
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1910

 

 

  
Abstract—In this paper presents a technique for developing the 

computational efficiency in simulating double output induction 
generators (DOIG) with two rotor circuits where stator transients are 
to be included. Iterative decomposition is used to separate the flux–
Linkage equations into decoupled fast and slow subsystems, after 
which the model order of the fast subsystems is reduced by 
neglecting the heavily damped fast transients caused by the second 
rotor circuit using integral manifolds theory. The two decoupled 
subsystems along with the equation for the very slowly changing slip 
constitute a three time-scale model for the machine which resulted in 
increasing computational speed. Finally, the proposed method of 
reduced order in this paper is compared with the other conventional 
methods in linear and nonlinear modes and it is shown that this 
method is better than the other methods regarding simulation 
accuracy and speed. 

 
Keywords—DOIG, Iterative separation, Integral manifolds, 

Reduced order. 

I. INTRODUCTION 
IND energy conversion systems have in the past two 
decades been the object of strong interest as a viable 

source of electrical energy. Various electromechanical 
schemes for generating electricity from the wind have been 
suggested. Variable speed generation schemes offer a number 
of advantages when compared with fixed speed induction 
generation.  At a given wind speed, higher energy capture is 
possible by maximizing turbine efficiency through adjustment 
of shaft speed. Reduction of the torque ripple in the drive train 
and torsion mode resonance can also be achieved with 
adjustable speed operation. One such variable speed scheme is 
the static Kramer drive, also referred to as the sub 
synchronous converter cascade, which when mechanically 
driven above synchronous speed will operate as a generator 
i.e. double output induction generator (DOIG). The system in 
its conventional form is shown in Fig. 1. It consist of a wound 
rotor induction machine connected  through its slip rings to a 
three phase diode bridge rectifier and a line commutated 
inverter connected to the ac supply via a step up 
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transformer[1]. The double output induction generator is 
modeled based on particular type of application. For instance, 
in transient stability studies of power systems, high-frequency 
oscillatory transients of the active and reactive 
Electromechanical transients of double output induction 
generators (DOIG) are usually simulated digitally and the 
degree of detail of the machine model used for the simulation 
powers caused by the machine stator winding are usually 
ignored. 

However, there are several applications such as power 
system studies of short circuits, relay coordination, sub 
synchronous resonance, switching transients and shaft 
stresses, where machine stator (and network) transients should 
be included [2]. 

In this paper, a procedure is presented to reduce 
computational effort when stator transients of DOIG’s are be 
included. The method is developed by judicious interpretation 
of the physical phenomena involved, decomposition of the 
transients into fast and slow parts, and model order reduction 
by neglecting heavily damped fast transients using integral 
manifolds. 

Large DOIG’s are generally equipped with a two rotor 
circuits (double cage) or deep-bar rotor. In the following, a 
double-cage DOIG will be considered.  

The resulting model, however, can also be applied with 
some degree of approximation to DOIG’s with deep-bar rotors 
since an equivalent double cage can always be found which 
provides the machine with an admittance locus closely fitting 
that of a deep-bar induction machine [3]. 

In [4], some of the methodologies currently available to 
reduce the order of induction machines models have been 
introduced. 

 

 
       Fig. 1 Schematic representation of DOIG 
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One of the known techniques used in power system as 
singular perturbations decomposes the system according to its 
fast and slow dynamics and then lowers the model order by 
first neglecting the fast dynamics phenomena [4]. The effect 
of fast dynamics are then reintroduced as boundary layer 
correction calculated  in separated time scales, which leads to 
correct static gains. 
    The technique known in the literature is the concept of 
iterative separation [5] and integral manifolds, a nonlinear 
generalization of the notion of invariant subspace in linear 
systems [6].This paper employs the manifold concept as a tool 
for reduced order modeling and decomposition of DOIG.  

II. DOIG FULL ORDER MODEL 
In this paragraph, the equations describing the subsystems 

of a variable speed wind turbine with DOIG and converter 
(rectifier and inverter) will be developed. The equations for 
the rotor, the generator and the converter will be given here. 
The equations have been developed using the following 
assumptions: 

1-All rotating mass is represented by one element: The so-
called ‘lumped-mass’ representation. Elastic shafts and 
resulting torsion forces are neglected. 
2-Magnetic saturation in the DOIG is neglected. 
3-Dynamic phenomena in the converter are neglected  

    Using the subscripts 1,2 and 3 to refer to the stator winding, 
first and second circuits respectively , the d,q equations in per-
unit for the flux linkages of a DOIG with two rotor circuit can 
be expressed in the synchronously revolving reference frame 
[7] as follows (see appendix for notations and parameters not 
defined in the text): 
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Where 

33 / rl=τ                                          (5) 

Due to existence of the common end-ring in the double cage 
DOIG used in this study, equations (1)-(3) contain terms 
which describe voltage drop on common resistance cR . 

