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Abstract—In this paper, multiobjective design of multi-machine 
Power System Stabilizers (PSSs) using Particle Swarm Optimization 
(PSO) is presented. The stabilizers are tuned to simultaneously shift 
the lightly damped and undamped electro-mechanical modes of all 
machines to a prescribed zone in the s-plane. A multiobjective 
problem is formulated to optimize a composite set of objective 
functions comprising the damping factor, and the damping ratio of 
the lightly damped electromechanical modes. The PSSs parameters 
tuning problem is converted to an optimization problem which is 
solved by PSO with the eigenvalue-based multiobjective function. 
The proposed PSO based PSSs is tested on a multimachine power 
system under different operating conditions and disturbances through 
eigenvalue analysis and some performance indices to illustrate its 
robust performance. 

Keywords—PSS Design, Particle Swarm Optimization, Dynamic 
Stability, Multiobjective Optimization.  

I.  INTRODUCTION 
TABILITY of power systems is one of the most important 
aspects in electric system operation. This arises from the 

fact that the power system must maintain frequency and 
voltage levels in the desired level, under any disturbance, like 
a sudden increase in the load, loss of one generator or 
switching out of a transmission line, during a fault [1]. Since 
the development of interconnection of large electric power 
systems, there have been spontaneous system oscillations at 
very low frequencies in order of 0.2 to 3.0 Hz. Once started, 
they would continue for a long period of time. In some cases, 
they continue to grow, causing system separation if no 
adequate damping is available. Moreover, low-frequency 
oscillations present limitations on the power-transfer 
capability. To enhance system damping, the generators are 
equipped with power system stabilizers (PSSs) that provide 
supplementary feedback stabilizing signals in the excitation 
systems. PSSs augment the power system stability limit and 
extend the power-transfer capability by enhancing the system 
damping of low-frequency oscillations associated with the 
electromechanical modes [2].  
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The eigenvalue sensitivity analysis has been used for PSS 
design in many literatures under deterministic system 
operating conditions. To consider the effect of more system 
operating factors, the technique of probabilistic eigenvalue 
analysis was proposed and has been applied for the parameter 
design of power system damping controllers [2-3]. In the 
probabilistic eigenvalue analysis the system stability is 
enhanced by shifting the distribution ranges of the critical 
eigenvalues to the left side of the complex plane. A new 
approach for the optimal decentralized design of PSSs with 
output feedback is investigated in [4]. If PSSs with complete 
state feedback control scheme are adopted, the requirements of 
estimators and centralized controls may be used for the 
unavailable states and control signals. However, these increase 
the hardware cost and reduce the reliability of the control 
system. Novel intelligent control design methods such as 
fuzzy logic controllers [5-6] and artificial neural network 
controllers [7] have been used as PSSs. Unlike other classical 
control methods fuzzy logic and neural network controllers are 
model-free controllers; i.e. they do not require an exact 
mathematical model of the controlled system. Moreover, 
speed and robustness are the most significant properties in 
comparison to other classical schemes.  

Despite the potential of modern control techniques with 
different structures, power system utilities still prefer the 
conventional lead-lag power system stabilizer (CPSS) 
structure [8-9]. The reasons behind that might be the ease of 
online tuning and the lack of assurance of the stability related 
to some adaptive or variable structure techniques. On the other 
hand, Kundur et al. [10] have presented a comprehensive 
analysis of the effects of the different CPSS parameters on the 
overall dynamic performance of the power system. It is shown 
that the appropriate selection of CPSS parameters results in 
satisfactory performance during system upsets. In addition, 
Gibbard [11] demonstrated that the CPSS provide satisfactory 
damping performance over a wide range of system loading 
conditions. The robustness nature of the CPSS is due to the 
fact that the torque-reference voltage transfer function remains 
approximately invariant over a wide range of operating 
conditions. A gradient procedure for optimization of PSS 
parameters at different operating conditions is presented in 
[12]. Unfortunately, the optimization process requires 
computations of sensitivity factors and eigenvectors at each 
iteration. This gives rise to heavy computational burden and 
slow convergence. Thus, conventional optimization methods 
that make use of derivatives and gradients are, in general, not 
able to locate or identify the global optimum, but for real-
world applications, one is often content with a “good” 
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solution, even if it is not the best. Consequently, heuristic 
methods are widely used for global optimization problems. 

