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Abstract—The objective of this paper is to analyse the 

application of the Half-Sweep Gauss-Seidel (HSGS) method by using 
the Half-sweep approximation equation based on central difference 
(CD) and repeated trapezoidal (RT) formulas to solve linear fredholm 
integro-differential equations of first order. The formulation and 
implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half-
Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS 
method has been shown to rapid compared to the FSGS methods. 
Some numerical tests were illustrated to show that the HSGS method 
is superior to the FSGS method. 
 

Keywords—Integro-differential equations, Linear fredholm 
equations, Finite difference, Quadrature formulas, Half-Sweep 
iteration.  

I. INTRODUCTION 

NTEGRO-DIFFERENTIAL equations (IDEs) arise from 
many branches of science, for example in control theory and 

financial mathematics [1]. Especially in physics, it arises 
naturally such as scattering theory, colloidal dispersions, heat 
transfer in the presence memory effects, quark dynamic [2], 
etc. IDE is an equation that the unknown function appears 
under the sign of integration and it also contains the 
derivatives of the unknown function. Commonly, it can be 
classified into Fredholm equations or Volterra equations. The 
upper bound of the region for integral part of Volterra type is 
variable, while it is a fixed number for that of Fredholm type. 
However, in this paper we focus on Fredholm integro-
differential. Generally, first-order linear Fredholm integro-
differential equations can be defined as follows 
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where the functions , and the kernel are known and   is the 
solution to be determined. In the engineering field, numerical 
methods for solution of linear Fredholm integro-differential 
equations (LFIDEs) have been studied by many authors such 
as Lagrange interpolation method [3], Tau method [4], 
quadrature-difference method [5], variational method [6], 
collocation method [7], homotopy perturbation method [8], 
Euler-Chebyshev method [9] and GMRES method [10].  
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LFIDEs are usually difficult to solve analytically so 

numerical approaches are practiced to obtain an approximation 
solution for the problem (1). To solve a LFIDE equation 
numerically, discretization of differential and integral parts to 
the solution of system of linear algebraic equations is the basic 
concept used by researchers to solve LFIDE problems. By 
considering numerical techniques, there are many schemes that 
can be used to discretize problem (1) independently for linear 
differential and integral terms. Many researchers have 
implemented discretization schemes for linear differential term 
such as finite difference scheme [11]-[12]), Taylor polynomial 
scheme [13], Chebyshev polynomial method [14], Runge-
Kutta scheme [15] and Euler implicit schemes [16] whilst to 
discretize linear integral term numerically, many discretization 
schemes can be used for approximation such as quadrature 
[17]-[20], projection method [21]-[22]) and least squares [23]. 
The concept of Half-sweep iterative method was introduced 
by[24] by the employ of Explicit Decoupled Group (EDG) to 
solve two-dimensional Poisson equations. Then this concept 
has been discussed in [25]-[30]. This concept is essential to 
reduce the computational complexities during the iterative 
process, whereas the implementation of the half-sweep 
iterations will only consider nearly half of all node points in a 
solution domain. In this paper, we carried out the application 
of the half-sweep iteration technique with Gauss-Seidel (GS) 
iterative methods by using approximation equation based on 
finite difference and quadrature schemes for solving problem 
(1). The standard GS iterative method also called as the Full-
Sweep Gauss-Seidel iterative method was implemented with 
half-sweep iterations process whereas it can be indicated as 
Half-Sweep Gauss-Seidel (HSGS). The organization of the 
paper is as follows. In section 2, the formulation of the finite 
difference and quadrature approximation equations for full- 
and half-sweep cases will be elaborated. In section 3, 
formulation of the FSGS and HSGS methods will be 
demonstrated. In section 4, some numerical results will be 
illustrated to emphasize effectiveness of the methods. 
Conclusion is in section 5. 

