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Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein and Ron Kimmel

Abstract— We present a new algorithm for nonlinear dimension-
ality reduction that consistently uses global information, and that
enables understanding the intrinsic geometry of non-convex mani-
folds. Compared to methods that consider only local information, our
method appears to be more robust to noise. Unlike most methods that
incorporate global information, the proposed approach automatically
handles non-convexity of the data manifold. We demonstrate the
performance of our algorithm and compare it to state-of-the-art
methods on synthetic as well as real data.

Keywords— Dimensionality reduction, manifold learning, multidi-
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I. INTRODUCTION

NONLINEAR dimensionality reduction (NLDR) algo-

rithms explain a given data set of high dimensionality,

in terms of a small number of variables or coordinates. Such

methods are used in various pattern recognition problems,

including pathology tissue analysis [1], motion understanding

[2], lip reading [3], speech recognition [4], enhancement of

MRI images [5], and face recognition [6].

Most NLDR algorithms map the data to a coordinate system

of given dimensionality that represents the given data while

minimizing some error measure. Unlike classical dimension-

ality reduction methods such as principal component analysis

(PCA) [7], the map is non-linear.

The data is usually assumed to arise from a manifold M,

embedded into a high-dimensional Euclidean space R
M . The

manifold M is assumed to have a low intrinsic dimension

m (m � M ), i.e., it has a parametrization in a subset C
of R

m, represented by the smooth bijective map ϕ : C ⊂
R

m → M. The geodesic distances δ : M×M → R, defined

as the lengths of the shortest paths on M (called geodesics),

represent the intrinsic structure of the data. The goal of NLDR

is, given M, to recover the parametrization in R
m.

The intrinsic dimension m is usually assumed to be known

a priori. We denote the data samples by zi, i ∈ I a point on

M, where I is a set of continuous indices.

In the discrete setting, the data is represented as a graph

whose vertices z1, ..., zN are finite samples of the manifold,
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and the connectivity matrix A = (aij), where aij = 1 if

zi and zj are neighbors and zero otherwise. Hereinafter, we

write M referring to both the discrete and the continuous

manifold. NLDR algorithms usually approximate local (short)

distances on the data manifold by the Euclidean distances in

the embedding space, δ(zi, zj) = ‖zi − zj‖2, for i, j such

that aij = 1. The geodesic distances are approximated as

graph distances, which can be expressed as a sum of local

distances. The NLDR problem can be formulated as finding

a set of coordinates {x1, ...,xN} = ϕ−1({z1, ..., zN}) in R
m

that describe the data.

Most NLDR methods minimize criteria that consider the

relationship of each point and its nearest neighbors. For

example, the locally linear embedding (LLE) algorithm [8]

attempts to express each point as a linear combination of

its neighbors. The deviation of each point from this linear

combination is summed over the manifold and used as a

penalty function. The coordinates that minimize the penalty

are then computed by solving an eigenvalue problem.

The Laplacian eigenmaps algorithm [9] uses as intrinsic co-

ordinate functions the minimal eigenfunctions of the Laplace-

Beltrami operator. This is done by constructing the Laplacian

matrix of the proximity graph, finding its smallest m non-

zero eigenvectors and using them as the coordinates of the

data points. Diffusion maps have been recently proposed as

an extension of Laplacian eigenmaps, able to compensate for

non-uniform sampling of the manifold [1].

The Hessian eigenmaps algorithm [10], computes coordi-

nate functions that minimize the Frobenius norm of the Hes-

sian, summed over the manifold. The algorithm expresses, for

each coordinate function, the sum of the quadratic components

at each point. The minimization result in an eigenvalue prob-

lem, whose minimal vectors provide the desired coordinate

vectors, similarly to Laplacian eigenmaps.

The semidefinite embedding algorithm [11], takes a different

approach, trying to maximize the variance of the data set in

its new coordinates, while preserving short distances. This is

done by solving a semidefinite programming (SDP) problem,

while preservation of local distances imposed as constraints.

Solving the resulting SDP problem, however, still involves

high computational cost. Attempts to lower the complexity

have been made in [12].

Unlike local methods, the Isomap algorithm [13], [27] , tries

to preserve a global invariant – the geodesic distances on the

data manifold. While the geodesics may change dramatically

even in case of small noise, for well-sampled manifolds, their

lengths (i.e., the geodesic distances) hardly change even in the

presence of high level of noise. This property may be useful



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3560

in analysis of noisy data, in which local methods often fail.