Recently, global optimization techniques like genetic 
algorithms (GA), evolutionary programming, Tabu search, 
simulated annealing and rule based bacteria foraging [13-20] 
have been applied for PSS parameter optimization. These 
evolutionary algorithms are heuristic population-based search 
procedures that incorporate random variation and selection 
operators. Although, these methods seem to be good methods 
for the  solution of PSS parameter optimization problem. 
However, when the system has a highly epistatic objective 
function (i.e. where parameters being optimized are highly 
correlated), and number of parameters to be optimized is large, 
then they have degraded efficiency to obtain global optimum 
solution and also simulation process use a lot of computing 
time. Moreover, in [13-14, 17, 19] the robust PSS design was 
formulated as a single objective function problem, and not all 
PSS parameter were considered adjustable. In order to 
overcome these drawbacks, a Particle Swarm Optimization 
(PSO) based PSS (PSOPSS) is proposed in this paper. In this 
study, PSO technique is used for optimal tuning of PSS 
parameter to improve optimization synthesis and the speed of 
algorithms convergence. PSO is a novel population based 
metaheuristic, which utilize the swarm intelligence generated 
by the cooperation and competition between the particle in a 
swarm and has emerged as a useful tool for engineering 
optimization. It has also been found to be robust in solving 
problems featuring non-linearing, non-differentiability and 
high dimensionality [21-23]. PSO has been motivated by the 
behavior of organisms, such as fish schooling and bird 
flocking. Unlike the other heuristic techniques, it has a flexible 
and well-balanced mechanism to enhance the global and local 
exploration abilities. Also, it suffices to specify the objective 
function and to place finite bounds on the optimized 
parameters. 

In this paper, the problem of robust PSS design is 
formulated as a multiobjective optimization problem and PSO 
is used to solve this problem. The multiobjective problem is 
concocted to optimize a composite set of two eigenvalue-
based objective functions comprising the desired damping 
factor, and the desired damping ratio of the lightly damped 
and undamped electromechanical modes [16]. The stabilizers 
are automatically tuned with optimization an eigenvalue based 
multi-objective function by PSO to simultaneously shift the 
lightly damped and undamped electro-mechanical modes of all 
machines to a prescribed zone in the s-plane such that the 
relative stability is guaranteed and the time domain 
specifications concurrently secured. The effectiveness of the 
proposed PSO based PSS (PSOPSS) is tested on a 
multimachine power system under different operating 
conditions through eigenvalue analysis and some performance 
indices. Results evaluation show that the proposed method 
achieves good robust performance for damping low frequency 
oscillations under different operating conditions. 

II. PROBLEM STATEMENT 

A. Power system model 
The complex nonlinear model related to an n–machine 

interconnected power system, can be described by a set of 

differential- algebraic equations by assembling the models for 
each generator, load, and other devices such as controls in the 
system, and connecting them appropriately via the network 
algebraic equations. The generator in the power system is 
represented by Heffron-Philips model and the problem is to 
design the parameters of the power system stabilizers. In this 
study, the two-axis model [2] given in Appendix is used for 
time domain simulations. For a given operating condition, the 
multi-machine power system is linearized around the 
operating point. The closed loop eigenvalues of the system are 
computed and the desired objective functions are formulated 
using only the unstable or lightly damped electromechanical 
eigenvalues, keeping the constraints of keeping all the system 
modes stable under any condition. 

B. PSS structure
The operating function of a PSS is to produce a proper torque 
on the rotor of the machine involved in such a way that the 
phase lag between the exciter input and the machine electrical 
torque is compensated. The supplementary stabilizing signal 
considered is one proportional to speed. A widely speed based 
used conventional PSS is considered throughout the study [2]. 
The transfer function of the ith PSS is given by: 

1 3

2 4

(1 )(1 ) ( )
1 (1 )(1 )

W i i
i i i

W i i

sT sT sTU K s
sT sT sT

                (1) 