))(2/( le TTHs −
• = ω                                   (6) 

2
rl KT ω=                                          (7) 

Where K corresponds to full load. 

The variable 1ϕ and 3ϕ contain mainly fast transients 
whereas 2ϕ is predominantly slow. Since the  fast transient 
parts of 2ϕ are small compared with its slow  part as well as 
with the fast transient parts of 1ϕ and 3ϕ , equations (1) , (2) 
and (3) are state separable , i.e. the fast and slow modes can be 
separated by and iterative process. This will convert the sixth 
order flux –linkage equations into a set of simultaneous fourth 
order equations for the fast transients and a set of 
simultaneous second order equations for the slow transients. 
These separated sets of equations, along with the equation for 
the very slowly changing slip, provide a simulation model 
which will reduce the computational effort if the integration 
time steps for the three subsystems are properly selected. 

III. ITERATIVE SEPARATION OF SLOW AND FAST MODES [11] 
Grouping the machine flux-linkages into the predominantly 
fast changing flux linkages of the stator winding and second 
rotor circuit 

]............[ 3311 qdqdss ϕϕϕϕϕ =                                                       (8) 

And the slowly varying flux-linkages of the first rotor circuit 
are written: 

]....[ 22 qdr ϕϕϕ =                                                                   ( 9) 

Equations (1),  (2) and (3) can be written in partitioned from 
as  
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To better isolate the fast and slow modes from each other, it 
is necessary to reduce the effect of the slowly varying part of 

rϕ on ssϕ , and the effect of the fast varying part of ssϕ on rϕ . 
This is equivalent to reducing the coupling matrices B  
and c  in equation (10), which will be carried out iteratively. 

     First, we define o
ssϕ . As the quasi-steady state valued for 

ssϕ by setting •
ssϕ  to zero in equation (10) gives 

1
110 vABA rss

−− −−= ϕϕ                                 (11) 

Thus, o
ssϕ     is the value of ssϕ if ssϕ  were instantly damped. 

To remove the slowly varying part of ssϕ , 1μ   is introduced as 

the difference between ssϕ and o
ssϕ     from (11): 
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1
11

1 vABA rss
−− ++= ϕϕμ                               (12) 

Substituting ssϕ from (12) in (10) and ignoring the •s  terms in 
•A  (since, as noted earlier, s is very slowly varying), yield 

1
11

1111
1

1 vBCAABAvA r
−−•−• −+=− ϕμμ                      (13) 

And 

  1
1

211 vCAvDC rr
−• −++= ϕμϕ                                (14) 

With 

BCADDBDABBCAAA 1
11

1
1

1
1 ................... −−− −==+=               (15)  

     Introducing 

vA 1
11

−−= μη                                    (16) 

Or, considering (12), 

rss BA ϕϕη 1
1

−+=                                    (17) 

Where 1η is as fast as 1μ  and equations (13) and (14) are 
rewritten 

11111 vBA r ++=• ϕηη                              (18) 

And  

211 vDC rr ++=• ϕηϕ                                (19) 

Equations (18) and (19) are similar to (10) except 
that 1η has replaced ssϕ and the effect of rϕ on the •

1η equation is 
attenuated since it can be shown that the elements of 1B  are 
smaller than those of B . 

To further reduce the effect of rϕ , the attenuation process is 
repeated by defining, as in (17), 

rBA ϕηη 1
1

112
−+=                                     (20) 

And subsequent substitution of 1η  from (20) into (18) and 
(19): 

12212 vBA r ++=• ϕηη                                                                (21) 

222 vDC rr ++=• ϕηϕ                                                               (22) 

Where 

1
1

11221
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112 .......... BCADDDBABCBAAA −−− −==+=                              (23) 

Equations (21) and (22) have replaced (18) and (19) but now 
the effect of rϕ is more attenuated, because 2B  is smaller 
than 1B . 