A multidimensional scaling (MDS) algorithm is used to find

a set of coordinates whose Euclidean distances approximate

the geodesic distances. The least squares MDS (LSMDS)

algorithm, for example, minimizes the stress [14],

X
∗ = argmin

X∈RN×m

∑
i<j

wij (dij(X) − δij)
2
,

Here X∗ = (xij) is an N × m matrix whose rows are the

coordinate vectors in the low-dimensional Euclidean space

R
m, δij = δ(zi, zj) and dij(X) = ‖xi−xj‖2 is the Euclidean

distance between points xi and xj in R
m.

The underlying assumption of Isomap is that M is isometric
to C ⊂ R

m with the induced metric dC , that is, δ(zi, zj) =
dRm(xi,xj) for all i, j = 1, ..., N . If C is convex, the restricted

metric dRm |C coincides with the induced metric dC and Isomap

succeeds recovering the parametrization of M. Otherwise, C
has no longer Euclidean geometry and MDS cannot be used.

The assumption of convexity of C appears to be too re-

strictive, as many data manifolds have complicated topology

which violates this assumption. Donoho and Grimes [15]

showed examples of data in which is C is non convex, and

pointed out that Isomap fails in such cases. Here, we suggest

a solution based on removing pairs of points inconsistent

with the convexity assumption. Our approach, hereinafter re-

ferred to as the topologically constrained isometric embedding
(TCIE), allows handling data manifolds of arbitrary topology.

An algorithm for detecting and removing the inconsistent

distances is described in Section II. Numerical implementation

details appear in Section III. Results on synthetic and real-life

data are shown in Section IV.

II. TOPOLOGICALLY CONSTRAINED ISOMETRIC

EMBEDDING

Compute the N × N matrix of geodesic distances1

Δ = (δij).
Detect the boundary points ∂M of the data manifold.2

Detect a subset of consistent distances according to3

the following criterion,

P̄1 = {(i, j) : c(zi, zj) ∩ ∂M = ∅}, (1)

or

P̄2 = {(i, j) : δ(zi, zj) ≤ δ(zj , ∂M) + δ(zi, ∂M)},
(2)

where δ(z, ∂M) = infz′∈∂M δ(z, z′) denotes the

distance from z to the boundary.

Minimize the weighted stress,4

X
∗ = argmin

X∈RN×m

∑
i<j

wij (dij(X) − δij)
2
,

with wij = 1 for all (i, j) ∈ P and zero otherwise.

The obtained points x
∗
1, ...,x

∗
N are the desired

representation of M in R
m.

Omitting steps 2 and 3 and setting wij = 1, we obtain the

Isomap as a particular case of the TCIE algorithm. Bernstein

et al. [16] proved that the graph distances converge to the true

geodesic distances, i.e., that the discretization is consistent.

The Isomap algorithm assumes that the parametrization C
of M is a convex subset of R

m, and relies on the isometry

assumption to find the map from M to the metric space (C, dC)
by means of MDS (the stress in the solution will be zero).

MDS can be used because dC = dRm |C due to the convexity

assumption. In the case when C is non-convex, this is not

necessarily true, as there may exist pairs of points for which

dC 
= dRm |C . We call such pairs inconsistent. An example of

such a pair is shown in Figure 1. We denote the set of all

consistent pairs by

P = {(i, j) : dC(xi,xj) = dRm |C(xi,xj)} ⊆ I × I.

In the TCIE algorithm, steps 2 and 3 are used to find a

subset P̄ ⊆ P of pairs of points that will be consistently

used in the MDS problem, using criteria (1) and (2), first

proposed in [17] for matching of partially-missing shapes. In

the following propositions justifying the two criteria, we rely

upon the following properties of isometries: (i) an isometry is a

smooth map, copying boundaries to boundaries and interiors to

interiors; and (ii) the distance to boundary is preserved under

isometry, i.e., δ(zi, ∂M) = dC(xi, ∂C). Both propositions

tacitly assume the continuous case.

Let M be a compact manifold with boundary ∂M, isomet-

rically parameterized on (C ⊂ R
m, dC). Then,

Proposition 1: P̄1 = {(i, j) : c(zi, zj) ∩ ∂M = ∅} ⊆ P .

Proof: Let (i, j) ∈ P̄1. To prove the proposition, it is

sufficient to show that the pair of points (i, j) is consistent,

i.e., (i, j) ∈ P . Let cM(z1, z2) be the geodesic connecting zi

and zj in M, and let cC(x1,x2) be its image under ϕ−1 in C.

Since c(zi, zj)∩∂M = ∅ and due to property (i), cC(xi,xj) ⊂
int(C).

