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Abstract—This paper proposes a new version of the Particle 

Swarm Optimization (PSO) namely, Modified PSO (MPSO) for 
model order formulation of Single Input Single Output (SISO) linear 
time invariant continuous systems. In the General PSO, the 
movement of a particle is governed by three behaviors namely 
inertia, cognitive and social. The cognitive behavior helps the 
particle to remember its previous visited best position. In Modified 
PSO technique split the cognitive behavior into two sections like 
previous visited best position and also previous visited worst 
position. This modification helps the particle to search the target very 
effectively. MPSO approach is proposed to formulate the higher 
order model. The method based on the minimization of  error 
between the transient responses of original higher order model and 
the reduced order model pertaining to the unit step input. The results 
obtained are compared with the earlier techniques utilized, to validate 
its ease of computation. The proposed method is illustrated through 
numerical example from literature. 
 

Keywords—Continuous System, Model Order Formulation, 
Modified Particle Swarm Optimization, Single Input Single Output, 
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I. INTRODUCTION 
ECENT developments in modeling of complex physical 
and technical process lead to a growing interest in model 

order formulation of large scale dynamical systems. Model 
order formulation is the process of deriving the lower order 
model from the higher order model. Model order formulation 
approximates the complex system by simple one. Modeling is 
the mathematical description of dynamic characters of a 
physical system. For achieving the higher accuracy while 
modeling the complex systems, it can be noted that the system 
order is also increased. Higher order model are difficult to 
handle because it has higher computational complexities and 
implementation difficulties. The exact analysis of higher order 
system is both tedious, costly and it is too complicated to be 
used in real problems. The use of MOF makes it easier to 
implement in analysis, design and simulation of the 
controllers, compensators, state variable controllers and 
observers for the stabilization of the output response of the 
given systems. The main aim of the formulation is to find the 
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best possible approximation of the output of the original 
system. Several methods have been proposed for reduction of 
linear systems in different fields like control engineering, 
micro-systems and applied mathematics.  

During the past four decades, numerous impressive 
varieties of new techniques have been developed for obtaining 
lower order models from higher order linear system. The first 
approach is based upon the classical mathematical concept 
such as the Pade approximation [1], continued fraction 
method [2], and the time moment matching method [3]. These 
approaches have been recognized to be a powerful method to 
obtain a reduced order models, but these methods have the 
disadvantage that the reduced order model may be unstable 
although the original system is stable. Second group of 
reduction techniques are based on some criteria of stability 
(such as the Routh stability criterion, Hurwitz polynomial, 
Mihailov criterion, etc.). The absolute stability of these 
methods achieved only by the cost of series loss of accuracy 
[4], [5].  

Differentiation method was introduced by Gutman [6], 
wherein, the reciprocal of numerator and denominator 
polynomial of high order transfer function are differentiated 
many times to produce the coefficients of the reduced transfer 
function. The method is computationally simple and is 
applicable to unstable systems. The drawback of this method 
is that steady state does not match always with the original 
higher order system. Pal [7] has developed a system reduction 
methodology using the continued fraction approach and 
Routh-Hurwitz array, in which the initial transient response of 
the reduced order model might not match with that of the 
higher order system, as only the first few time moments are 
considered depending upon the order of the reduced model. 
The viability and limitations of similar methods has been 
discussed by Shamash [8]. Each of these methods has both 
advantages and disadvantages when tried on a particular 
system. In spite of several methods available, no approach 
gives the best results for all systems.  

Now a days, most practicing research field has been 
“Heuristics from Nature”, an area utilizing analogies with 
nature or social systems. Several modern heuristic tools have 
evolved in the last two decades that facilitates solving 
optimization problems that were previously difficult or 
impossible to solve. These tools include Evolutionary 
Computation, Simulated Annealing, Tabu Search, Genetic 
Algorithm, Particle Swarm Optimization and etc. Among 
these heuristic techniques, Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) techniques appeared as 
promising algorithms for handling the optimization problems. 
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Instead of this, Particle Swarm Optimization is mostly used 
because of the following features [9] (i) The method is based 
on swarms such as fish schooling and a flock of birds (ii) PSO 
is based on a simple concept and its computation time is short 
and it requires few memories (iii) All particles in PSO are kept 
as members of the population through the course of the run 
(iv) In PSO, there is no selection operation and no crossover 
operation. 