In general, if the attenuation process is carried out n times, the 
resulting equations are 

1vBA rnnnn ++=• ϕηη                                                               (24)  

and  

2vDC rnnr ++=• ϕηϕ                                                               (25) 

Where 
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The coupling of the fast variable nη into the slow variable 

rϕ equation in (25) is still C . To reduce this coupling by 
iterative separation nη  is eliminated in equations (24) and 
(25): 

21
111 )( vvCABCADCA nrnnnnnr +−−=− −−•−• ϕηϕ                             (28) 

The right hand side of (28) contains less of the fast transients 
than the right hand side of (25) since   is nη eliminated. Thus, 
the variable  

nnr CA ηϕσ 1
1

−−=                                                                      (29) 

Contains less fast transients than rϕ , substituting rϕ from (29) 
into (24) and (25), and ignoring the •s  terms in •A  yield 

1111 vBA nnnn ++=• σηη                                                            (30) 

And  
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Carrying out the iterative decoupling process of the fast 
transients from the slow variable equation m times results in 

1vBA mnnnmn ++=• σηη                                                             (32) 

 And 

21 vvFDC nmmnmnmm +−+=• σησ                                                (33)  
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      It can be shown that at sufficiently low absolute slip 
values, the elements of nB  and mC  approach zero as n and m 
go to infinity for typical machine parameters. Generally, the 
convergence of this iteration process is quite fast. If nB  and 

mC  are sufficiently small, equations (32) and (33) can be 
simulated in decoupled from as  

1vA nnmn +=• ηη                                                                       (36) 
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And  

21 vvFD nmmnmm +−=• σσ                                                           (37) 

However, a small steady-state error is created by ignoring nB  
and mC  . This can be compensated by inserting the steady 

state variables o
nη    and o

mε   in (36) and (37) as follows: 

1
0 vBA mnnnmn ++=• σηη                                                            (38) 

21
0 vvFDC nmmnmnmm +−+=• σησ                                                (39) 

From which o
nη  and o

nη can be found by setting 0== ••
mn εη . 

The result can be written as  

1vGA nmnnmn +=• ηη                                                                   (40) 

And 

21 vvHD nmmnmm +−=• σσ                                                          (41)  

Where 

nmnmnmmnmnmnmnnm FGACHIHDBG +=+= −− 11 .....                           (42)  

From which nmG and nmH can be solved. 

IV. NEGLECTING HEAVILY DAMPED FAST TRANSIENTS USING 
INTEGRAL MANIFOLDS 

A. Integral Manifolds Theory [6, 7]   
The term “manifold” in this paper refers to a functional 
relationship between variables. For example, a manifold 
for z as a function of x  is simply another term for the 
expression. 

)(xhz =                                                                                 (43) 

When x is a scalar, the manifold is a line when plotted in the x , 
z plane. When the variable, x  is two dimensional, the manifold 
is is a surface.  

To define an integral manifold, we have to introduce a 
multidimensional dynamic model of the form   
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An integral manifold for z as a function of x  is a manifold 

)(xhz =                                                                                 (46) 

Which satisfies the differential equation for variable, z . Thus, 
if it satisfies following equation, )(xh is an integral manifold of 
(44)-(45)  
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x
h

=
∂
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If the initial conditions on the variable, x  and variable, z lie on 

the manifold ( )( 00 xhz = ), then the integral manifold is an exact 
solution of the differential equation (45), and the following 
reduced order model is exact. 
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==                                                   (48) 

B. Application to DOIG 
The integral manifolds theory outlined in the previous section 
was applied to the case of the DOIG detailed model. 

Lets equation (40) for the fast transients be partitioned as  
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Here the predominant fast transients in swη  caused by the 
natural mode associated with the stator winding flux –
linkage 1ϕ , are lightly damped and highly oscillatory. The 
predominant fast transients in scη , caused by the natural mode 
associated with the second circuits rotor cage flux-linkage, 

3ϕ , are heavily damped. In this section, the state variable 

scη related to second circuits rotor is eliminated using integral 
manifolds. 

      According to integral manifolds theory that is defined in 
[13] variables x and z 

]........[ sx msw ση=                              
(50) 

][ scz η=                                                                                 (51) 
and 

33 / rl== τε  
    When 3τ is non zero but small, we let ετ =3 and search for 
the unknown functions: 
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    Using two power series in ε about 0=ε , namely, 
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To find the terms ,..., 10 hh  of the series, we use the fact the 
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    Which are partial deferential equations that must be 
satisfied by the series (53) as identities for all ε  near to zero. 
With using (6), (37) and (49) and substituting into (54), we 
obtain expressions in terms of ,...,, 210 εεε  . 
Equating coefficients of ε  gives the identities to be satisfied 
by each ih .Due to decompose nη and mσ , the second term of 
left side (54) is zero. Also s is very slowly in compare with 
other variables, so the third term of left side (54) is zero.  For 