Assume that (i, j) is inconsistent. This implies that

dC(xi,xj) > dRm(xi,xj), i.e., that the geodesic cC(xi,xj)
is not a straight line. Therefore, there exits a point x ∈
cC(xi,xj), in whose proximity cC(xi,xj) is not a straight

line. Since cC(xi,xj) ⊂ int(C), there exists a ball Bε(x) with

the Euclidean metric dRm around x of radius ε > 0. Let us

take two points on the segment of the geodesic within the

ball, x
′,x′′ ∈ cC(xi,xj) ∩ Bε(x). The geodesic cC(x′,x′′)

coincides with the segment of cC(xi,xj) between x
′,x′′. Yet,

this segment is not a straight line, therefore we can shorten

the geodesic by replacing this segment with cRm(x′,x′′),
in contradiction to the fact that cC(x1,x2) is a geodesic.

Therefore, (i, j) ∈ P .

Proposition 2: P̄2 = {(i, j) : δ(zi, zj) ≤ δ(zj , ∂M) +
δ(zi, ∂M)} ⊆ P .

Proof: Let (i, j) ∈ P̄2. We have to show that (i, j) ∈ P .

According to properties (i) and (ii) shown above we have

dC(xi,xj) = δ(zi, zj)
≤ δ(zj , ∂M) + δ(zi, ∂M)
= dC(xi, ∂C) + dC(xj , ∂C). (3)

Assume that (i, j) is inconsistent. This implies that the

geodesic connecting xi and xj in R
m is not entirely contained

in C (we assume without loss of generality that the geodesic
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Fig. 1. Example of two inconsistent points z1, z2 ∈ M, and the geodesic
connecting them. Also shown are the two images of these points under the
isometry ϕ−1, a geodesic connecting them in C, and the line connecting them
in R

m.

originating from xi to xj intersects the boundary ∂C at points

x
′ and x

′′). Consequently,

dC(xi,xj) > dRm |C(xi,xj)
≥ dC(xi,x

′) + dC(xj ,x
′′)

≥ dC(xi, ∂C) + dC(xj , ∂C), (4)

which contradicts inequality (3). Therefore, (i, j) ∈ P .

We note this proof holds even if C is a subset of a generic

metric space. The metric dC would have to be replaced with

the metric induced from that space, but the Euclidean MDS

procedure would not be able to give us the correct mapping.

This would require the use of non-Euclidean embedding, e.g.

as in [17].

III. NUMERICAL SOLUTION OF THE TCIE PROBLEM

A. Detection of boundary points

Detection of boundary points on discrete manifolds has

been studied extensively (see for example [18], [19]). We

compared two boundary detection methods, based on studying

the properties of the coordinates of nearest neighbors of each

point, reconstructed from local distances using classical MDS.

The first method assumes the point and its two opposite

neighbors are a part of a curve along the boundary. It then

tries to find points that are placed outside of this boundary on

both sides of it, violating the conjecture. The algorithm goes

as follows:

for i = 1, ..., N do1

Find the set N (i) of the K nearest neighbors of2

the point i.
Apply MDS to the K × K matrix3

ΔK = (δkl∈N (i)) and obtain a set of local

coordinates x
′
1, ...,x

′
K ∈ R

m.

for j, k ∈ N (i) such that
〈x′

j−x′
i,x

′
k−x′

i〉
‖x′

j−x′
i‖·‖x′

k−x′
i‖ ≈ −14

do
Mark the pair (j, k) as valid.5

if |x′ : 〈x′−x′
i,vl〉

‖x′−x′
i‖ ≈ 1| ≥ τa|N (i)| for all6

l = 1, ...,m − 1 then
Label the pair (j, k) as satisfied.7

(here vl denotes the lth vector of an

orthonormal basis of the subspace of R
m

orthogonal to x
′
j − x

′
k).

end8

end9

if the ratio of satisfied to valid pairs is10

smaller than threshold τb then
Label point i as boundary.11

end12

end13

The second method tries to explore the direction of the

normal to the boundary. Moving along the normal direction,

the density of sampling points should drop to zero. We can

check along each direction from the point i to one of its

neighbors j. Assuming approximately uniform density of the

points, one such neighboring point j should produce a vector

pointing close to the normal direction. This method is more

suitable for manifolds of higher intrinsic dimension.

for i = 1, ..., N do1

Find the set N (i) of the K nearest neighbors of2

the point i.
Apply MDS to the K × K matrix3

ΔK = (δkl∈N (i)) and obtain a set of local

coordinates x
′
1, ...,x

′
K ∈ R

m.

for j = 1, ..., K do4

if |{x∈R
m:〈x′

i−x′
j ,x−x′

i〉>0}|
|{x∈Rm:〈x′

i−x′
j ,x−x′

i〉≤0}| ≤ τa then5

mark j as candidate.6

end7

end8

end9

if the number of candidate points is larger than10

τb then
Label point i as boundary.11

end12

Once the boundary points are detected, the subset of con-

sistent distances P̄ is found according to criterion (2) and the

matrix of weights W.

