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On Adaptive Optimization of Filter Performance
Based on Markov Representation for Output

Prediction Error
Hong Son Hoang and Rémy Baraille

Abstract—This paper addresses the problem of how one can
improve the performance of a non-optimal filter. First the theoretical
question on dynamical representation for a given time correlated
random process is studied. It will be demonstrated that for a wide
class of random processes, having a canonical form, there exists
a dynamical system equivalent in the sense that its output has the
same covariance function. It is shown that the dynamical approach
is more effective for simulating and estimating a Markov and non-
Markovian random processes, computationally is less demanding,
especially with increasing of the dimension of simulated processes.
Numerical examples and estimation problems in low dimensional
systems are given to illustrate the advantages of the approach. A
very useful application of the proposed approach is shown for the
problem of state estimation in very high dimensional systems. Here
a modified filter for data assimilation in an oceanic numerical model
is presented which is proved to be very efficient due to introducing
a simple Markovian structure for the output prediction error process
and adaptive tuning some parameters of the Markov equation.

Keywords—Statistical simulation, canonical form, dynamical sys-
tem, Markov and non-Markovian processes, data assimilation.

I. INTRODUCTION

THIS paper addresses the problem of how one can improve
the performance of a non-optimal filter by introducing

a new stochastic difference equation (SDE) for the output
prediction error (or simply the innovation) process and adap-
tively estimating some parameters of this SDE to minimize
the prediction error. It is commonly well known fact, truly
optimal filter like a Kalman filter (KF) does not exist in
practice when one applies it to solving engineering problems.
As a consequence, the innovation process (IP) resulting from
the application of the KF, does not form a white process and
it remains time correlated. The question we are interested in
is how one can improve the performance of the filter using
a more complicated model for the innovation sequence ?
For example, if we are given, as supposed in many studies
[1],[2],[3], that the observation noise is time correlated and
is modelled by some Markovian process, the optimal in
minimum mean square (MMS) filter can be written out and
the resulting IP satisfies the relation which is very close to
some SDE (Markovian). In [3] an approximate approach to
this problem has been studied by introducing first a structure
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of the filter. Next a sub-optimal MMS filter (i.e. an unbiased
minimum variance filter in a chosen class of filters) is obtained
and studied. However, as seen from the algorithms for the
filters in [1],[2],[3], their application requires still too much
information on the statistics of the entering random processes.
Other difficulties are related to expensive computational cost
and impractical implementation, especially for very high di-
mensional systems.

In the present paper first we are studying the theoretical
question on which process could potentially be represented
by some SDE (Markovian or no Markovian). It will be shown
that for the class of RPs having CovF with separable variables,
it is possible to write out all the parameters of the SDE
(including the statistics of the entering RPs). By this way
one can well approximate covariance functions (CovFs), with
the objective to better generate the samples or to produce
their estimates on the basis of available observations. We will
restrict our attention to the class of RPs having CovF with
separable variables (for details, see section 2). Note that this
class of RPs, in some sense, is equivalent to the class of RPs
which can be represented in the canonical form (CF) [7].
Namely, let ζ(t) be an p-dimensional zero-mean vector RP.
Given its covariance Kζ(t, τ), we are interested in solving two
following problems : The first is to generate a zero-mean RP
ζa(t) whose covariance matches the given covariance Kζ(t, τ),
either exactly or approximately. The second quantity of interest
is a low-rank approximation to the covariance. That is, one is
interested in computing, for a given number of components,
such representation that fits best the covariance Kζ(t, τ).

The paper is organized as follows. In section 2 the CF theory
is presented briefly. In fact the CF theory is closely related to
differential eigenvalue/eigenvector problems. To avoid solving
this type of problems, one of practical widely used algorithms
for computing the coefficients and coordinate functions of the
CF based on LU factorization is given in this section (see
[7]). Section 3 summarizes the procedures for construction
of dynamical systems (DSs) for Markov and non-Markovian
RPs conditioned that their CovFs are separable and known.
Computational complexity of two approaches CF and DS is
clearly seen from examining simple numerical examples in
section 4. The performances of CF and DS approaches are
compared in section 5 by simulation studies. Here two particu-
lar problems, one is a simulation of samples for an RP, another
is related to filtering problem, are considered. It is shown that
applying the algorithms CF and DS for solving these two
problems offers a superior performance of the DS approach
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with respect to the CF approach. Application of this approach
to improving the performance of the very high dimensional
filter for data assimilation in an oceanic numerical model is
also presented. It will be shown that by introducing a class
of Markovian SDE for approximating a time correlated output
prediction error and adaptive minimizing the error variance, it
is possible to significantly improve the filter performance at
low computational cost. The conclusions are given in section
6.

