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New Newton’s Method with Third-order
Convergence for Solving Nonlinear Equations
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Abstract—For the last years, the variants of the Newton’s method
with cubic convergence have become popular iterative methods to
find approximate solutions to the roots of non-linear equations. These
methods both enjoy cubic convergence at simple roots and do not
require the evaluation of second order derivatives. In this paper, we
present a new Newton’s method based on contra harmonic mean with
cubically convergent. Numerical examples show that the new method
can compete with the classical Newton’s method.
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I. INTRODUCTION

SOLVING non-linear equations is one of the most impor-
tant problems in numerical analysis. In this paper, we

consider iterative methods to find a simple root of a non-
linear equation f(x) = 0, where f : D ⊂ R → R for an
open interval D is a scalar function. The classical Newton
method for a single non-linear equation is written as

xn+1 = xn − f(xn)

f ′(xn)
. (1)

This is an important and basic method [8], which converges
quadratically. Recently, some modified Newton methods with
cubic convergence have been developed in [1], [2], [3], [4], [5],
[6] and [7]. Here, we will obtain a new modification of New-
tons method. Analysis of convergence shows the new method
is cubically convergent. Its practical utility is demonstrated by
numerical examples.

Let α be a simple zero of a sufficiently differentiable
function f and consider the numerical solution of the equation
f(x) = 0. It is clear that

f(x) = f(xn) +

x∫

xn

f ′(t)dt. (2)

Suppose we interpolate f ′ on the interval [xn, x] by the con-
stant f ′(xn), then (x− xn)f

′(xn) provides an approximation
for the indefinite integral in (2) and by taking x = α we obtain

0 ≈ f(xn) + (α− xn)f
′(xn).

Thus, a new approximation xn+1 to α is given by

xn+1 = xn − f(xn)

f ′(xn)
.
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On the other hand, if we approximate the indefinite integral
in (2) by the trapezoidal rule and take x = α, we obtain

0 ≈ f(xn) +
1

2
(α− xn)(f

′(xn) + f ′(α)),

and therefore, a new approximation xn+1 to α is given by

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(xn+1)
.

If the Newton’s method is used on the right-hand side of the
above equation to overcome the implicity problem, then

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(zn+1)
, (3)

where

zn+1 = xn − f(xn)

f ′(xn)

is obtained which is, for n = 0, 1, 2 , . . . , the trapezoidal
Newton’s method of Fernando et al. [1]. Let us rewrite
equation (3) as

xn+1 = xn − f(xn)

(f ′(xn) + f ′(zn+1)) /2
, n = 0, 1, ..... (4)

So, this variant of Newton’s method can be viewed as obtained
by using arithmetic mean of f ′(xn) and f ′(zn+1) instead of
f ′(xn) in Newton’s method defined by (1). Therefore, we call
it arithmetic mean Newton’s (AN) method.

In [3], the harmonic mean instead of the arithmetic mean
is used to get a new formula

xn+1 = xn − f(xn)(f
′(xn) + f ′(zn+1))

2f ′(xn)f ′(zn+1)
, n = 0, 1, ..... (5)

which is called harmonic mean Newton’s (HN) method and
used the midpoint to get

xn+1 = xn − f(xn)

f ′((xn + zn+1)/2)
, n = 0, 1, ..... (6)

which is called midpoint Newton’s (MN) method.

II. NEW ITERATIVE METHOD AND CONVERGENCE
ANALYSIS

If we use the contra harmonic mean instead of the arithmetic
mean in (4), we get new Newton method

xn+1 = xn − f(xn)(f
′(xn) + f ′(zn+1))

f ′2(xn) + f ′2(zn+1)
, n = 0, 1, ..... (7)
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where

zn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, ..... (8)

we call contra harmonic Newton’s (CHN) method.

Theorem 2.1: Let α ∈ D be a simple zero of a sufficiently
differentiable function f : D ⊂ R → R for an open interval
D. If x0 is sufficiently close to α, then the methods defined by
(7) converge cubically.
Proof Let α be a simple zero of f . Since f is sufficiently
differentiable, by expanding f(xn) andf ′(xn) about α we get

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + ...