Where, i is the deviation in speed from the synchronous 
speed. This type of stabilizer consists of a washout filter, a 
dynamic compensator. The output signal is fed as a 
supplementary input signal, Ui, to the regulator of the 
excitation system. The washout filter, which essentially is a 
high pass filter, is used to reset the steady-state offset in the 
output of the PSS. The value of the time constant Tw is usually 
not critical and it can range from 0.5 to 20 s. In this paper, it is 
fixed to 10 s. The dynamic compensator is made up to two 
lead-lag stages and an additional gain. The adjustable PSS 
parameters are the gain of the PSS, Ki, and the time constants, 
T1i-T4i. The lead-lag block present in the system provides 
phase lead compensation for the phase lag that is introduced in 
the circuit between the exciter input and the electrical torque. 
The required phase lead can be derived from the lead-lag 
block even if the denominator portion consisting of T2i and T4i
gives a fixed lag angle. Thus, to reduce the computational 
burden here, the values of T2i and T4i are kept constant at a 
reasonable value of 0.05 s and tuning of T1i and T3i are 
undertaken to achieve the net phase lead required by the 
system. 

C. Objective function
1) Very often, the closed-loop modes are specified to have 
some degree of relative stability. In this case, the closed loop 
eigenvalues are constrained to lie to the left of a vertical line 
corresponding to a specified damping factor. The parameters 
of the PSS may be selected to minimize the following 
objective function [19]: 

0

2
1 0( )

i

iJ                                              (2) 

Where, i is the real part of the ith eigenvalue, and 0 is a 
chosen threshold. The value of 0 represents the desirable 
level of system damping. This level can be achieved by 
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shifting the dominant eigenvalues to the left of s= 0 line in the 
s-plane. This also ensures some degree of relative stability. 
The condition i 0 is imposed on the evaluation of J1 to 
consider only the unstable or poorly damped modes that 
mainly belong to the electromechanical ones. The relative 
stability is determined by the value of 0. This will place the 
closed-loop eigenvalues in a sector in which i 0 as shown in 
Fig. 1-(a). 

2) To limit the maximum overshoot, the parameters of the PSS 
may be selected to minimize the following objective function 
[24]: 

0

2
2 0( )

i

iJ                                          (3) 

Where i is the damping ratio of the ith eigenvalue. This 
will place the closed-loop eigenvalues in a wedge-shape sector 
in which i 0  as shown in Fig. 1-(b). 
In the case of J2 , 0 is the desired minimum damping ratio, 
which is to be achieved. It is necessary to mention here that if 
only particular eigenvalues need to be relocated, then only 
those eigenvalues should be taken into consideration in the 
computation of the objective function. This is usually the case 

in dynamic stability where it is desired to relocate the 
electromechanical modes of oscillations. 

3) The parameters of the PSS may be selected to minimize the 
following objective function: 

3 1 2J J aJ                                                   (4) 
This will place the system closed-loop eigenvalues in the 

D-contour sector characterized by i 0 and i 0  [16] as 
shown in Fig. 1-(c). 

If all the closed loop poles are located to the left of the 
contour, then the constraints on the damping factor and the 
real part of rotor mode eigenvalues are satisfied and a well 
damped small disturbance response is guaranteed. 
 The optimization problem can be stated as: 

Minimize Ji  Subject to:                                              (5) 
maxmin

maxmin
1 1 1

maxmin
3 3 3

i i i

i i i

i i i

K K K
T T T
T T T     

The proposed approach employs PSO to solve this 
optimization problem and search for an optimal set of PSS 
parameters, Ki , T1i and T3i ; i=1, 2,3.

Fig. 1. Region of eigenvalue location for objective function. 

III.  PSO TECHNIQUE

Particle swarm optimization algorithm, which is tailored for 
optimizing difficult numerical functions and based on 
metaphor of human social interaction, is capable of mimicking 
the ability of human societies to process knowledge [22]. It 
has roots in two main component methodologies: artificial life 
(such as bird flocking, fish schooling and swarming); and, 
evolutionary computation. Its key concept is that potential 
solutions are flown through hyperspace and are accelerated 
towards better or more optimum solutions. Its paradigm can be 
implemented in simple form of computer codes and is 
computationally inexpensive in terms of both memory 
requirements and speed. It lies somewhere in between 
evolutionary programming and the genetic algorithms. As in 
evolutionary computation paradigms, the concept of fitness is 
employed and candidate solutions to the problem are termed 
particles or sometimes individuals, each of which adjusts its 
flying based on the flying experiences of both itself and its 
companion. It keeps track of its coordinates in hyperspace 
which are associated with its previous best fitness solution, 
and also of its counterpart corresponding to the overall best 
value acquired thus far by any other particle in the population. 
Vectors are taken as presentation of particles since most 
optimization problems are convenient for such variable 