II. CANONICAL FORM OF RANDOM PROCESS

A. Eigen-structure of covariance and CF
Let (Ω, A, P ) be some probability space, L2 = L2(Ω, A, P )

be a Hilbert space of real variables induced by the inner
product < ., . >, i.e. if ζ ∈ L2 then Eζ2 < ∞ and
< ζ, η >= E(ζ, η), ∀ζ, η ∈ L2. Then the distance between
two random variables ζ and η is d(ζ, η) = [E(ζ − η)2]1/2.

Let ζ(t) be a process with E[ζ2(t)] < ∞. Consider the col-
lection of real-valued RPs ζ(t) for which

∫ T

0
E[ζ2(t)]dt < ∞.

Stochastic processes in this set are verified to constitute a
linear vector space denoted as L2[0, T ] with the inner product
< ζ(t), η(t) >L= E[< ζ(t), η(t) >t], < ζ(t), η(t) >t:=∫ T

0
ζ(t)η(t)dt.

One of the most interesting results of the theory of RPs
is that the normed vector space for processes previously
defined is separable. Consequently, there exists a complete
(and orthonormal) set ϕi(t), i = 1, 2, ... of deterministic (non-
random) functions which constitutes a basis such that

ζ(t) =
∞∑
k=1

ξkϕk(t), ξk =< ζ(t), ϕk(t) >t . (1)

More precisely the following result holds
Lemma 1: (Karhunen-Loève theorem [5])
A measurable continuous in quadratic mean RP defined over

a probability space (Ω, A, P ) can be represented in the form
(1) (for Eζ(t) = 0). In (1) ξk is a sequence of uncorrelated
random variables, E(ξ2k) = λk, where λk and ϕk(t) are the
eigenvalue and eigenvector of the CovF Kζ(t, τ),∫

[0,T ]

Kζ(t, τ)ϕk(τ)dτ = λkϕk(t),

Kζ(t, τ) = E[ζ(t)ζ(τ)] =
∑
k

λkϕk(t)ϕk(τ). (2)

According to [7], the CF of ζ(t) is called any representation for
ζ(t) in the form of its mathematical expectation and the sum of
mutually uncorrelated elementary RPs Yk(t) = vkxk(t) where
vk is a random variable, xk(t) is a deterministic function,

ζ(t) = ζ̄(t) +
n∑

k=1

vkxk(t), ζ̄(t) = E[ζ(t)] (3)

In (3) vk are the coefficients of CF, xk(t) - coordinate
functions. Thus the n-truncated approximation of (1) ζn(t) =∑n

k=1 ξkϕk(t) is an CF for ζ(t).
Representation of the RP in the form of CF is a very

convenient method for performing different operations with
random functions, especially for linear random functions. In
the CF only its coefficients are random variables.

B. One practical method

Let {vk} be a set of random variables, E(vi) =
0, E(vivj) = σ2

i δij , where δij be the Kronecker symbol.
Suppose we would like to approximate the process ζ(t) by
ζ(t) ≈ ζn(t) ≈

∑n
k=1 vkxk(t).

By solving min arg xk(t) E[ζ(t) −
∑n

k=1 vkxk(t)]
2 one

obtains x0
k(t) = E[ζ(t)vk]/σ

2
k. It remains to determine the

variables vk. Generally speaking, vk should be such that
the sum must be convergent as n → ∞ (see Lemma 1
for ξk). To obtain a more attractive algorithm, let vn1 :=
(v1, ..., vn)

T , A = |aij |
n
i,j=1, yn1 := [ζ(t1), ..., ζ(tn)]

T . Then
we want to find vn1 as vn1 = Ayn1 . The coefficients aij
must be determined as a solution of AKζ(n)A