In this paper a simple scheme is proposed for deriving a 
basic second order model, and to obtain a fine tuned second 
order system depicting the original characteristics of the 
higher order model, Modified Particle Swarm Optimization 
(MPSO) algorithm is proposed. The procedure discussed for 
linear time invariant SISO continuous systems. The main 
objective is to minimize the Integral Squared Error (ISE) of 
the unit step time response under the constraints of 
maintaining the response characteristics of the original 
system. The robustness of the proposed scheme is compared 
with other performance indices like, Integral of time of 
squared error (ITSE) and Integral of time of absolute error 
(ITAE). 

II.    DESCRIPTION OF THE PROBLEM 

A. Higher Order Transfer Function  
Consider an nth order linear time invariant continuous 

system represented by, 
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Where, N(s) is the numerator polynomial and D(s) is the 
denominator polynomial. Also Ai and ai represents the 
constant coefficients of the s-terms of the numerator and 
denominator of G (s). Equation (1) represented the higher 
order continuous system transfer function. 

  

B. Lower Order Transfer Function 
To find a mth lower order model for the continuous system 

Rm(s), where m < n in the following form represented by (2) , 
such that the formulated lower order model retains the 
characteristics of the original system and approximates its 
response as closely as possible for the same type of inputs 
with minimum error indices. 
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where Nm(s)  and Dm(s) are the numerator polynomial and 
denominator polynomial of the formulated lower order model 
respectively. Also Bi and bi represent the constant coefficients 
of the s-terms of the numerator and denominator of Rm(s). 
Equation (2) represented the lower order transfer function. 

 
C. Performance Index 

The performance of the Lower order model is verified by 
the performance index criterion. In modern complex control 
systems the different performance index criterions are used to 
measure the systems performance and give the useful 
information about the density of the estimation. Integral 
squared error (ISE), Integral of time of squared error (ITSE), 
Integral of time of absolute error (ITAE), ITSE and ITAE are 
the useful performance index criterions in modern control 
engineering. ISE is mostly employed for the performance 
estimation because of ease of implementation. These errors 
are given by following expressions [10], 
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    The main objective of the model formulation problem is to 
minimize the integral squared error of the unit input time 
response of the lower order system and maintaining the 
characteristics of the original system. Y(t) and y(t) are the 
input time response of the given higher order system and 
lower order system respectively. A new lower order model 
system can be derived from the given higher order system, 
which depict the characteristics of the original higher order 
system. 

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION 
 

The particle swarm optimization (PSO) technique appeared 
as a promising algorithm for handling the optimization 
problems. PSO is a population-based stochastic optimization 
technique, inspired by social behavior of bird flocking or fish 
schooling [11]. PSO is inspired by the ability of flocks of 
birds, schools of fish, and herds of animals to adapt to their 
environment, find rich sources of food, and avoid predators by 
implementing an information sharing approach. PSO 
technique was invented in the mid 1990s while attempting to 
simulate the choreographed, graceful motion of swarms of 
birds as part of a socio cognitive study investigating the notion 
of collective intelligence in biological populations.  

   The basic idea of the PSO is the mathematical modeling 
and simulation of the food searching activities of a swarm of 
birds (particles). In the multi dimensional space where the 
optimal solution is sought, each particle in the swarm is 
moved towards the optimal point by adding a velocity with its 
position. The velocity of a particle is influenced by three 
components namely, inertial momentum, cognitive and social. 
The inertial component simulates the inertial behavior of the 
bird to fly in the previous direction. The cognitive component 
models the memory of the bird about its previous best 
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position, and the social component models the memory of the 
bird about the best position among the particles. 

