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Abstract—In this study, we are interested in the economic lot 

scheduling problem (ELSP) that considers manufacturing of the 
serviceable products and remanufacturing of the reworked products. In 
this paper, we formulate a mathematical model for the ELSP with 
reworks using the basic period approach. In order to solve this 
problem, we propose a search algorithm to find the cyclic multiplier ki 
of each product that can be cyclically produced for every ki basic 
periods. This research also uses two heuristics to search for the optimal 
production sequence of all lots and the optimal time length of the basic 
period so as to minimize the average total cost. This research uses a 
numerical example to show the effectiveness of our approach.  

 
Keywords—Economic lot, reworks, inventory, basic period. 

I. INTRODUCTION 
HIS study is an extension of the economic lot scheduling 
problem (ELSP). We are interested in the ELSP with 

reworks in which a production system deals with two sources 
of products: manufacturing of the serviceable products and 
remanufacturing of the reworked products. The reworked 
products that are defective items produced during some 
manufacturing processes inside a factory must be repair or 
remanufacturing in order to resale. 

Similar to the (conventional) ELSP, the focused variant with 
reworks is concerned with the scheduling of cyclical 
production of more (n ≥ 2) than two products on a single 
facility in equal lots over an infinite planning horizon, 
assuming stationary and known demands for each product. The 
objective of the ELSP with reworks, which is abbreviated as the 
ELSPR, is to determine the lot size and the schedule of 
production of each product so as to minimize the average total 
cost incurred per unit time.  

In past decades, most researchers discussed ELSPR under 
the common cycle approach. However, it is obvious that the 
basic period based approaches can obtain better solutions than 
the common cycle approach. The cost of the common cycle 
approach always is viewed as the upper bound of the ELSP. We 
did not find any article solving the ELSPR in the literature 
under the basic period based approaches though a lot of 
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researchers pay more attention to the lot sizing and scheduling 
problems with reworks recently. 

In this paper, we focus on the ELSPR under the basic period 
approach in which only one manufacturing lot and only one 
reworked lot for each product exist during a production cycle, 
and all the products have different replenishment cycles. For 
the conventional ELSP, it is straightforward to obtain a 
production schedule under the CC approach since the objective 
function value remains the same for different sequences of the 
manufacturing and reworked lots for different products. On the 
other hand, for the ELSP with reworks, different sequences 
(i.e., different starting times) of the manufacturing/reworked 
lots may lead to significant change in additional holding costs. 
Therefore, we have to pay attention to the sequencing of the 
manufacturing/reworked lots in the production schedule when 
searching for the optimal solution for the ELSPR. 

In this paper, we present a mathematical model for the 
ELSPR under the basic period (BP) approach. Under the basic 
period approach, all products can have different cycles which 
are integer ki multiples of a time period termed as a ‘basic 
period’. For product i, the integer ki is called as the cyclic 
multiplier. It means a production cycle of product i is Ti = ki *B.  

In this study, we suggest a search algorithm for solving the 
ELSPR under the basic period approach, and it can find the 
optimal or near optimal cyclic multipliers of all products. We 
also propose two heuristics that not only determine the optimal 
cycle time and the optimal production sequence, but also utilize 
a simple scheduling heuristic to schedule the starting times of 
all the manufacturing and reworked lots so as to minimize the 
average total cost. 

II. LITERATURE REVIEW 
The ELSP has been applied for production planning and 

inventory control in industries such as plastics extrusion, metal 
stamping, textile manufacturing, bottling, printing and packing 
(see Boctor [1]). The solution methodologies for the ELSP may 
be divided into two major categories, namely, analytical 
approaches and heuristics. The analytical approaches include 
the independent solution (IS) approach, the Common Cycle 
(CC) approach, the basic period (BP) approach and the 
extended basic period (EBP) approach. The solution of the IS 
approach can be viewed as the lower bound of the cost for the 
ELSP. The solution of the CC approach can be considered as 
the upper bound of the cost for the ELSP. The BP and EBP 
approaches always obtain better solutions than the CC 

A Search Algorithm for Solving the Economic 
Lot Scheduling Problem with Reworks under the 

Basic Period Approach 
Yu-Jen Chang, Shih-Chieh Chen, and Yu-Wei Kuo 

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:6, 2013

1267

 

 

approach. For the BP or EBP approaches, it is difficult to search 
for cyclic multipliers {ki} of all products in order to generate a 
feasible schedule. 