T = D,
D := diag(σ1

2 , ..., σ
n
2 ),Kζ(n) := |Kζ(ti, tj)|

n
i,j=1. One great

disadvantage of this choice is that the system for A must be
solved each time when we want to involve more values of ζ.
A recursive algorithm can be obtained by applying the LDU
algorithm [8] by assuming aii = 1, aij = 0, j > i. We have

Lemma 2: [7] Consider the RP ζ(t). Then the optimal in
mean square CF ζ0(t) is given by

v1 = ζ1, σ
2
1 = Kζ(t1, t1), x

0
1(t) =

1
σ2
1
Kζ(t, t1),

vk = ζk −
∑k−1

j=1 vjx
0
j (tk),

σ2
k = Kζ(tk, tk)−

∑k−1
j=1 σ

2
j [x

0
j (tk)]

2,

x0
k(t) =

1
σ2
k

[Kζ(t, tk)−
∑k−1

j=1 σ
2
jx

0
j (t)x

0
j (tk)],

P (t) = E[ζ(t)−
∑n

k=1 vkx
0
k(t)]

2 =
Kζ(t, t)−

∑n
k=1 σ

2
k[x

0
k(t)]

2.

C. CF and RP with separable variables

The fact that the RP ζ(t) has a CF implies that its CovF
has the following form

Kζ(t, τ) = E[
∑
i,j

vivjxi(t)xj(τ)] =

n∑
i=1

σ2
i xi(t)xj(τ) (4)

For Ki(t) := xi(t),Ki(τ) := σ2
i xi(τ) we have

Kζ(t, τ) =

n∑
i=1

Ki(t)Ki(τ) (5)

Thus the CovF Kζ(t, τ) as a function of t and τ is a function
of separable variables. The RPs with CovF of the form (5) is
investigated in [6]. We shall call (5) an CovF with separable
variables. Thus when the RP ζ(t) can be represented in the CF,
it has the CovF belonging to the class of CovF with separable
variables. We note that all the results related to the CFs, CovFs
of the scalar RPs can be extended to the vector RPs [7].

III. DYNAMICAL SYSTEM (DS) APPROACH

It turns out that the RP ζ(t) having an CF, can be generated
as an output of some DS. The DS approach can serve as an
efficient tool for simulating samples of the considered RP as
well as for solving the estimation problems with correlated
noises as studied in [1].
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A. DS for a non-Markovian RP

Theorem 1 ([6]) Let {w(1)
i } be an n1-dimensional RP with

zero mean and CF

Q1(i, j) = K
(1)
1 (i)P

(1)
1 (j) (6)

where K
(1)
1 (i) is non-singular. Then (6) is necessary and

sufficient for {w
(1)
i } to be generated as output of

w
(1)
i+1 = C

(1)
i w

(1)
i + w

(10)
i , (7)

{w
(10)
i } is a white RP uncorrelated with w

(1)
0 ,

E(w
(10)
i ) = 0, E[w

(10)
i (w

(10)
i )T ] = Q10(i)δij (8)

For a given (6), the matrix C
(1)
i in (8) is determined by

C
(1)
i = K

(1)
1 (i+ 1)[K

(1)
1 (i)]−1 (9)

and Q10(i) = K
(1)
1 (i + 1){P

(1)
1 (i + 1)[(K

(1),T
1 (i + 1)]−1 −

P
(1)
1 (i)[K

(1),T
1 (i + 1)]−1}K

(1),T
1 (i + 1), K(1)

1 (0) = I is the
unit matrix.

Theorem 2 ([6]) Let ζi := w
(2)
i be an n2-dimensional RP

with zero mean and covariance

Kw(2)(i, j) = Q2(i, j) :=
2∑

l=1

K
(2)
l (i)P

(2)
l (j), (10)

where K
(2)
1 (i), P

(2)
1 (i) are (n2×n2) matrices, K(2)

1 (i) is non-
singular; K

(2)
2 (i), P

(2)
2 (i) - (n2 × n1) matrices. Let w(1)

i be
an RP being a solution of (7) and

K
(2)
2 (i)P

(1)
1 (i) = P

(2),T
2 (i)K

(1),T
1 (i) (11)

Then (10) is necessary and together with (11) are sufficient
for w

(2)
i to be presented as

w
(2)
i+1 = C

(2)
i w

(2)
i +D

(2)
i w

(1)
i + w

(20)
i (12)

C
(2)
i , D

(2)
i are the matrices of dimensions (n2×n2) and (n2×

n1) respectively, w(1)
0 , w

(2)
0 , w

(10)
i , w

(20)
i are of zero mean and

uncorrelated,

E[w
(k0)
i w

(l0),T
j ] = Wkl(i)δij ,

K
(2)
1 (0) = I,K

(2)
2 (0) = 0.