 
II. FORMULATION OF HALF-SWEEP APPROXIMATION EQUATION  

Based on Fig. 1, the full- and half-sweep iterative methods 
will compute approximate values onto only solid node points 
until the convergence criterion is reached. It seems that the 
implementation of the half-sweep iterative method just 
involves by nearly one-half of whole inner points as shown in 
Figure 1(b) compared with the full-sweep iterative method. 
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Then the other approximation solutions for the remaining 
points are calculated by using direct methods. [1, 33] 
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(b) 

Fig. 1 (a) and (b) show distribution of uniform node points for the 
full and half-sweep cases respectively. 

A. Formulation of Half-Sweep Finite Difference Schemes 

As mentioned in section 1, CD scheme based on finite 
difference method was used to form an approximation 
equation for differential term. In this paper CD scheme was 
used to discretize the first order LFIDE. In general, first order 
derivative of second order error central difference formula can 
be derived from the Taylor series expansion as follows 
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where 
n

ab
h

−=   is size interval between nodes.  

while )( 2hO  is truncations error which, is will not be 

considered in this paper. The size of the truncation error is 
mostly under our control because we can choose the mesh size. 

In order to obtain the finite grid work network for 
formulation of the full- and half-sweep finite difference 
approximation equations over the problem as stated in Eq (1), 
further discussion will be restricted onto CD scheme which is 
as follows 
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where the value of p , which corresponds to 1 and 2 , 

represents the full- and half -sweep respectively. 

B. Formulation of Half-Sweep Quadrature Method  

For the integral term, RT discretization scheme based on 
quadrature method was used to construct an approximation 
equation. In general quadrature formula can be defined as 
follows  
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=

+=
b

a

n

j
njj ytyAdtty

0

)()()( ε                   (4)

 

where jt )n,,,j( K10=  are the abscissas of the partition 

points of the integration interval [a,b] or quadrature 
(interpolation) nodes, jA )n,,,j( K10= are numerical 

coefficients that do not depend on the function )t(y  and 

)y(nε  is the truncation error of Eq. (2). Based on RT rule, 

numerical coefficients jA  are satisfied following relation 
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where the constant step size, h is defined 
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n is the number of subintervals in the interval [a, b]. 
Meanwhile, the value ofp , which corresponds to 1 and 2, 

represents the full- and half-sweep respectively. 
Based on Eqs. (3), (4) and (5), by substitute into Eq. (1), a 

system of linear algebraic equations obtained for 
approximation values )x(y  at the nodes nxxx ,, 21 K . The 

following linear system generated either by the full- or half-
sweep approximation equation can be easily shown as 
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The value of p, which corresponds to 1 and 2, represents the 
full- and half-sweep cases respectively. 
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III.  FORMULATION OF THE FULL- AND HALF-SWEEP GAUSS-
SEIDEL METHODS 

In this paper, FSGS and HSGS iterative methods will be 
applied to solve linear system generated from the 
discretization of the problem (1) as shown in Eq. (7). Let 
matrix M  be articulated into 
 

                                ULDM −−=                                      (8) 
 

where D , L  and U  are diagonal, strictly lower triangular 
and strictly upper triangular matrices respectively. Thus, the 
general scheme for FSGS and HSGS iterative methods can be 
written as 
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The iterative methods attempt to find a solution to the 

system of linear equations by repeatedly solving the linear 
system using approximations to the vector

~
y . Iterations for 

FSGS and HSGS methods continue until the solution is within 
a predetermined acceptable bound on the error. The general 
algorithms for FSGS and HSGS iterative methods to solve 
problem (1) would be generally described in Algorithm 1. 
 
Algorithm: FSGS and HSGS methods 
 
i) Initializing all the parameters. Set k = 0. 
ii)  npnpnppi ,,2,,2, −−= L  

Calculate 
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iii)  Convergence test 

iv) If the error of tolerance 10)()1( 10−+ =<− εk
i

k
i yy   is 

satisfied, the value option at that time is )1( +k
iy  and the 

algorithm end. 
v) Else, set k = k+1 and go to step (ii). 
 

IV. ILLUSTRATIVE EXAMPLES 

In this section, 3 numerical examples are illustrated to show 
the accuracy and effectiveness of the proposed methods and all 
of them were performed by using C language. Three criteria 
will be considered in comparison for FSGS and HSGS such as 
number of iterations, execution time and maximum absolute 
error.  
 