presentations. In fact, the fundamental principles of swarm 
intelligence are adaptability, diverse response, proximity, 
quality, and stability. It is adaptive corresponding to the 
change of the best group value. The allocation of responses 
between the individual and group values ensures a diversity of 
response. The higher dimensional space calculations of the 
PSO concept are performed over a series of time steps. The 
population is responding to the quality factors of the previous 
best individual values and the previous best group values. The 
principle of stability is adhered to since the population 
changes its state if and only if the best group value changes 
[23, 25]. As it is reported in [26], this optimization technique 
can be used to solve many of the same kinds of problems as 
GA, and does not suffer from some of GAs difficulties. It has 
also been found to be robust in solving problem featuring non-
linearing, non-differentiability and high-dimensionality. PSO 
is the search method to improve the speed of convergence and 
find the global optimum value of fitness function.  

PSO starts with a population of random solutions 
‘‘particles’’ in a D-dimension space. The ith particle is 
represented by Xi = (xi1,xi2, . . . ,xiD). Each particle keeps track 
of its coordinates in hyperspace, which are associated with the 
fittest solution it has achieved so far. The value of the fitness 
for particle i (pbest) is also stored as Pi = (pi1, pi2, . . . ,piD).

j

i 0

j

0

i 0

i 0

0
j

0

i 0
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The global version of the PSO keeps track of the overall best 
value (gbest), and its location, obtained thus far by any particle 
in the population. PSO consists of, at each step, changing the 
velocity of each particle toward its pbest and gbest according 
to Eq. (11). The velocity of particle i is represented as Vi= (vi1,
vi2. . . viD). Acceleration is weighted by a random term, with 
separate random numbers being generated for acceleration 
toward pbest and gbest. The position of the ith particle is then 
updated according to Eq. (7) [22]. 

)()(
)()(

2

1

idgd

idididid

xPrandc
xPrandcvwv

                (6) 

ididid cvxx                                                (7) 
Where, Pid and Pgd are pbest and gbest. Several 

modifications have been proposed in the literature to improve 
the PSO algorithm speed and convergence toward the global 
minimum. One modification is to introduce a local-oriented 
paradigm (lbest) with different neighborhoods. It is concluded 
that gbest version performs best in terms of median number of 

iterations to converge. However, Pbest version with 
neighborhoods of two is most resistant to local minima. PSO 
algorithm is further improved via using a time decreasing 
inertia weight, which leads to a reduction in the number of 
iterations [28]. Figure 2 shows the flowchart of the proposed 
PSO algorithm.  

This new approach features many advantages; it is simple, 
fast and easy to be coded. Also, its memory storage 
requirement is minimal. Moreover, this approach is 
advantageous over evolutionary and genetic algorithms in 
many ways. First, PSO has memory. That is, every particle 
remembers its best solution (local best) as well as the group 
best solution (global best). Another advantage of PSO is that 
the initial population of the PSO is maintained, and so there is 
no need for applying operators to the population, a process 
that is time and memory-storage-consuming. In addition, PSO 
is based on ‘‘constructive cooperation’’ between particles, in 
contrast with the genetic algorithms, which are based on ‘‘the 
survival of the fittest’’.

Fig. 2. Flowchart of the proposed PSO technique. 

IV.  CASE STUDY 

In this study, the three-machine nine-bus power system 
shown in Fig. 3 is considered. Detail of the system data are 
given in Ref. [2].  

Fig. 3. Three-machine nine-bus power system. 

To assess the effectiveness and robustness of the proposed 
method over a wide range of loading conditions, three 
different cases designated as nominal, light and heavy loading 
conditions are considered. The generator and system loading 
levels at these cases are given in Tables 1 and 2. 