B. SMACOF algorithm

The minimization of the weighted stress is carried out using

an iterative optimization algorithm with the SMACOF iteration
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[14],

X
(k+1) = V

†
B(X(k))X(k),

where V
† denotes matrix pseudoinverse,

vij =
{ −wij i 
= j

−∑
k 	=i vik i = j,

and B(X) is an N ×N matrix dependent of X with elements,

bij(X) =

⎧⎨
⎩

−dS(si, sj)d−1
ij (X) i 
= j and dij(X) 
= 0

0 i 
= j and dij(X) = 0
−∑

k 	=i bik i = j.

The SMACOF iteration produces a monotonous non-

increasing sequence of stress values, and can be shown to be

equivalent to a scaled steepest descent iteration with constant

step size [20].

C. Vector extrapolation

To speed up the convergence of the SMACOF iterations, we

employ vector extrapolation. These methods use a sequence of

solutions at subsequent iterations of the optimization algorithm

and extrapolate the limit solution of the sequence. While these

algorithms were derived assuming a linear iterative scheme, in

practice, they work well also for nonlinear schemes, like some

processes in computational fluid dynamics [21]. For further

details, we refer the reader to [22], [23], [24].

The main idea of vector extrapolation is, given a sequence

of solutions X
(k) from iterations k = 0, 1, ..., to approximate

the limit limk→∞ X
(k), which must coincide with the optimal

solution X
∗. The extrapolation X̂ is constructed as an affine

combination of previous iterates,

X̂ =
K∑

j=0

γjX(k+j);
K∑

j=0

γj = 1.

The coefficients γj are determined in different ways. In the

reduced rank extrapolation (RRE) method, γj are obtained by

the solution of the minimization problem,

min
γ0,..,γK

‖
K∑

j=0

γjΔX
(k+j)‖, s.t.

K∑
j=0

γj = 1,

where ΔX
(k) = X

(k+1) − X
(k). In the minimal polynomial

extrapolation (MPE) method,

γj =
cj∑K
i=0 ci

, j = 0, 1, ...,K,

where ci arise from the solution of the minimization problem,

min
c0,..,cK−1

‖
K∑

j=0

cjΔX
(k+j)‖, cK = 1,

which in turn can be formulated as a linear system [24].

D. Multiresolution optimization

Another way to accelerate the solution of the MDS problem

is using multiresolution (MR) methods [20]. The main idea is

subsequently approximating the solution by solving the MDS

problem at different resolution levels. At each level, we work

with a grid consisting of points with indices ΩL ⊂ ΩL−1 ⊂
... ⊂ Ω0 = {1, ..., N}, such that |Ωl| = Nl. At the lth level,

the data is represented as an Nl ×Nl matrix Δl, obtained by

extracting the rows and columns of Δ0 = Δ, corresponding

to the indices Ωl. The solution X∗
l of the MDS problem on

the lth level is transferred to the next level l − 1 using an

interpolation operator P l−1
l , which can be represented as an

Nl−1 × Nl matrix.

Construct the hierarchy of grids Ω0, ...,ΩL and1

interpolation operators P 0
1 , ..., PL−1

L .

Start with some initial X
(0)
L at the coarsest grid, and2

l = L.

while l ≥ 0 do3

Solve the lth level MDS problem4

X
∗
l = argmin

Xl∈R
Nl×m

∑
i,j∈Ωl

wij(dij(Xl) − δij)2

using SMACOF iterations initialized with X
(0)
l .

Interpolate the solution to the next resolution5

level, X
(0)
l−1 = P l−1

l (X∗
l )

l ←− l − 16

end7

We use a modification of the farthest point sampling (FPS)

[25] strategy to construct the grids, in which we add more

points from the boundaries, to allow correct interpolation of

the fine grid using the coarse grid elements. We use linear

interpolation with weights determined using a least squares

fitting problem with regularization made to ensure all available

nearest neighbors are used.

The multiresolution scheme can be combined with vector

extrapolation by employing MPE or RRE methods at each

resolution level. In our experiments we used the RRE method,

although in practice, for the SMACOF algorithm, both the

MPE and the RRE algorithms gave comparable results, giving

us a three-fold speedup. A comparison of the convergence with

and without vector extrapolation and multiresolution methods

is shown in Figure 2. The stress values shown are taken from

the problem shown in Figure 4.