0h we equate all the terms not containing ε giving,  

1
11

0 TvQPQh sw
−− −−= η                                                          (55) 

Equating coefficients of 1ε  gives 
])()[()/( 1

111
31 vTLQRPLQKPQlrh sw

−−− −+−−= η  
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    This process can be continued to obtain higher order terms 
if desired. Stopping with two terms, the approximate manifold 
expression is,  

10 hhh sc εη +==                                           
                   (56) 

Therefore dynamic equations for the state variable related to 
second circuits rotor, •

scη  are converted to algebraic 
equations and detailed model is reduced order to fifth order. 
Equations (49) are rewritten as following: 

1
"" vRK swsw +=• ηη                                                                   (57) 

Where 

)( 11" PLQKIPLQKK −− −−+=                                                 (58) 

And 

RTLQRPLQTLQR +−+−= −−− )( 111"                                         (59) 

Thus, equations (6), (37) and (57) constitute a partially 
decomposed, reduced order model (fifth order) for the DOIG. 

V. LINEARIZATION NEW MODEL 
    Each of the two nonlinear models full order and fifth order 
can be linear around an operating point if it is assume that the 
variables have sufficiently small deviations from the operating 
point. For example this assumption is made in dynamic 
stability studies of power systems where it is customary to use 
a linear model so that linear system analysis methods can be 
conveniently applied. 
    The linearization process could be directly applied to the 
fifth order DOIG model. However, the coefficients of the 
resulting equations, particularly for the fifth-order model, 
would have rather complicated algebraic expressions. An 
equivalent approach is through linearization the complete 
seventh order model and then numerically deriving the linear 
fifth model by following process. Let the linear and 
decomposed seventh-order equations be partitioned as  

1vGA nmonnmon Δ+Δ=Δ • ηη                                                         (60) 

21 vvHD nmomnmom Δ+Δ−Δ=Δ • σσ                                                (61) 
),,,,,,( 332211 sfs qdqdqd ΔΔΔΔΔΔΔ=Δ • ϕϕϕϕϕϕ                                      (62) 

 
    Where Δ  is small deviation in operating point. Linear 
equations (49) rewritten as  

1vRLK OscOswOsw Δ+Δ+Δ=Δ • ηηη                                              (63) 

1vTQP OscOswOsc Δ+Δ+Δ=Δ • ηηη                                               (64) 
    Thus, for the fifth-order model, scηΔ  represents the second 
rotor circuit flux linkage. For a linear time invariant system, 
the integral manifold is sought in the from [6] 

)( 1vqE swsc Δ+Δ=Δ ηη                                                               (65) 
The substitution (65) in to (63) and (64) yields: 
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     Collecting the swηΔ -dependent terms we require that the 
constant matrix  E  be a solution of  

00 =−+− OOO PEELEQEK                                                      (67) 
With such a E  , the 1vΔ -dependent terms require that  

0][)(][ 11 =Δ−+Δ− vERTvqELQ OOOO                                          (68) 
Which provided 1)( −− OO ELQ exists, is satisfies by  

1
1

1 ][)()( vERTELQvq OOOO Δ−−=Δ −                                         (69) 
      
     The description of the system (63) and (64) restricted to the 
manifold (65) is given by the reduced order model: 

1
1 ])()([][ vRERTELQLELK OOOOOOswOOsw Δ+−−+Δ+=Δ −• ηη                 (70) 

 
     If initial conditions for swηΔ  and scηΔ  satisfies in (65), 
thus, reduced order model is (70), but if initial conditions 
don’t meet manifold conditions, we seek expression similar to 
nonlinear model. 
The accuracy of the proposed linear reduced –order model can 
be verified by comparing the sets of Eigen values  of the linear 
full-order model, linear fifth-order model(singular 
perturbation method) and linear fifth-order model( proposed 
method). The sets of eigenvalues are listed in Table I.  

VI. SIMULATION ALGORITHM 
The decomposed, reduced order model consists of three sets of 
differential equations, i.e., (57) for the fast state swη , (37) for 
the slow state mσ  , and (6) for very slow slip s . These can be 
solved with different integration time steps, say  tΔ  , tM Δ* and 

tN Δ* respectively. The integers M and N (N>M> 1, and (N/M) 
is an integer) are selected in accordance with the response 
speeds of the associated states.  