For a given (10), the matrices C
(2)
i , C

(1)
i , D

(2)
i and the RPs

w
(10)
i , w

(20)
i are determined by

C
(2)
i = K

(2)
1 (i+ 1)[K

(2)
1 (i)]−1,

D
(2)
i = −C

(2)
i K

(2)
2 (i)[K

(1)
1 (i)]−1+

K
(2)
2 (i+ 1)[K

(1)
1 (i)]−1,

C
(1)
i = K

(1)
1 (i+ 1)[K

(1)
1 (i)]−1,

W22(i) = K
(2)
1 (i+ 1){P

(2)
1 (i+ 1)[(K

(2),T
1 (i+ 1)]−1−

P
(2)
1 (i)[K

(2),T
1 (i+ 1)]−1}K

(2),T
1 (i+ 1)i,

W11(i) = K
(1)
1 (i+ 1){P

(1)
1 (i+ 1)[(K

(1),T
1 (i+ 1)]−1−

P
(1)
1 (i)[K

(1),T
1 (i+ 1)]−1}K

(1),T
1 (i+ 1),

W21(i) = K
(2)
1 (i+ 1){P

(1)
1 (i+ 1)[(K

(1),T
1 (i+ 1)]−1−

P
(1)
2 (i)[K

(1),T
1 (i+ 1)]−1}K

(1),T
1 (i+ 1).

IV. COMPARISON BETWEEN CF AND DS APPROACHES:
EXAMPLES

A. Stationary process

1) Application of Lemma 1: Consider the RP with zero
mean and CovF

Kζ(t, τ) = Kζ(t− τ) = c2e−β|t−τ |, t, τ ∈ [0, T ] (13)

Generally speaking, it is impossible to find analytically
the system of eigenvalues {λk} and eigenvectors {xk(t)} of
Kζ(t, τ). However, in this particular case one can prove [7]

ζ(t) =
∑

k vkxk(t), xk(t) =
2

T+λk

sin[ωk(t−
T
2 ) +

kπ
2 ],

σ2
k = c2

2 λk(T + λk), λk = c2 2β
β2+ω2

k

,

where ωk are the positive roots of the equation, tanωT =
− 2βω

β2−ω2 .
2) Application of Lemma 2: Suppose it is impossible to

obtain the system of eigenvalues and eigenvectors of Kζ(t, τ).
To approximate the process ζ(t), let us first construct the
optimal in mean square CF based on the values of ζ(t) at
the points ti = (i− 1)Δt. For ρ := e−βΔt, we have

v1 = ζ(t1), σ
2
1 = c2, x0

1(t) = e−β|t|,

σ2
2 = c2(1− ρ2), x0

2(t) =
1

1−ρ2 [e
−β|t−Δt| − ρe−β|t|],

σ2
3 = c2 −

∑2
k=1 σ

2
k[x

0
k(t3)]

2,

x0
3(t) =

1
σ2
3
[e−β|t−2Δt| −

∑2
k=1 σ

2
kx

0
k(t)x

0
k(t3)

2],

where x0
1(t3) = e−2βΔt = ρ2, x0

2(t3) = 1
1−ρ2 [e

−βΔt −

ρe−β2Δt] = ρ. The coefficients σ2
k and coordinate functions

x0
k(t) can be computed in the similar manner for k = 4, 5, ....