E. Initialization

Since the stress function is non-convex, convex optimization

method may converge to local minima. In order to avoid

local convergence, we initialized the LSMDS problem by

classical scaling result [26]. Although such an initialization

does not guarantee global convergence in theory, in practice,

we converge to the global minimum.
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Fig. 2. Convergence (in terms of stress value) of basic SMACOF (dotted),
SMACOF with RRE acceleration (dash-dotted), SMACOF with multiscale
(solid) and SMACOF with both RRE and multiscale (dashed), in terms of CPU
time and MFLOPS. CPU time is approximated. Convergence was stopped at
the same relative change of stress value.

Original Swiss-roll σ = 0.05

Fig. 3. Left: Swiss hole surface without noise. Right: A Swiss hole
contaminated with additive Gaussian noise with σ = 0.015 and σ = 0.05,
and the spiral surface. The detected boundary points are shown in red.

IV. EXAMPLES AND APPLICATIONS

We applied the proposed algorithm on several synthetic

examples, as well as image analysis problems. In the first

experiment, we worked with the Swiss roll surface with a

rectangular hole (“Swiss hole”) sampled at 1200 points. The

data was contaminated by Gaussian noise of different variance

(Figure 3). We analyzed this manifold using our algorithm

and compared the result to other local methods (see results in

Figures 4,5). The TCIE algorithm demonstrates a very good

robustness to noise.

In the second experiment, we generated a set of images

of two discs, one stationary and the other moving. A small

amount of additive white Gaussian noise was added to the

images (Figure 6). The data manifold can be parameterized

according to the location of the center of the moving disc,

as shown in Figure 6 (see [15]). The results are shown

in Figure 7. While Isomap and our algorithm manage to

recover a meaningful parametrization, other methods produce

results significantly different from the “ideal” parametrization.

Compared to Isomap, the TCIE algorithm tends to less distort

and expand the hole.

Locally linear

embedding

Laplacian

eigenmaps

Hessian LLE

Diffusion maps Isomap TCIE

Fig. 4. Left to right top to bottom: Embedding of the Swiss roll (without
noise), produced by LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps,
Isomap, and our algorithm. Detected boundary points are shown as red pluses.

Locally linear

embedding

Laplacian

eigenmaps

Hessian LLE

Diffusion maps Isomap TCIE

Fig. 5. Left to right top to bottom: Embedding of a 2D manifold contaminated
by additive Gaussian noise with σ = 0.05, as produced by LLE, Laplacian
eigenmaps, Hessian LLE, diffusion maps, Isomap, and our algorithm. Detected
boundary points are shown as red pluses.
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Fig. 6. Left: An example of the discs images. Coordinates of darker disc’s
center parameterize for the image manifold. Right: The parameterization
manifold. The detected boundary points are shown in red.

Locally linear

embedding

Laplacian

eigenmaps

Hessian LLE

Diffusion maps Isomap TCIE

Fig. 7. Left to right top to bottom: Analysis of the disc images produced by
LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps, Isomap, and our
algorithm. Detected boundary points are shown as red pluses.

Although in practical cases the data manifold is not nec-

essarily isometrically parameterizable in a low-dimensional

Euclidean space, our algorithm appears to a good approxi-

mation to be able to produce meaningful results in image

analysis applications. Figure 8 demonstrates the recovery of

gaze direction of a person from a sequence of gray-scale

images. Assuming facial pose and expressions do not change

significantly, images of the area of the eyes form a manifold

approximately parameterized by the direction of the gaze.

Similar to previous image manifold experiments [27], we

use Euclidean distances between the row-stacked images as

the distance measure. In order to reduce the effect of head

movement, simple block matching was used.

V. CONCLUSION

We introduced a new method for nonlinear dimensionality

reduction. Experiments on synthetic and real-life examples

show that our approach compares favorably to other state-of-

the-art manifold learning methods, especially in better ability

to handle data manifolds with complicated topology and sig-

nificant amounts of noise. In our future work we plan exploring

the use multigrid methods [20], as well as other numerical

improvements that would allow handling of large data sets.

Boundary detection plays a major role in validation of pairs of

points handled by the flattening method. We intend to further

explore alternatives for this part of our algorithm. Finally, we

plan to test different distance measures between images [3],

Fig. 8. The intrinsic coordinates of the image manifold of the eyes area with
different gaze directions, as mapped by our algorithm.

and evaluate their performances to other applications.
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