TABLE II
LOADING CONDITIONS (IN PU)

Nominal Heavy LightLoad 
P Q P Q P Q

A 1.25 0.5 2.0 0.80 0.65 0.55 
B 0.90 0.30 1.80 0.60 0.45 0.35 
C 1.0 0.35 1.50 0.60 0.50 0.25 

TABLE I
GENERATOR OPERATING CONDITIONS (IN PU)

Nominal Heavy LightGen
P Q P Q P Q

G1 0.72 0.27 2.21 1.09 0.36 0.16
G2 1.63 0.07 1.92 0.56 0.80 -0.11
G3 0.85 -0.11 1.28 0.36 0.45 -0.20

Evaluate the fitness of each particle 

Optimal value of the PSS parameters 

Satisfying
stopping 
criterion

Update pbest and gbest

End

Start

Select parameters of PSO:
N, C1, C2, C and w

Generate the randomly positions 
and velocities of particles

Initialize, pbest with a copy of the 
position for particle, determine gbest

Update velocities and positions 
according to Eqs. (6,7)

No

Yes
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A. PSO-based PSS design and eigenvalue analysis
The PSS is connected to all machines in the test system. In 

the proposed method, we must tune the PSSs parameters 
optimally to improve the overall system dynamic stability in a 
robust way under different operating conditions and 
disturbances. To acquire an optimal combination, this paper 
employs PSO [22] to improve optimization synthesis and find 
the global optimum value of fitness function. In this study, the 
PSO module works offline. For the each PSS, the optimal 
setting of three parameters is determined by the PSO, i.e. 9 
parameters to be optimized, namely Ki, T1i, and T3i for i= 1, 2, 
3. For our optimization problem, eigenvalue based multi 
objective functions as given in Eq. (5) is used.  

In this work, the values of 0, 0 and a is considered as -
1.5, 0.2 and 10, respectively. In order to acquire better 
performance, number of particle, particle size, number of 
iteration, C1, C2 and C is chosen as 25, 9, 100, 2, 2 and 1, 
respectively. Also, the inertia weight, w, is linearly decreasing 
from 0.9 to 0.4. It should be noted that PSO algorithm is run 
several times and then optimal set of PSS parameters is 
selected. The convergence rate for different objective 
functions are shown in Fig. 4. The final values of the 
optimized parameters with both single objective functions J1,
J2 and the multi-objective function J3 are given in Table 3.  

The electromechical modes and the damping ratios 
obtained for all operating conditions both with and without 
PSS in the system are given in Table 4. They are also depicted 
in the complex s-plane as shown in Fig. 5. When PSS is not 
installed, it can be seen that some of the modes are poorly 

damped and in some cases, are unstable (highlighted in Table 
4).

Fig. 4. Variations of objective functions, Solid (J3), Dashed (J2) and 
Doted (J1)

Moreover, It is obvious that the electromechanical mode 
eigenvalues have been shifted to the left in s-plane and the 
system damping with the proposed method greatly improved 
and enhanced. Note that the parameter settings associated with 
J1 are not able to shift the electromechanical modes in the 
region specified by  0.2. The parameter settings associated 
with J2 are not able to shift the electromechanical modes in the 
region specified by  -1.5. However, the parameter settings 
associated with the multiobjective function achieved both 
goals, namely 0.2 and -1.5. This clearly indicates that the 
single objective approach is not able to shift all 
electromechanical modes to the prescribed D-contour sector. 
Moreover, it is also clear that the system damping with the 
proposed J3 tuned PSSs is greatly improved.  

TABLE IV
EIGENVALUES OF ELECTROMECHANICAL MODES WITH AND WITHOUT PSSS

 Nominal Heavy Light 

Without PSSs 

2.0928 ± i4.1890, -0.4469 
1.9378 ± i 5.6488,-0.3245 
-0.0537± i9.3626,  0.057 

-10.422 ± i5.0172, 0.9156 
-11.461 ± i2.2446, 0.9813 

2.3625 ± i9.2299, -0.248 
2.9810 ± i4.7320, -0.533 

-0.1317 ± i4.5872, 0.0287 
-10.943 ± i6.1334, 0.8723 
-10.628 ± i4.1433, 0.9317 

1.7279± i7.8521,  -0.215 
2.5451± i5.6182,  -0.4126 
-0.3929± i2.3426,  0.1654 
-10.5856 ± i6.926, 0.4442 
-10.3769 ± i2.809, 0.965 