The above algorithm is written out here to see its complexity
when dealing with an arbitrary RP. In this example, there exist
more compact formulas

σ2
k = c(1− ρ2), x0

k(t) =

e−β|t−(k−1)Δt| − ρet−β|t−(k−2)Δt|

1− ρ2
. (14)

3) Application of Theorem 1: It is easy to check that (13)
is equivalent to (6) subject to

t ≥ τ : K1(t) = e−βt, P1(τ) = c2eβτ ,

t < τ : K1(t) = eβt, P1(τ) = c2e−βτ (15)

This choice ensures K1(0) = 1. Consider the case t ≥ τ .
From Theorem 1,

C
(1)
i = ρ = e−β(ti+1−ti),

Q10(i) = c2(1− e−βΔt) = c2(1− ρ2). (16)

The recursive equation for simulating ζi = ζ(ti) is

ζi+1 = ρζi + wi, (17)

wi is an uncorrelated sequence of zero mean and variance
Q10(i) defined in (16).
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B. Non-stationary random process

Consider the non-stationary RP with zero mean and covari-
ance

Kζ(t, τ) = c2e−βtte−βττ = K1(t)P1(τ),

K1(t) = e−βtt, P1(τ) = c2e−βττ , (18)

which ensures K1(0) = 1.
1) Application of Lemma 2: The optimal in mean square

CF based on the values of ζ(t) at the points ti = (i−1)Δt, i =
1, ..., n is expressed by (ρ(t) := e−βtΔt),

v1 = ζ(t1), σ
2
1 = c2, x0

1(t) =
e−βtt

c2
,

σ2
2 = (c2 − 1)ρ2(t1), x

0
2(t) =

(c2 + 1)ρ(t2)e
−βtt

ρ2(t1)
etc (19)

For this simple example, write out here the formulas for
σk, x

0
k(t) for all k = 3, 4, ... is a hard task, not to say they

may not be realizable.
2) Application of Theorem 1: From Theorem 1 it follows

Q1(0, 0) = c2 and

w
(1)
i+1 = Ciw

(1)
i , Ci = e−αiΔt,

αi = iΔβi + βi,Δβi := βi+1 − βi, βi := βti . (20)

C. Non-Markovian random process

Consider the RP ζ(t)

ζ(t) =

2∑
k=1

ξkfk(t), (21)

ξ = (ξ1, ξ2)
T , E(ξ) = 0, E(ξξT ) = Ξ,

Ξ = [Ξij ], i, j = 1, 2,

Ξ11 = Ξ22 = 2,Ξ12 = Ξ21 = 1,

f1(t) =
1

1+t , f2(t) =
1

1+t2 .

This process ζ(t) has the covariance

Kζ(t, τ) = f1(t)[2f1(τ) +

f2(τ)] + f2(t)[2f2(τ) + f1(τ)] (22)

1) Application of Lemma 2: For ti = (i−1)Δt, application
of Lemma 2 subject to (22) yields

σ2
1 = 6, x0

1(t) = 3[1/(1 + t) + 1/(1 + t2)],

σ2
2 = Kζ(t2, t2)− σ2

1 [x
0
1(t2)]

2,

Kζ(t2, t2) = 2[1/(1 + Δt2) + 1/(1 + Δt2)2 +

1/((1 + Δt)(1 + Δt2))],

x0
2(t) = [Kζ(t, t2)− 4x0

1(t)x
0
1(t2)]/σ

2
2 ,

x0
1(t2) = 3[1/1 + Δt) + 1/(1 + Δt2)]...,

(23)

Fig.1. Realizations produced by A1 and A2. The realizations 4th, 5th, 8th

of A2 are far too much from the true A1.

2) Application of Theorem 2: To make the choice of
K

(1)
1 (t), P

(1)
1 (t) easier (since K(t, τ) = K

(1)
1 (t)P

(1)
1 (τ) must

be a covariance function and satisfy (11)), represent (21) in
the form

Kζ(t, τ) =

2∑
i=1

K
(2)
i (t)P

(2)
i (τ), (24)

K
(2)
i (t) = P

(2)
i (t) = xi(t), i = 1, 2,

x1(t) = a11/(1 + t) + a21/(1 + t2),
x2(t) = a22/(1 + t2),

a11 = 1, 414, a12 = 0, a21 = 0, 707, a22 = 1.225.