The reworked products after remanufacturing are usually 
sold at a lower price than newly products, e.g., retreated tires 
and reconditioned copiers. In other cases, co-assembly and 
remanufactured products supplied the same market as 
manufactured products; e.g., single used cameras, pallets and 
containers, and service parts of cars and computers. One may 
refer to Tang and Teunter [5] for further details. Schrady [3] 
pioneered the studies on the lot sizing with the remanufacturing 
of returns. Teunter [6] discussed inventory systems with 
recovery, and he derived simple formulae that determine the 
optimal lot sizes for the production/procurement of new items 
and for the recovery of returned items. These formulae are valid 
for the finite and infinite production rates as well as the finite 
and infinite recovery rates. Recently, Tang and Teunter [5] 
proposed a mathematical model for the ELSP with returns. For 
solving the ELSP with shelf life considerations, Soman et al. 
[4] propose an efficient deep search procedure to search for the 
cyclic multipliers {ki} of all products. 

To the best our knowledge, Chang and Yao [2] first studied 
the ELSP with reworks. They use a heuristic to solve the ELSP 
with reworks under the CC approach. 

However, the cost of the CC approach can be viewed as the 
upper bound for solving the ELSP. The basic period based 
approaches that include the BP and EBP approaches can obtain 
better solutions. To the best of the authors’ knowledge, no 
researchers paid attention to the ELSPR under the BP or EBP 
approaches in the literature. It is difficult to check the 
feasibility of a production schedule under the EBP approach. 
Therefore, we are motivated to study the ELSPR under the BP 
approach in this paper. 

III. THE ASSUMPTIONS AND THE MATHEMATICAL MODEL OF 
THE ELSPR 

We first introduce the assumptions and notations in our 
mathematical model of the ELSPR as follows. 

A. Assumptions and Notations 
In this paper, the assumptions about the ELSPR are listed as 

follows. 
1. Each facility can produce only one product at any time 

point. 
2. A facility has enough capacity to produce the demand of 

the produced (serviceable and reworked) items during a 
production cycle. 

3. The setup costs and setup times of the products are 
independent of their production sequence on a facility. 

4. No shortage is allowed. 
5. The parameters for each product are known and fixed at 

any time point. 
6. The facility will not generate any more defective item 

when producing the reworked lot for any product. 
7. Only one manufacturing lot and only one reworked lot for 

each product exit during a production cycle Ti. 

We categorize the notations into two groups, namely, 
parameters and decision variables as follows.  

Parameters: 

am, ar : The setup costs of the manufacturing lot and the 
reworked lot of product i respectively. 

hm, hr : The holding costs of the manufacturing lot and the 
reworked lot of product i respectively. 

pm, pr: The production rates of the manufacturing lot and the 
reworked lot of product i respectively. 

sm, sr : The setup times of the manufacturing lot and the 
reworked lot of product i respectively. 

di : The demand rate of product i. 

n: The number of the products. 

βi : The defective rate of product i. 

Decision Variables: 

ki: The cyclic multiplier of product i. 

B: The time length of a basic period. 

xm , xr :The starting times of the manufacturing lot and the 
reworked lot of product i respectively during a cycle Ti. 

We note that the actual starting time of the setup for 
manufacturing lot im is m

i
m
i sx −  and that of reworked lot ir is 

r
i

r
i sx − . 

B. The Mathematical Model of the ELSPR 
Here, we present a mathematical model for the ELSPR. The 

objective function can be divided into two parts as follows (see 
Fig. 1). 
1. ICi, which named as the “ideal cost” expressed as Eq. (2), 

includes the setup cost and inventory holding cost for the 
ideal situation where the timing of the manufacturing and 
the remanufacturing (reworked) lots is such that the 
inventory is always 0 when the production of a lot starts. 

2. ACi, which named as the “additional cost” expressed as Eq. 
(3), is the holding serviceable inventory caused by the 
non-ideal timing of manufacturing and reworked lots.  