PSSs with J1

-1.9423 ± i23.048, 0.0840 
-4.8568 ± i15.746, 0.2947 
-1.5241 ± i10.400, 0.1426 
-1.5205 ± i 4.7851,0.3028 
-1.6219 ± i2.2078, 0.592 

-2.0644 ± i23.218, 0.0886 
-4.3076 ± i17.195, 0.2430 
-1.5386 ± i11.357, 0.1342 
-1.9414 ± i 6.9643,0.2685 
-1.5037 ± i3.3199, 0.4126 

-3.5954 ± i22.493, 0.1578 
-1.8763 ± i20.508, 0.0911 
-1.6368 ± i10.918, 0.1483 
-2.6650 ± i 4.1054,0.5445 
-1.8525 ± i2.6769, 0.569 

PSSs with J2

-3.1641 ± i20.160, 0.2383 
-5.5697 ± i14.475, 0.2457 
-1.9746 ± i9.0094, 0.2343 
-0.9214 ± i5.7039, 0.2248 
-1.6056 ± i2.6564, 0.4745 

-7.1286 ± i18.003, 0.3682 
-3.8102 ± i17.019, 0.2169 
-2.2260 ± i10.760, 0.2026 
-1.7995± i7.6161,  0.230 

-1.0481 ± i4.3874, 0.2324 

-8.3518 ± i17.363, 0.4335 
-3.9573 ± i15.580, 0.2462 
-2.1430 ± i10.135, 0.2069 
-1.7208 ± i5.6866, 0.2896 
-1.6982 ± i4.4945, 0.3535 

PSSs with J3

-4.1726 ± i16.828, 0.2407 
-3.3363 ± i14.911, 0.2183 
-2.3224 ± i 9.6248,0.2346 
-1.6347 ± i5.3947, 0.2900 
-2.0731 ± i2.5778, 0.6267 

-4.6737 ± i17.140, 0.2631 
-3.0887 ± i15.005, 0.2016 
-2.0483 ± i8.9861, 0.2222 
-3.3485 ± i8.7138, 0.3587 
-1.5689 ± i4.2950, 0.3431 

-6.7108 ± i16.122, 0.3843 
-3.5852 ± i14.101, 0.2464 
-1.8925 ± i9.0803, 0.2040 
-3.0027 ± i5.8930, 0.4540 
-2.1049 ± i4.2455, 0.4440 

TABLE III 
OPTIMAL PSSS PARAMETERS WITH OBJECTIVE FUNCTIONS

J1 J2 J3Gen
K T1 T3 K T1 T3 K T1 T3

G1 78.34 0.0848 0.091 59.65 0.080 0.1251 50.51 0.1202 0.071 
G2 19.58 0.1821 0.1056 14.15 0.1743 0.1503 16.21 0.2122 0.083 
G3 36.2 0.1514 0.1871 25.87 0.1791 0.1187 29.67 0.1602 0.1907 
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B. Nonlinear time-domain simulation
To evaluate the effectiveness of the PSO based PSSs tuned 

using the proposed multiobjective function A six-cycle three-
phase fault disturbance at bus 7 at the end of line 5-7 is 
considered. The fault is cleared by tripping the line 5-7 with 
successful reclosure after 1.0 s. The performance of the PSSs 
tuned based on the multiobjective function is compared to that 
of the PSSs tuned using the single objective functions J1 or J2
for different operating conditions as given in Table 2. The 

speed deviations of generators G1, G2 and G3 under the 
nominal, light and heavy loadings are shown in Figs. 6-8. It 
can be seen that the PSSs tuned using the multiobjective 
function achieves good robust and provides superior  damping 
in comparison with the case when either of J1 or J2 are used. 
For completeness, the internal voltage of the all generators and 
transfer power, when the multiobjective function J3 is used, 
are shown in Fig. 9. 

Fig. 5. Eigenvalues associated with electromechanical modes (J1, J2, and J3)

Fig. 6. The dynamic responses under nominal loading condition; Solid (J3), Dashed (J2) and Dotted (J1).