The representation (24) is obtained by applying the
Cholesky algorithm [8] to Ξ which results in Ξ = AAT .
From Theorem 3 one obtains the equations for simulating of
ζ(t) := w

(2)
i , noticing that by the choice K

(1)
1 (t) = P

(1)
1 = 1

the condition (11) is automatically satisfied,

w
(2)
i+1 = C

(2)
i w

(2)
i +D

(2)
i w

(1)
i , (25)

C
(2)
i = x1(i+1)

x1(i)
, D

(2)
i = −C

(2)
i x2(i) + x2(i+ 1),

x1(i) :=
a11

(i−1)Δt +
a21

1+[(i−1)Δt]2 ,

x2(i) :=
a22

1+[(i−1)Δt]2 ,

w
(1)
1 (i+ 1) = w

(1)
1 (i), i = 1, 2, ...,

E[w
(2)
0 w

(1)
0 ] = 0, Q1(0, 0) = 1, Q2(0, 0) = 6.

It is seen that ζ(t) is not Markov since w
(1)
i = w

(1)
0 , ∀i is not

an uncorelated sequence.

V. SIMULATION STUDIES

A. Simulation of process (21)

Three following algorithms will be applied to simulate the
realizations of (21):

(i) Using ζ1(ti) =
∑n

k=1 ξkf
0
k (ti), n = 2, ti = (i −

1)Δi, i = 1, ..., 100;Δ = 0.1. Concretely, we simulate ξ = Av
where A is given in (24). As to v = (v1, v2)

T , it is normally
distributed with zero mean and the unit covariance (Algorithm
1 - A1). These realizations can serve as ”true” realizations
(the variance of v2 is σ2

2 = 0.00328 hence it is enough to use
n = 2).

(ii) Algorithm in Lemma 2: ζ2(ti) =
∑n

i=1 εix
0
i (ti), εi =

σivi, subject to covariance function (22). Mention that the
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Fig.2. Realizations produced by A1 and A3 : All realizations of the A3 are
close to that of A1.

realizations of v = (v1, v2)
T are taken to be that obtained in

(i) (Algorithm 2 - A2).
(iii) Algorithm (24)-(25) (DS approach). Here the realiza-

tions of (w(1)
0 , w

(2)
0 )T are taken as (w1

0, w
2
0)

T = v, v is given
in (i) (Algorithm 3 - A3).

The simulation results are shown partly in Figs 1-2. Here
8 realizations produced by each of three algorithms A1, A2
and A3 are shown. All three algorithms have the same initial
realization ζk(1), k = 1, 2, 3. One sees from Fig. 2 that the
algorithms A1, A3 have produced almost the same realizations
whereas the realizations 4th, 5th, 8th of A2 in Fig. 1 are far
away from that of A1, especially at the beginning.

B. Estimation of random process (21)

Suppose the observations are given according to

z(tio) = ζ(tio) + ν(tio), io = 1, 2, ...,

tio = 1 + (io− 1)ΔT,ΔT = 10δt, δt = 0.1, (26)

with ζ(tio) being given by (21) and ν(tio) is an uncorrelated
sequence of observational error with zero mean and variance
σ2
ν = 1. Assume further that ν(tio) and ξ in (21) is uncor-

related. The problem is to estimate the value of ζ(ti). ΔT
symbolizes the interval between two observations (in hours,
days).

1) Filtering problem: (i.1) Algorithm A1. From (21)(26)
one has

z(tio) = H(tio)θ + ν(tio), io = 1, 2, ...,
H(tio) = [f1(tio), f2(tio)], θ := (θ1, θ2)

T ,
E(θ) = 0, E(θθT ) = Ξ.

The optimal in minimum mean square (MMS) estimation
procedure can be written out for θ.

(i.2) Algorithm A2. For the model (23) the algorithm re-
mains the same as A1 with the differences

H(tio) = [x0
1(tio), x

0
2(tio)], P (t1) = diag[σ2

1 , σ
2
2 ].