PSO procedures based on the above concept can be 
described as follows. Namely, bird flocking optimizes a 
certain objective function. Each agent knows its best value so 
far (pbest) and its XY position. Moreover, each agent knows 
the best value in the group (gbest) among pbests. Each agent 
tries to modify its position using the current velocity and the 
distance from the pbest and gbest. Based on the above 
discussion, the mathematical model for PSO is as follows   
[12]-[14], 
 
Velocity update equation is given by 
 
      )()( 22111 ibestibestii SgrCSPrCVV

ii
−××+−××+×=+ ω        (6) 

                                                                                        
Position update equation is given by 
 
       11 ++ += iii VSS                                                                (7) 
 

Each particle tries to modify its velocity and position and 
based on (6) and (7) and reaches the target. 
 
Where, 

Vi       = Velocity of particle  
Si  = Current position of the particle 

   ω   = Inertia weight 
C1  = Cognition acceleration coefficient 
C2  = Social acceleration coefficient 

  Pbesti = Own best position of particle  
  gbesti   = Global best position among the group of particles 
  r1, r2   = Uniformly distributed random numbers in the    
                range [0 to 1] 
  

IV. MODIFIED PARTICLE SWARM OPTIMIZATION  
   In this new proposed modified PSO having better 

optimization result compare to general PSO by splitting the 
cognitive component of the general PSO into two different 
component. The first component can be called good 
experience component. This means the bird has a memory 
about its previously visited best position. This is similar to the 
general PSO method. The second component is given the 
name by bad experience component. The bad experience 
component helps the particle to remember its previously 
visited worst position. To calculate the new velocity, the bad 
experience of the particle also taken into consideration. 
 
   The new velocity update equation is given by 
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     (8) 
C1g = Acceleration coefficient, which accelerate the     

                     particle towards its best position 
C1b = Acceleration coefficient, which accelerate the      

                      particle away from its worst position 
P worst i   = Worst position of the particle i          
r1, r2, r3 = Uniformly distributed random numbers  

 in the range [0 to 1] 
 
  The positions are updated using (8). The inclusion of the 

worst experience component in the behavior of the particle 
gives the additional exploration capacity to the swarm. By 
using the bad experience component; the particle can bypass 
its previous worst position and try to occupy the better 
position. Fig. 1 shows the concept of MPSO searching points. 

        

 
Fig. 1 Concept of MPSO search point 

 
The algorithmic steps for the modified PSO is as follows 

 
Step 1 Select the number of particles, generations, tuning              

accelerating coefficients C1g, C1b, and C2 and                   
random numbers r1, r2, r3 to start the optimal                   
solution searching 

Step 2   Initialize the particle position and velocity 
Step 3 Select particles individual best value for each                   

generation 
Step 4 Select the particles global best value, i.e. particle                   

near to the target among all the particles is                   
obtained by comparing all the individual best                   
values  

Step5  Select the particles individual worst value, i.e.                   
Particle too away from the target             

Step6 Update particle individual best (pbest), global                   
best (gbest), particle worst (Pworst) in the                  
velocity equation (8) and obtain the new velocity 

Step 7 Update new velocity value in the equation (7) and                   
obtain the position of the particle 

Step 8 Find the optimal solution with minimum ISE by                   
the updated new velocity and position 

 
The flowchart for the proposed scheme is as shown in Fig. 2. 
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Fig. 2 Flowchart for model reduction of linear time invariant 

continuous systems 

 

V. NUMERICAL EXAMPLE 
Let us consider linear time invariant continuous system 
represented in the form of transfer function given in [17] as, 
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Step-1 
Calculate the transient gain (TG) and steady state gain 

(SSG) for the given higher order system in (9).  
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Step- 2  
Applying Adjunct polynomial scheme, [Appendix] to G(s) 

in (9) to get approximated second order model R(s), 
 

                 
40320109584

40320
++

+
=

s118124s
185760sR(s) 2

               (11)  

Step-3  
    On scaling (11),  
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Step-4  
To maintain TG and SSG, use (10) in (12). Equation (13) is 

tuned to maintain the transient and steady state gain and the 
result, R(s) becomes, 

 

                
3413.0s9277.0s
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Step-5   
The MPSO algorithm is now invoked to search the values 

of ‘s’ term (0.9277) and the constant term (0.3413) of the 
denominator in R(s) represented by (13), so the characteristics 
of second order model matches the given higher order system 
given by (9). MPSO determines a better reduced second order 
model with the least integral square error. 

