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Abstract—Evolution of one-dimensional electron system under 

high-energy-density (HED) conditions is investigated, using the 
principle of least-action and variational method. In a single-mode 
modulation model, the amplitude and spatial wavelength of the 
modulation are chosen to be general coordinates. Equations of motion 
are derived by considering energy conservation and force balance. 
Numerical results show that under HED conditions, electron density 
modulation could exist. Time dependences of amplitude and 
wavelength are both positively related to the rate of energy input. 
Besides, initial loading speed has a significant effect on modulation 
amplitude, while wavelength relies more on loading duration. 
 

Keywords—Electron density modulation, HED, nonlinear 
evolution, plasmas.  

I. INTRODUCTION 
IGH energy density physics (HEDP) is a fast-developing 
field of research, promoted mainly by endeavors in ICF 

[1], astrophysics [2], intense laser-matter interaction [3], and so 
on. Under HED conditions, plasmas are the most common form 
of matter. However, traditional theories encounter some 
problems in dealing with HED plasmas, mainly due to their 
dominant collective behaviors [4]. Examples of such collective, 
nonlinear motions range from laser-based acceleration of 
charged particles [5], to highly-collimated coherent 
electromagnetic radiations from compact celestial entities like 
neutron stars or pulsars [6]. In order to understand the nature of 
these complex phenomena, knowledge of basic physical 
processes that plasmas undertake in extreme conditions is 
critical.  

Although motions in HEDP system bear great diversities, 
one common characteristic is that they all involve density 
variations or modulations, either those of electrons [7] or ions 
[8], or both. A widely used method of studying them is based 
on fluid mechanics [9]. On the other hand, the system can be 
regarded as an integrated entity, with a set of eigen-states which 
correspond to different modulations of density, analogous to 
wavefunctions in quantum mechanics. Adopting the principle 
of least-action, combined with some other conditions, it is 
possible find out how the system might evolve. This method 
serves as a complement to fluid method, and may shed some 
light on complex motions of HEDP systems.  
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II. THE PRINCIPLE OF LEAST-ACTION 
Generally, the action of a system is defined by:  
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where T is the total energy of various internal motions, and V 
the external driving energy. Any realistic evolution that the 
system follows makes S a minimum, that is δS=0. Therefore, 
given the forms of external as well as internal energies, the 
equations of motion of the system could be obtained by 
variational approach. 

III. EXTERNAL DRIVING ENERGY 
In HEDP experiments, intense lasers and Z-pinch facilities 

are two major means of delivering energies into targets. Despite 
differences in photon energy between these two approaches, 
there are common characteristics: driving intensities can be 
described by two factors, namely the peak values I0 and the 
temporal profiles I(t)/I0: 
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For different driving conditions, parameters and profiles 

vary accordingly. 

A. Gaussian Profile 
In most of nowadays ultrashort-ultraintense laser 

experiments, incident laser beams are well-described by 
Gaussian profile, which is given by:  
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Throughout this work, the units of I0 and t are W·m-2 and ns, 

respectively. Gaussian driving could be the fastest way of 
delivering huge amount of energy into targets. Input intensity 
raises rapidly from zero but also declines quickly. The duration 
is usually very short, typically tens of femtoseconds. 

B. Sinusoidal Profile 
Another common way of performing laser matter interaction 

experiments is to use longer-duration lasers with relatively 
lower intensities. In these circumstances, plane-waves are 
better approximations for incident laser beams, with 
sinusoidally oscillating electric fields. Thus, the corresponding 
sinusoidal intensity profile is also considered as follows:  
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where constant 2 on the right hand side is to avoid singularity 
when solving the equation of motion, and it is negligible 
compared to I0. Obviously, sinusoidal driving inputs energy on 
targets much slower than Gaussian driving. 

C. Power Profile 
In power profiles, driving intensity keeps increasing, which 

means that energy is being injected into a system at a raising 
speed. Since experimentally such kind of energy-loading is not 
yet feasible, theoretical studies are needed to estimate evolution 
of a system under such conditions. Three different power 
profiles are discussed, namely linear, quadratic, and cubic, 
given as follows: 

 
,10/1)( 0tItI +=  (5) 
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The constants, 10, 100, and 1000 make sure at the end of 

calculation time (10ns), they all reach the same maximum I0. 