]
, (9)

and

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + ...

]
, (10)

where ck = (1/k!)f (k)(α)/f ′(α), k = 2, 3, ... and
en = xn − α. Direct division gives us

f(xn)

f ′(xn)
= en − c2e

2
n + 2(c22 − c3)e

3
n +O(e4n),

and hence, for zn+1 given in (8) we have

zn+1 = α+ c2e
2
n + 2(c3 − c22)e

3
n +O(e4n). (11)

Again expanding f ′(zn+1) about α and using (11)
we obtain

f ′(zn+1) = f ′(α) + (zn+1 − α)f ′′(α)
+ (zn+1−α)

2! f ′′′(α) + ...

= f ′(α) + [c2e
2
n + 2(c3 − c22)e

3
n +O(e4n)]f

′′(α)
+O(e4n)

= f ′(α)[1 + 2c22e
2
n + 4(c2c3 − c32)e

3
n +O(e4n)].

(12)

By using (10) we obtain

f ′2(xn) = f ′2(α)

[1 + 4c2en +
(
4c22 + 6c3

)
e2 + (12c2c3 + 8c4) e

3 + ...].

From (12), we get

f ′2(zn+1) = f ′2(α)
[
1 + 4c22e

2
n +

(
8c2c3 − 8c32

)
e3 + ...

]
,

and

f ′2(xn) + f ′2(zn+1) = 2f ′2(α)[1 + 2c2en +
(
4c22 + 3c3

)
e2n

+
(
4c4 + 10c2c3 − 4c32

)
e3n + ...].

From (10) and (12) we get

f ′(xn) + f ′(zn+1) = 2f ′(α)[1 + c2en +

(
c22 +

3

2
c3

)
e2n +

2
(
c2c3 − c32 + c4

)
e3n +O(e4n)],

and using (9) to get

f(xn) (f
′(xn) + f ′(zn+1)) =

2f ′2(α)[en + 2c2e
2
n +

(
2c22 +

5

2
c3

)
e3n +O(e4n)].

Hence,

f(xn) (f
′(xn) + f ′(zn+1))

f ′2(xn) + f ′2(zn+1)
= en −

(
2c22 +

1

2
c3

)
e3n +O(e4n),

xn+1 = xn − f(xn) (f
′(xn) + f ′(zn+1))

f ′2(xn) + f ′2(zn+1)
,

xn+1 = xn −
(
en −

(
2c22 +

1

2
c3

)
e3n +O(e4n)

)
,

or subtracting α from both sides of this equation we get

en+1 =

(
2c22 +

1

2
c3

)
e3n +O(e4n),

which shows that contra harmonic Newton’s method is of
third order.

III. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we present the results of some numerical
tests to compare the efficiencies of the new method (CHN).
We employed (CN) method, (AN) method of Fernando et
al.[1], and (HN) and (MN) methods in [3] . Numerical
computations reported here have been carried out in a
MTHEMATICA environment . The stopping criterion has
been taken as |xn+1 − xn| < ε, We used the fixed stopping
criterion ε = 10−14 and the following test functions have
been used.

f1(x) = x3 + 4x2 − 10, α = 1.365230013414097,
f2(x) = x2 − ex − 3x+ 2, α = 0.2575302854398608,
f3(x) = Sinx2 − x2 + 1, α = 1.404491648215341,
f4(x) = Cosx− x, α = 0.7390851332151607,
f5(x) = (x− 1)3 − 1, α = 2.

In Table 1 and Table 2, we give the number of iterations (N)
and total number of function evaluations (TNFE) required to
satisfy the stopping criterion. As far as the numerical results
are considered, for most of the cases HN and MN methods
requires the least number of function evaluations.

All numerical results are in accordance with the theory and
the basic advantage of the variants of Newton’s method based
on means or integration methods that they do not require the
computation of second- or higher-order derivatives although
they are of third order.
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