Eq. (4) is a capacity constraint that the cth basic period must 
have enough capacity to produce all lots that should be 
produced at this period. If the manufacturing (reworked) lot of 
product i is produced at the cth period, m

ciz , ( r
ciz , )=1; otherwise, 

m
ciz , ( r

ciz , )= 0. 

In this study, we propose a search algorithm for solving 
ELSPR under the basic period approach. The search algorithm 
includes two heuristics, namely, a simple scheduling heuristic 
and a bisection search, to search for the optimal cyclical 
multipliers {ki}, the optimal production sequence and the 
optimal basic period, respectively. Here, we present the whole 
procedure of the search algorithm. Please refer to Chang and 
Yao [2] for the details about the two heuristics.  
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Fig. 1 The inventory level of product i in the ideal situation 
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The reworked lot starts at (1 )iT β− . These 

i id T β  defective items are “consumed” by the 
production facility and turn to be serviceable 
items. The regular line here represents the 
inventory level of the serviceable items from the 
reworked lot.

Among the diT units produced from the 
manufacturing lot, (1 )i id T β−  units are 
serviceable items, which will be used up at 

(1 )iT β− . The bold line here represents the 
inventory level of the serviceable items from the 
manufacturing lot.  

Time 
T 

Among the diT units produced from the manufacturing lot, i id T β  units are defective items. These 

defective items become the reworked lot that starts its consumption at (1 )iT β− , and they turn to be 
serviceable items. The dashed line here represents the inventory level of the defective items from the 
manufacturing lot. 

m
i id T p

Inventory level 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:6, 2013

1269

 

 

)]}1()1()1([{
)(2

22 m
ii

r
iii

m
ii

r
ii

r
i

m
i

i
pdpdhhd

aa
−−+−+

+
βββ

                                                      (8)

 

                                                                                                                  
We first show an iterative procedure to simultaneously 

determine the maximum value max
ik  of each product’s 

multiplier ki and the time length of basic period B. under the 
power-of-two policy as follows.  

Step 1 
Use Eq. (8) to determine Ti independently for each product.  

Step 2 
Select the smallest Ti as the initial estimate of the basic 

period B.  
B = min (Ti) 

Step 3 

 Determine the integer multiple max
ik  for each product 

defined by ≥max
ik  BTi  where max

ik  = {1, 2, 4, 8, 16, . . .} is 
the next higher power of two integer multiplier.  

Step 4 
Use Eq. (7) to re-compute the basic period B using the new 

estimates of max
ik . 

Step 5 

Return to Step 3 to determine new max
ik  by using B from 

Step 4. The procedure terminates when consecutive iterations 
produce identical values of max

ik  at Step 4.  
The whole search algorithm for solving the ELSPR under the 

BP approach can be described as follows.  

Step 1 

Use the above procedure to obtain the maximum value max
ik  

of the cyclic multiplier ki of product i. 

Step 2 
Let {ki} = 1 for all product and use Eq. (7) to compute the 

upper bound BUB of the basic period B. A solution TCCC can be 
obtained by using {ki} = 1 and BUB. If constraints Eq. (4) can be 
satisfied, this solution TCCC is feasible and can be viewed as the 
upper bound of the cost. Save TCCC as the ‘current best 
solution’ TCOPT. Put ({ki}, TCCC) into a list L. 

Step 3 
(1) Choose a solution with the lowest cost form list L. Remove 

this solution from list L. 
(2) Let i = 1, Choose product i. 
(3) If max

ii kk < , double the value of ki. Then use (7) to 
calculate the basic period B. 

(4) Use a simple scheduling heuristic and a bisection search to 
search for an optimal basic period and production 
sequence according to {ki} and B. Please refer to Chang 
and Yao [2] for these two heuristics. 

(5) Use Eq. (2) and (3) compute the ideal cost and the 
additional cost in order to obtain the average total cost TC. 

(6) Use the capacity constraint Eq. (4) to check whether the 
solution ({ki}, TC({ki})) is feasible or not.  

(7) If the solution ({ki}, TC({ki})) is feasible and TC({ki}) < 
TCOPT, let TCOPT = TC({ki}) and kOPT = {ki}. 