Example 1 [31] 

∫+−=
1
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with the condition 

0)0( =y
 

and exact solution of the problem is 

xxy =)( .  

Example 2 [31] 
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and exact solution of the problem is 

xxexy =)( .  

Example 3 [32] 
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with the condition 
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and exact solution of the problem is 

xxy cosh)( = .  

Throughout the experiments, the convergence test 

considered the tolerance error of 1010−=ε . The experiments 
were carried out in different mesh sizes such as 60, 120, 240, 
480 and 960. Results of numerical simulations which were 
obtained from implementations of the FSGS and HSGS 
iterative methods for Examples 1, 2 and 3 have been recorded 
in Tables 1, 2 and 3 respectively. 

 
V. CONCLUSION 

In this paper, the HSGS iterative method was employed to 
solve LFIDE for first-order. Based on numerical results 
observed in Tables 1, 2 and 3, it manifestly shows that the 
application of the half-sweep iterative concept significantly 
reduces computational time (refer table 4) with the tolerable 
precision. In the other hand, the number of iterations also 
reduced extensively corresponding to the mesh sizes. In all 
purpose, HSGS iterative method is faster for the computational 
works compared to FSGS iterative method. This is due to the 
computational complexity of the HSGS is reduced 
approximately 50% compared to FSGS method. In future 
works this concept can also can be used for high order IDEs 
problems. 
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TABLE I 
COMPARISON OF A NUMBER OF ITERATIONS, EXECUTION TIME (SECONDS) AND 

MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS FOR EXAMPLE 1 

 
TABLE II 

COMPARISON OF A NUMBER OF ITERATIONS, EXECUTION TIME (SECONDS) AND 

MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS FOR EXAMPLE 2 
Number of iteration 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 43268 137637 459828 1653228 6136092 
HSGS+CD+RT 14595 43268 137637 459828 1653228 

Execution time (seconds) 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 421.65 5324.21 55324.20 155159.78 1073214.21 
HSGS+CD+RT 20.66 795.54 16845.02 64324.17 579548.36 

Maximum Absolute Error 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 2.9883E-4 6.2354E-4 2.3785E-5 4.3312E-5 1.2032E-6 
HSGS+CD+RT 1.2228E-3 2.9883E-4 6.2354E-4 2.3785E-5 4.3312E-5 

 
TABLE III 

COMPARISON OF A NUMBER OF ITERATIONS, EXECUTION TIME (SECONDS) AND 

MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS FOR EXAMPLE 2 
Number of iteration 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 27766 92736 331899 1229548 5988642 
HSGS+CD+RT 8737 27766 92736 331899 1229548 

Execution time (seconds) 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 256.65 4651.23 48898.78 145694.01 1002365.64 
HSGS+CD+RT 11.86 257.84 4856.35 49584.13 149653.47 

Maximum Absolute Error  

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 2.572E-5 3.265E-6 4.397E-6 6.320E-7 1.254E-8 
HSGS+CD+RT 1.335E-4 2.572E-5 3.265E-6 4.397E-6 6.320E-7 

 
TABLE IV 

PERCENTAGES OF REDUCTION FOR EXECUTION TIME FOR HSGS ITERATIVE 

METHODS COMPARED WITH FSGS METHOD 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of iteration 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 33174 107988 375982 1394346 5487814 
HSGS+CD+RT 10952 33174 107988 375982 1394346 

Execution time (seconds) 

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 512.36 17122.44 60347.03 143653.12 5434556.95 
HSGS+CD+RT 47.87 563.54 19656.32 61202.98 153655.84 

Maximum Absolute Error  

Methods 
Mesh size 

60 120 240 480 960 
FSGS+CD+RT 2.623E-5 5.853E-6 3.506E-6 1.359E-7 9.858E-7 
HSGS+CD+RT 1.057E-4 2.623E-5 5.853E-6 3.506E-6 1.359E-7 

Methods 
HSGS+CD+RT 

Execution time 

Example 1 57.39%-97.17% 

Example 2 45.99%-95.10% 

Example 3 65.96%-95.37% 
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