Step-6 

The transfer function of the reduced second order model   
obtained using MPSO scheme is, 
 

                  
2414.5s5077.7s

2414.5s18)s(R 2 ++
+

=                (14) 

 
 

TABLE I 
COMPARISON OF PERFORMANCE INDEX   

Method Reduced order 
Model 

ISE ITSE ITAE 

Prasad 
and Pal 
[16] 

.
500s24571.13s

500s98561.17
2 ++

+  1.0344 1.2209 2.4990 

Shamash 
[17] 

.
2s3s
2s7786.6

2 ++

+  0.0396 0.0863 0.8530 

Mukherje 
et al [18] 4357.4s2122.4s

4357.4s3909.11
2 ++

+  0.0280 0.0661 0.9287 

PSO [11] 
6169.00369.5

6169.018
2 ++

+

ss
s  20.2572 108.57 169.84 

Proposed 
MPSO 24145s50777s

24145s18
2 ..

.
++

+  0.0091 0.0178 0.6086 
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Fig. 3 Step response of original 8th order system with proposed methods and other conventional method 
 
 The performance comparison of the proposed approach 

for order reduction techniques for a unit step input is given in 
Table I. The unit step response of the original eight order 
system and reduced system models are shown in Fig. 3. In 
Fig. 3, the unit step response of the original system is shown 
in black solid line and the unit step response of the PSO model 
is shown in black circle symbols. MPSO model response is 
represented in red line. Mukherje et al model is in blue dotted 
symbols, Shamash models in black dotted symbol and Prasad 
and Pal model represented by black dashed line. It can be seen 
that the proposed MPSO reduced model as given by (14) is 
closely matching with that of the original higher order model 
compared with the PSO model. 

VI. DISCUSSION 
The considered eight order linear time invariant continuous 

system [17] has a steady state gain of 18 and transient gain 1. 
Initially the approximate lower order method was obtained by 
the adjunct polynomial method. MPSO was used to minimize 
the performance indices error for the approximate lower order 
model with the constraints of maintaining the transient and 
steady state gain of the given higher order system. The MPSO 
algorithm was coded in Intel Pentium processor 4.0, 2.8 GHz, 
256 MB RAM and it took 10 seconds by the CPU for the 
complete simulation of 40 particles and 100 generations. 
MPSO algorithm was simulated and its searched for the best 
second order model and obtained a minimal error value for 
unit step response. Table 1 show that the proposed Modified 
particle swarm optimization gives the least error values in 
comparison with other techniques. From Fig.3, its observed 
that update the worst experience of the particle in the velocity 
equation gives better optimal solution compared with the 
general PSO method.  

VII. CONCLUSION 
  The characteristics of the lower order model closely equate 
the higher order model obtained by the Modified Particle 
swarm algorithm. The main advantage of the proposed method 
is that it is easy of implementation and least elapsed time. The 
proposed approach can also be used for discrete as well as 
multi input multi output systems. This can also extended for 
other evolutionary techniques and hybrid methods and also its 
extended for further design of controllers and compensators as 
well as state variable controllers and observers for 
stabilization process.   

APPENDIX 
Consider an nth linear time invariant continuous higher order 
system represented by its transfer function as 
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 The Adjunct Polynomial scheme for obtaining the 
approximated lower order models from the given higher order 
system is as follows: 

First order:
01

0

asa
A
+

               (17) 

Second order:
01

2
2

01

asasa
AsA

++
+                (18) 

Third order: 
01

2
2

3
3

01
2

2

asasasa
AsAsA
+++

++
               (19) 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:3, 2011

481

 

 

(n-1) th order: 
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 Equations (15) through (20), gives the lower order 
models formulated using adjunct polynomial scheme from the 
given higher order system G(s). Based on the requirement, 
suitable lower order model can be selected and operates. It 
should be noted for a higher order system of order ‘n’, (n-1) 
lower order models could be formulated. This method of 
selection of approximate lower order models helps to set the 
initial values of operating parameters to be used in the 
Modified Particle Swarm Optimization process. 
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