In the general factorial design model, the factors are 
considered as qualitative and therefore the model is 
hierarchical. The production rate is given as function of 
significant factors and their interactions.  
 Fig. 7, the normal probability plot for the residuals shows 
that the normality assumption is valid.  

TABLE IV 
ANOVA FOR SELECTED FACTORIAL MODEL RESPONSE: PRODUCTION 

RATE

         Sum of        Mean      F  
 Source  Squares DF   Square Value       Prob. > F 
 Model  4.3E+6   20 2.1E+5  443.5       < 0.0001significant 

 A  4.2E+5  2     2.1E+5 440.7    < 0.0001 
 B      7.9E+5  2   3.95E+5 822.2     < 0.0001 
 D  8.4E+5  2  4.2E+5   870.26     < 0.0001 
 E     1.94E+6  2  9.7E+5  2020.21   < 0.0001 
 AE 69418.9    4  17354.7     36.09  < 0.0001 
 BD 1.13E+5  4  28248.6   58.75     < 0.0001 
 DE 88468.0  4     22117.0   46.00     < 0.0001 

 Residual 1.07E+5  222 480.83 
 Corrected Tot. 4.4E+6  Total DF: 242 

The Model F-value of 443.5 implies the model is 
significant.  There is only a 0.01% chance that a "Model F-
Value" this large could occur due to noise. Values of "Prob > 
F" less than 0.05 indicate model terms are significant. In this 
case A, B, D, E, AE, BD, DE are significant model terms. 

Values greater than 0.1 indicate the model terms are not 
significant.   

Other ANOVA related statistics are as follows: 
Std. Dev.=21.93; R-Squared=0.9756; Mean=591.67; Adj R-
Squared=0.9734; C.V.=3.71; Pred R-Squared=0.9707; 
PRESS=1.279E+5; Adeq Precision=91.49. 

The "Pred R-Squared" of 0.9707 is in reasonable agreement 
with the "Adj R-Squared" of 0.9734. "Adeq Precision" 
measures the signal to noise ratio.  A ratio greater than 4 is 
desirable.  The ratio of 91.49 indicates an adequate signal. 
Final equation, which relates the production rate to the coded 
values of the significant factors, is given as follows: 

Production Rate=591.67+47.08*A[1]+7.34*A[2]-73.22*B[1] 
+7.29*B[2]+59.28*D[1]+20.67*D[2]-95.47*E[1]-24.07*E[2] 
+14.88*A[1]E[1]+0.56*A[2]E[1]+12.91*A[1]E[2]+2.19* 
A[2]E[2]+37.60*B[1]D[1]-11.48*B[2]D[1]-3.48*B[1]D[2]+ 
3.98  * B[2]D[2]-20.44*D[1]E[1]-6.75*D[2]E[1]-5.98*
D[1]E[2]-1.61*D[2]E[2] 
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Fig. 7 Normal probability plot of residuals 

VII.  CONCLUDING REMARKS
This paper has presented an iterative mathematical model 

and a computer simulation procedure for a multi-stage 
production flow line operated according to demand at the last 
station, while using a push system at the intermediate stations. 
Based on the discrete mathematical model, simulation process 
incorporates a three-stage procedure  which  allows the user to 
enter a set of data describing the system under study, simulate 
the system iteratively until selected statistical criteria are 
satisfied, obtain the output, and apply specific 
recommendations for productivity improvement until satisfied 
production output is achieved. The simulation model is very 
useful in estimating production line productivity for realistic 
systems. It allows the line designer or managers to evaluate 
effects of storage capacity and repair/maintenance policies on 
productivity of a system. 

The model was utilized to see the optimum allocations of 
storage unit capacities along the line if the equipment were 
subject to random failures. If all the equipment had similar 
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failure rates, it was observed that the optimum allocation of 
buffer storages followed a bowl shape, meaning that more 
buffer spaces were allocated to the center stations. If only one 
station was subject to failures, most of the buffers were 
allocated to the final storage to achieve maximum production 
output irrespective to the location of the unreliable station 
being either at the start, at the middle, or at the end of the line.  
As a future study, the suggested iterative model can be 
incorporated into interactive computer software to be 
effectively utilized by engineers and managers. 

Simulation model was utilized to investigate the effects of 
line configurations, maintenance policies, buffer capacities, 
process time variability, and demand variability on production 
rate of the line. A factorial design was set up to investigate the 
significant factors that affect the production rate. It was found 
that line length, buffer capacities, maintenance policies, and 
demand variability had significant effects on production rate.  
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