(8) If TC({ki}) is less than TCOPT, insert the solution ({ki }, 
TC({ki})) into list L.  

(9) Let ki = ki/2 and i = i+1. If i > n, go to Step 4; otherwise, 
choose product i and go to Step 3 (3).  

Step 4 
 Repeat to run Step 3 until no solution can be chosen form 

list L. 

Step 5 
Output  TCOPT  and  kOPT. 
Using the above algorithm to solve the ELSPR, we can find 

an optimal or near optimal solution with the lowest cost. 

IV. A NUMERICAL EXAMPLE 
Here, we show the effectiveness and quality of our search 

algorithm using a 5-product example. Table I presents the 
parameters of all the products in this example. We use a 
heuristic from Chang and Yao [2] to solve this example under 
the CC approach. The average total cost of the example is 
$7.294 with B = 55.766, ICi = $7.173 and ACi = $0.121. This 
research uses a search algorithm to solve this example and the 
optimal solution (called as Solution A) listed in Table II is 
$6.903 with B = 40.901, ICi = $6.846 and ACi = $0.058. The 
run time of our search algorithm is less than 3 seconds. Solution 
B is utilized to show how a bisection search improves the 
solution quality of the ELSPR. It is obvious that our optimal 
solution is better than the lower bound of the cost using the CC 
approach. 

V. CONCLUSION 
In this study, we are interested in the ELSPR that deals with 

two sources of products: manufacturing of the serviceable 
products and remanufacturing of the reworked products. To the 
best of the authors’ knowledge, no researchers studied the 
ELSPR under the basic period based approaches in past years. 
We formulate a mathematical model for the ELSPR using the 
basic period approach. In order to solve this problem, we 
propose a search algorithm to search for the optimal cyclic 
multipliers of all products, the optimal production sequence of 
all lots and the optimal length of the basic period. Our 
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numerical example demonstrates the effectiveness and quality of our search algorithm. 
 

TABLE I 
THE PARAMETERS OF ALL PRODUCTS IN THE EXAMPLE 

Product 
No. id  m

ia  
m
is  

m
ip  

m
ih  

r
ia  

r
is  

r
ip  

r
ih  iβ  

1 9 20 0.25 80 0.00175 20 0.25 80 0.00088 0.2 
2 9 20 0.25 80 0.00263 20 0.25 80 0.00132 0.3 
3 9 20 0.25 80 0.0035 20 0.25 80 0.00175 0.3 
4 30 20 0.25 80 0.00438 20 0.25 80 0.00219 0.2 
5 3 20 0.25 80 0.00525 20 0.25 80 0.00263 0.2 

 
TABLE II 

 THE SOLUTIONS OF THE EXAMPLE 
  the length of 

the basic 
period 

ideal cost additional 
cost 

average 
total cost Note 

Solution A 
{ki} ={2, 2, 1, 1, 2} 
 

B is set as 
BIC({ki}) 40.901 6.846 0.058 6.903 

No improvement 
using a bisection 

search 
Solution B 
{ki} ={1, 2, 2, 1, 2} 
 

B is set as 
BIC({ki}) 39.784 7.044 0.269 7.313  

Use a 
bisection 
search to find 
an optimal B 

38.498 7.048 0.262 7.310  

 
TABLE III 

 THE PRODUCTION LOAD OF THE EXAMPLE UNDER THE BASIC PERIOD APPROACH 

lot style Product 
No. 

max
ik  ki 1th period 2th period 3th period 4th period 

 
 

mfg. lot 
 
 

1 4 2 7.612 0.000 7.612 0.000 

2 4 2 6.692 0.000 6.692 0.000 

3 2 1 3.471 3.471 3.471 3.471 

4 2 1 12.520 12.520 12.520 12.520 

5 4 2 2.704 0.000 2.704 0.000 

 
reworked lot 

 
 
 

1 4 2 0.000 2.091 0.000 2.091 

2 4 2 0.000 3.011 0.000 3.011 

3 2 1 1.630 1.630 1.630 1.630 

4 2 1 3.318 3.318 3.318 3.318 

5 4 2 0.000 0.864 0.000 0.864 

period load    37.948 26.904 37.948 26.904 
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