At first the fast and slow variables are initialized as   o
swη and 

o
mσ    , the matrices nmD , nmH , "R  and "K  are formed using 

initial slip value. Then, )( ttsw Δ+η     is computed M times using 
time step Δt. Next, )( ttm Δ+σ  is calculated using time step M*Δt. 
This set of variables is calculated (M/N) times. Then the 
slip, )*( tNts Δ+ , is determined using time step tN Δ*  , along 
with updating the matrices nmD , nmH , "R  and "K  with the new 
slip. 

VII. MODEL VALIDATION 
    To validate the procedure, the decomposed, reduced order   
new model response was compared to that of the original full 
order, reduced order model using singular perturbation theory 
and reduced order with quasi steady state .i.e. 03 =•ϕ . The 
model parameters listed in [7]. The iterative separation 
procedure was carried out for only two full iteration, i.e. 
n=m=2, The basic time step Δt for the fast variable and for the 
full order model was taken equal to 0.0004 s. furthermore, M 
and N were selected to be 5 and 50 respectively so that the slow 
variable time step is 0.002 s and the time step for the slip is 0.02 
s. Fourth order Runge kutta integration method was used. The 
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relevant variables are generally the instantaneous active and 
reactive power flows, at the machine terminals, speed and 
electromagnetic torque obtained respectively from 

qqddqqdd ivivivivp 22221111 +++=                            (71) 
 qddqqddq ivivivivQ 22221111 −+−=                            (72) 

      ωω )1( sr −=                                       (73) 

     A start-up corresponding to mechanical torque increase 0 to 
%100 is simulated for the different nonlinear models and the 
behaviors of active power, reactive power, speed and 
electromagnetic torque are shown in Fig. 2. 
   The second selected case study  targets the simulation of a 
fault in the a.c. system which causes the voltage dip in 
generator terminal at 50 msec and normal operation occurring 
500 msec after which normal operation voltages was restored. 
Fig. 3 shows the active and reactive power flows, speed and 
electromagnetic torque for the different normal models. 
These simulations are confirmed, the defined method in this 
paper is more careful than other methods. 
 Another note is speed simulation. Due to fast and slow modes 
is decoupled ,the necessary simulation time less than other 
methods. In Table II simulation speed  for all of methods is 
compared. 

TABLE I 
EIGEN VALUES ASSOCIATED WITH STATOR WINDING, FIRST AND SECOND 

ROTOR WINDING 

Variable 
Associated 

with 
Eigen values 

Full order 
Fifth order 

order (integral 
manifold) 

Fifth order 
order 

(singular 
perturbation) 

Speed 
 -6.912 -6.951 -7.18 

Stator 
winding flux 

linkage 

-12.94+j311.74 
-12.94-j311.74 

 

-11.34+j312.54 
-11.34-j312.54 

 

-10+j313.76 
-10-j313.76 

First 
winding flux 

linkage 

-6.62+j5.84 
-6.62-j5.84 

-6.52+j5.98 
-6.52-j5.98 

 

-6.412+j6.01 
-6.412-j6.01 

 
Second 

winding flux 
linkage 

-317.1+j0.902 
-317.1-j0.902 

 
……….. …………. 

 
 
 

TABLE II 
SIMULATION SPEED 

model Simulation speed(%) 
Full order 100 

Quasi steady state 125 
Singular perturbation 140 

New model 146 

 

 

(a)  Rotor speed 

 
(b)  Active power 

 

(c) Reactive power 

 

(d)  Electromagnetic Torque 

Fig. 2  DOIG  response at start-up (1) detailed model, ,(2) quasi 
steady state model ,( 3)singular perturbation model, (4) new  model 
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(a)   Rotor speed 

 
(b)  Active power 

 
(c)  Reactive power 

 

(d)  Electromagnetic Torque 

Fig. 3  DOIG  response to temporary  three phase fault (1) detailed 
model,(2) quasi steady state model ,( 3)singular perturbation model, 

(4) new  model. 

VIII. CONCLUSION 
This paper presents that the decomposed, reduced order 

model of a DOIG using integral manifold adequately 
reproduces the original model responses to typical power 
system voltage conditions. Implementing of the separation 
procedure through two complete iterations proved to be 
sufficient to produce results almost identical to those of the 
original model. 

The program used for comparing the computer simulation 
showed a speed advantage of better than other models for the 
modified model over the original model.  

Furthermore, since the equations for the fast and slow 
variables are completely decoupled, parallel processing may 
be used to advantage. 

Because of improved computational efficiency, the 
modified model may be used in studies where machine stator 
and network transients must be included but where long term 
behavior is also of interest. 
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