IV. INTERNAL ENERGY 
Under HED conditions, matters usually exist in the form of 

plasmas. Since in the most experiments, driving duration is 
short (e.g. in laser experiments less than 1 ps), and positively 
charged ions are way too heavier than electrons, they can be 
treated as a positive charge background, and it is a good 
approximation to deal with electrons only. In this paper, one 
dimensional electron system is considered.  

Internal motions of the system consist of two types: 
single-particle motions and collective ones. Random thermal 
motion is the most important single-particle motion in our 
discussion. All kinds of waves and excitations in plasma are 
examples of collective motions. The focus of this work is on the 
motion of electron density modulation and its resulting 
radiation. 

A. Electrostatic Energy of Density Modulation 
In one dimension, a single-mode density modulation can be 

regarded as: 
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where n1(t) is the amplitude and λ(t) the spatial wavelength of 
the modulation. Since the evolution of the amplitude and the 
wavelength fully determines the behavior of the system, they 
are chosen as the general coordinates to describe the action. 
The reason for the choice of studying single-mode modulation 
is that most of waves and turbulences can be thought of as 
superposition of and interaction among single-modes. Thus, 
investigations of single-mode behavior set up basis for 
researches on more complex phenomena. 

Let L to be the length of the system, and the cross section is a 
d2 square, the total electrostatic energy is: 
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where e is the electron charge and ε0 the vacuum permittivity. 
Electrostatic energy is proportional to λ2, which means larger 
scale modulation could store more energy. 

B. Coherent Radiation by Density Modulation 
As electron density varies with time, coherent radiation 

could be emitted, which is approximated here by electric dipole 
radiation. The power of radiation reads [10]: 
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where c is the light velocity in vacuum and Z0 the vacuum 
impedance. 

C. Kinetic Energy of Density Modulation 
Density modulation varies with time because of collective 

motions of electrons, which bear kinetic energy as follows: 
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where h  the reduced Plank constant and m the rest electron 
mass. 

D. Thermal Energy of Electrons 
The three types of energy mentioned above are all due to 

collective effects of electrons motions. On the other hand, an 
important single-particle motion, random thermal motion, 
should also be considered. Given the temperature T of the 
system, the total thermal energy is: 

 
,2
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with kB the Boltzmann constant. 

V. EQUATIONS OF MOTION 
Conservation of energy gives the first equation of motion, 

that is, the energy injected into the system per unit time should 
be equal to the increase of internal energy during that time 
interval. The external power is: 
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Then the first equation reads: 
 

./// therkineticdipole dtdTdtdTPdtdUW L +++=  (14) 

 
The second equation comes from the balance of forces 

exerted on electrons. Density modulation creates an 
electrostatic potential which tends to pull electrons back to their 
original positions, weakening the amplitude of modulation. 
However, external energy keeps pushing electrons away from 
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the bottom of the Coulomb potential well, enlarging the 
amplitude of modulation. Assuming these two factors are more 
or less in balance leads to the second equation: 
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Combining these two equations of motion,  solutions for n1(t) 

and λ(t) are ready to be found. 

VI. NUMERICAL RESULTS AND DISCUSSIONS 
The equations of motion obtained above can be written in a 

more convenient form for calculation: 
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where a1 to a4 are coefficients after some algebra, and τ the 
characteristic time. Numerical values used in calculation are 
listed in Table I. The total calculation time is 10 ns, using 
software Mathematica. 

In this work, five different driving forms are adopted: 
Gaussian, sinusoidal, linear, quadratic, and cubic (Fig.1, left 
column). To focus on the effects of temporal profiles of 
intensities, the peak values in all these five cases are chosen to 
be identical of I0=1015 W ⋅ cm−2. Evolutions of spatial 
wavelength λ and amplitude n1/n0 of electron density 
modulation are obtained (Fig.1, right column).  

Trends of evolution of λ and n1/n0 are similar. As driving 
intensity increases, λ becomes larger and n1/n0 becomes greater, 
which is shown clearly in Fig.1(c) to (e) and in early time in 
Fig.1(a) and (b). When driving intensity decreases, spatial 
wavelength and amplitude reduce to smaller values, as can be 
seen in late time in Fig.1(a) and (b). 