Fig. 7. The dynamic responses under heavy loading condition; Solid (J3), Dashed (J2) and Dotted (J1).

0 2 4 6 8 10

-8

-4

0

4 x 10-3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 2
)

0 2 4 6 8 1010

0

5

10

15

x 10-3

Time (sec)

S
pe

ed
 d

vi
at

io
n 

(m
ac

hi
ne

 1
)

0 2 4 6 8 10

-8

-4

-2

0

4
x 10-3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 3
)

0 2 4 6 8 10

-1

1

3

5

x 10 -3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 1
)

0 2 4 6 8 10

-2

0

2

x 10 -3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 2
)

0 2 4 6 8 10

-2

0

2

x 10 -3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 3
)

0 2 4 6 8 10

-0.01

0

0.01

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 2
)

0 2 4 6 8 10-5

0

5

10

15

20
x 10 -3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 1
)

0 2 4 6 8 10

-12

-8

-
4

0

4
x 10 -3

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

(m
ac

hi
ne

 3
)

(a) (b) (c)

(a) (b) (c)

Fig. 8. The dynamic responses under light loading condition; Solid (J3), Dashed (J2) and Dotted (J1).
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Fig. 9. Internal voltage and transfer power variations of generators; Solid (G3), Dashed (G2) and Dotted (G1).

To demonstrate performance robustness of the proposed 
method, two performance indices: the Integral of the Time 
multiplied Absolute value of the Error (ITAE) and Figure of 
Demerit (FD) based on the system performance characteristics 
are being used as: 

dttITAE )( 321

10

0
                      (9) 

222 )1000()1000( sTUSOSFD                (10) 
Where, Overshoot (OS) Undershoot (US) and settling time 

of rotor angle deviation of all machines is considered for 
evaluation of the FD. It is worth mentioning that the lower the 
value of these indices is, the better the system response in 
terms of time-domain characteristics. Numerical results of 
performance robustness for all cases are listed in Table 5. It 
can be seen that the values of these system performance 
characteristics with the J3 based tuned PSSs are much smaller 
compared to that of J1 and J1 based tuned PSSs. This 
demonstrates that the overshoot, undershoot settling time and 
speed deviations of all units are greatly reduced by applying 
the proposed J3 based tuned PSSs.

V.  CONCLUSION 

An optimal multiobjective design for multimachine power 
system stabilizers using PSO technique has been proposed. 
The stabilizers are tuned to simultaneously shift the lightly 
damped electromechanical modes of all plants to a prescribed 
zone in the s-plane. A multiobjective problem is formulated to 
optimize a composite set of objective functions comprising the 
damping factor, and the damping ratio of the lightly damped 
electromechanical modes. The design problem of the robustly 
PSSs parameters selection is converted into an optimization 
problem which is solved by a PSO technique with the 
eigenvalue-based mutiobjective function.  

Eigenvalue analysis give the satisfactory damping on system 
modes, especially the low-frequency modes, for systems with 
the proposed mutiobjective function based tuned PSSs. Time-
domain simulations show that the oscillations of synchronous 
machines can be quickly and effectively damped for power 

systems with the proposed PSSs over a wide range of loading 
conditions. The system performance characteristics in terms of 
‘ITAE’ and ‘FD’ indices reveal that the proposed multi-
objective function based tuned PSSs demonstrates its 
superiority in computational complexity, success rate and 
solution quality. 

APPENDIX: MACHINE MODELS  

( 1)i b i                                                         (A.1) 

1 ( ( 1))i mi ei i i
i

P P D
M

                        (A.2) 

1 ( ( ) )qi fdi di di di qi
doi

E E x x i E
T

                (A.3) 

1 ( ( ) )fdi Ai refi i i fdi
Ai

E K v v u E
T

             (A.4) 

( )ei qi qi qi di di qiT E i x x i i                       (A.5) 

rotor angle 
rotor speed 

Pm mechanical input power 
Pe electrical output power 
E'q internal voltage behind x'd
Efd equivalent excitation voltage 
Te electic torque 
T'do time constant of excitation circuit 
KA regulator gain 
TA regulator time constant 
vref reference voltage 
v terminal voltage 
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