(i.3) Algorithm A3. Consider the DS (25) along with the
observation system. Introducing y(ti) = (w

(2)
i , w

(1)
i )T leads

to the filtering problem in state-space form

y(tio+1) = Ce
ioy(tio), y(t1) := (w

(2)
1 , w

(1)
1 )T ,

Ce(tio) = |cekl|
2
k,l=1, c

e
11 = C

(1)
tio , c

e
12 = D

(1)
tio ,

Fig.3. Ensemble averaged RMSs of the FE produced by A1, A2 and A3.
The prediction is made over Δt = 1. The algorithm A3 has produced the

better estimates.

ce21 = 0, ce22 = 1,
z(tio) = Hey(tio) + ν(tio), H

e = [I, 0], io = 1, 2, ...,

from which one can write out the MMS filter.
2) Numerical results: In Fig. 3 we show the ensemble

averaged RMSs of the filtered error (FE) produced by three
algorithms A1, A2, A3. It is undoubted that the DS approach
(A3) produces the best estimates. The algorithm A1 is slightly
better than A2 especially at the beginning, but in general they
behave in the same way. Noticing that all three algorithms
have filtered well the observation noise since its variance is
equal 1. It means that the algorithms reduce about 90 % noise
level in the estimates.

C. Application to oceanic data assimilation

The objective of oceanic data assimilation is to estimate the
ocean state and to produce its best forecast for the period of
interest (10 days, for example) using a numerical model (NM)
and available observations. Last years the satellite sea surface
height (SSH) is one of the most important sources of observa-
tions. Due to very high dimension of the numerical model
and large set of observations (orders of 106−7 and 104−5

respectively), non-linearities of NM ... only approximate filters
can be applied. Moreover, in the context of satellite SSH data,
we are given only along-track observations which are irregular
in space and in time. In this situation, estimation of the velocity
requires to interpolate the IP over the domain of interest which
introduces inevitable errors in the innovation vector. As a
consequence, the resulting ”innovation” sequence ζ(t) is rather
time-correlated even given noise-free observations.

In order to improve the performance of the filter, we assume
the hypothesis that the innovation forms a correllated sequence
and, more concretely, it assumes a Markov model. Thus the
innovation sequence is described by a SDE. Mention that even
in the case when the observation noise satisfies a Markov SDE,
this structure for the innovation does not follow in the optimal
MMS filter (for example, see [1],[2],[3] ...). Table I displays
the estimation errors produced by two filters, one is the filter
based on principle of conservation of the potential velocity
(denoted as CHF - Cooper-Haines Filter, see [4]) and the other
(denoted as MIF - Markov Innovation Filter) is based on the
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TABLE I
TIME AVERAGE RMS PREDICTION ERRORS

Filter SSH RME-PE RMS-FE
CHF 6.12 cm 7.39 cm/s 6.13 cm/s
MIF 5.47 cm 6.91 cm/s 5.8 cm/s

Reduction 11 % 6 % 5.7 %

Fig.4. Tuning coefficient φ during assimilation

assumption that the SSH innovation is not white (i.e. ζ(t+1) �=
ν(t)) and rather it is a Markov process, i.e. ζ(t+1) = φζ(t)+
ν(t). Here for simplicity, φ is assumed to be an unknown
constant, ν(t) is a white noise sequence. The parameter φ is
updated during assimilation to minimize the variance of ν(t).
The experiment has been carried out using the noise-free SSH
data (3 years) and the NM Micom [4] to model the circulation
in North Atlantic. In Table I, RMS-PE signifies Root Mean
Squares of the Prediction Error, RMS-FE - Root Mean Squares
of the Filtered Error. It is seen that by introducing a simple
structure of Markov process for the SSH innovation, one can
reduce 11 % of the PE for the SSH variable and about 6% for
the velocity error. Fig. 4 shows how the parameter φ changes
during adaptation process. The value initial φ = 0 corresponds
to the hypothesis that the innovation process is white as in the
CHF.

VI. C

In this paper we have attempted to give a broad-based
review of what we consider the most important aspects of
the approach for the construction of a DS model for a RP
given its CovF with separation of variables. We have tried to
emphasize the possibility to apply this approach to the specific
applications like simulation of RPs as well as state estimation
problem. The advantages of this approach compared with the
traditional approach known as CF representation are clearly
seen from a number of examples and experiments presented.
This approach has been also applied successfully in solving the
practical engineering problem known as satellite data assimi-
lation with the oceanic numerical model. The obtained results
in this experiment are encouraging since the Markov structure
is introduced directly in the representation for the innovation
process regardless of the noise-free of the observations.
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