However, considerable differences exist among these cases. 
For Gaussian driving, the input intensity grows rapidly to its 
maximum in about 1 ns, then decays quickly to nearly zero in 
another 1 ns. The resulting modulation occurs on a very small 
scale, roughly several micrometers. In the other four cases, 
growing stages last for longer time, leading to millimeter-scale 
modulations, orders of magnitudes larger than in Gaussian case. 
Therefore, the duration of intensity growth has an important 
effect on the spatial scale of electron density modulation. In 
order to create large scale ripples, an increasingly intense 
energy input is needed. This effect is understandable. Spatial 
modulation of electron density of the system reflects collective 
motions of electrons, which is driven by the energy input to the 
system. The collectiveness of such motions needs certain 
interval of time to be built up. If the external driving force 
ceases before correlations between electrons far away from one 
another are established, no large-wavelength modulations can 
occur. Besides, random motions, such as thermal fluctuations, 
might destroy collective motions if the later ones are vulnerable. 
Thus, there exists competition between factors that to set up 
and to break out collective motions. When the incident intensity 

increases continuously, collective motions are powered 
strongly for long enough time to grow larger in space, while 
vice verse, only short range correlation could be maintained. 

 

 

 
(a) Gaussian driving pulse and results 

 
(b) Sinusoidal driving pulse and results 

 
(c) Linear driving pulse and results 

 
(d) Quadratic driving pulse and results 

 
(e) Cubic driving pulse and results 

Fig. 1 Numerical results of different driving pulses and electron 
density modulation evolutions. Figures in the left column show 

temporal profiles of five different driving pulses: (a) Gaussian, (b) 
sinusoidal, (c) linear, (d) quadratic, and (e) cubic. Figures in the right 

column illustrate evolutions of spatial wavelength λ (black) and 
amplitudes n1/n0 (red) of charge density modulation. 

 

TABLE I 
UNITS FOR MAGNETIC PROPERTIES 

Quantity Unit Value 

L m 1 
d m 10−3 

n0 m-3 1028 
τ s 10−9 
a1 J 3.66 × 1021 
a2 J 5.44 × 10-16 
a3 J 3.59 × 1027 
a4 J·m-2·s-1 1.38 × 1037 
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The amplitude of electron density modulation seems to rely 
more significantly on the initial growth rate of driving intensity. 
In Gaussian case, where the initial growth rate is the fastest, 
n1/n0 increases to an order of magnitude of 10-6. However, in 
the other four cases, where initial growth rates are all zero, n1/n0 
remains less than 2×10-9, even when the intensities keep 
increasing. One possible interpretation is to consider the huge 
Coulomb interactions among electrons. Initially, the plasma is 
in thermal equilibrium, in which state electron density is 
generally homogeneous and electrostatic potential is equal to 
zero. At this state, electrons are relatively easy to move away 
from their balance positions, resulting in density modulation. 
However, once there is modulation, there is nonzero Coulomb 
potential that tends to restore the separation of charges. Thus 
later on, forcing more electrons to join in the modulation would 
be much harder. Bearing these pictures in mind, it is 
straightforward to understand the dependence of n1/n0 on initial 
growth rate of input intensity. 

VII. CONCLUSIONS 
In this paper, least-action principle and variational method 

are used to analyze the evolution of one-dimensional electron 
system under HED conditions. Electron density modulation is 
the basic form of motion, of which amplitude and spatial 
wavelength are two general coordinates determining the 
behavior of the system. Equations of motion are derived from 
conservation law of energy and force balance. Numerical 
calculations show that in HEDP regime, such electron density 
modulation states can exist. As input of energy continues, the 
spatial wavelength of modulation tends to increase, while the 
amplitude of density variation relies more significantly on 
initial injecting speed. 

The growth of modulation wavelength might shed light on 
some non-thermal radiation phenomena in astrophysical 
circumstances, such as pulsar radio radiations. However, more 
detailed theoretical work as well as experimental studies are 
needed in order to get a complete understanding of such HEDP 
phenomena. 
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