
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

454

Logic Program for Authorizations
Yun Bai

Abstract— As a security mechanism, authorization is to provide
access control to the system resources according to the polices and
rules specified by the security strategies. Either by update or in the
initial specification, conflicts in authorization is an issue needs to be
solved. In this paper, we propose a new approach to solve conflict
by using prioritized logic programs and discuss the uniqueness of its
answer set. Addressing conflict resolution from logic programming
viewpoint and the uniqueness analysis of the answer set provide a
novel, efficient approach for authorization conflict resolution.

Keywords— authorization, formal specification, conflict resolution,
prioritized logic program.

I. INTRODUCTION

Authorization plays an essential role to ensure the security
of a wide variety of computing and IT systems such as data
management systems, e-trading systems, database transaction
systems, etc. Research in authorization has long been an
important area in computer system security. Specifi cally, in
a computer system, the function of the authorization is to
control access to the system. It only allows the authorized
users performing authorized operations on the shared data
resource of the system. Study on the formal specifi cation of
authorization (also called access control) has become a major
challenge in the current development of secure computing
and IT systems. Jajodia et al [8] proposed a logic language
for expressing authorizations. They used predicates and rules
to specify the authorizations; their work mainly emphasizes
the representation and evaluation of authorizations. The work
of Bertino et al [2] describes an authorization mechanism
based on a logic formalism. It mainly investigates the access
control rules and their derivations. In their recent work [3], a
formal approach based on C-Datalog language is presented for
reasoning about access control models. Li et al [9] developed
a logical language called delegation logic to represent autho-
rization policies, credentials in large-scale, distributed systems.
The work emphasizes the delegation depth and a variety of
complex delegation principals. Chomicki et al [5] discussed
security policy management using logic program approach.
Woo and Lam proposed a formal approach using default logic
to represent and evaluate authorizations [10].

This paper is to address high level authorization specifi -
cation and resolution for inconsistent authorizations by using
prioritized logic programs. We fi rst propose a logic language
by using logic programs to specify authorization rules, and
then solve its conflict by using the concept and techniques of
prioritized logic programs.

The paper is organized as follows. Section 2 describes
authorization rules, its specifi cation and evaluation. Section
3 investigates authorization conflict issue and proposes a new

Yun Bai is with School of Computing and Mathematics, University of
Western Sydney, NSW 1797, Australia, E-mail: ybai@scm.uws.edu.au

approach to solve it. We introduce prioritized logic programs
for effective and effi cient conflict resolution. We discuss the
unique answer set of an authorization domain and its proof in
section 4 and section 5 concludes the paper.

II. AUTHORIZATION DESCRIPTION

We defi ne that all the authorizations rules forms an au-
thorization domain. The individual rule is specifi ed by a
language L. Language L includes the following six disjoint
sorts for subject, group-subject, access-right, group-access-
right, object, group-object together with predicate symbols
holds, ∈, ⊆ and logic connectives.

In language L, the fact that a subject S has access
right R for object O is represented using a ground atom
holds(S, A, O). The fact that a subject S is a member of G

is represented by S ∈ G. Similarly, we represent inclusion
relationships between subject groups such as G1 ⊆ G2 or
between object groups such as GO1 ⊆ GO2. In general, we
defi ne a literal which represents a fact F to be an atomic
formula of L or its negation, while a ground fact is a fact
without variable occurrence. We view ¬¬F as F . A rule is
an expression of the form:

F0 ← F1, · · · , Fm, notFm+1, · · · , notFn, (1)

where each Fi (0 ≤ i ≤ n) is a literal. F0 is called the head
of the rule, while F1, · · · , Fm,not Fm+1, · · ·, not Fn are called
the body of the rule. Obviously, the body of a rule could be
empty. In this case, it represents an authorization fact. A rule
is ground if no variable occurs in it.

An extended logic program is a collection of such rules.
In a rule, the set {F1, · · · , Fm} is the literals without weak
negation; the set {notFm+1, · · · , notFn} is the literals with
weak negation.

All the rules required to specify the access control of a
system or an organization form an authorization domain. It is
formally defi ned as:

Definition 1: An authorization domain is a fi nite set D =
{Ri}, (i=1,2, ...k) where Ri is a rule of the form F0 ← or
F0 ← F1, · · · , Fm, notFm+1, · · · , notFn where m>0, n>m.

The following is an example of an authorization domain.
Example 1: D = {R1, R2, R3}, where
¬R1: holds(S, R, O)←
R2: holds(S1, W, O)← holds(S2, W, O)
R3: holds(S3, R, O) ← holds(S3, R, O1), O ∈ O1, not
¬holds(S3, R, O)

This domain represents the current authorization informa-
tion about the system: subject S does not have read right on
object O; if subject S2 has write right on object O, then S1

can write on O; if S3 can read O1, O is a member of O1 and



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

455

there is no information stating that S3 cannot read O, then S3

has read right on O.

III. PRIORITIZED LOGIC PROGRAM AND EVALUATION

Now, let’s consider the following authorization domain.
Example 2: D = {R1, R2, R3, R4}, where

R1: holds(S1, R, O1)←
R2: ¬holds(S1, R, O)←
R3: O ∈ O1 ←
R4: holds(S1, R, O) ← holds(S1, R, O1), O ∈ O1, not
¬holds(S1, R, O)

This domain states that currently S1 can read O1; S1 cannot
read O; O is a member of O1; if S1 can read O1 and O is a
member of O1 and it is not specifi ed that S1 can not read O,
then S1 has the right to read O.

Obviously, rules R2 and R4 conflict with each other as
their heads are complementary literals, and applying R2 will
defeat R4 and vice versa. However, we can assign preference
ordering among the conflict rules. If we defi ne R2 < R4, we
expect that rule R4 is preferred to apply fi rst and then defeat
rule R2 after applying R4 so that the solution holds(S1, R, O)
can be derived. On the other hand, if we defi ne R4 <

R2, we expect that rule R2 is preferred to apply fi rst and
then defeat rule R4 after applying R2 so that the solution
¬holds(S1, R, O) can be derived.

The above example shows an inconsistent authorization
domain. In some other situation, the authorization domain
is consistent initially, but after certain update, it becomes
inconsistent.

For instance, we initially have the following authorization
domain:

R1: holds(S, A, O)←
R2: holds(S1, A, O)←
R3: holds(S2, A, O)← holds(S1, A, O)

It says that currently both S and S1 can access O; if S1 can
access O then S2 can also access O. The answer set for this
domain is:
{holds(S, A, O), holds(S1, A, O),
holds(S2, A, O)}

Now, the new knowledge R4: ¬holds(S1, A, O) is added to
the domain. It conflicts with the existing R 2: holds(S1, A, O).
We need to defi ne a preference order to solve this conflicts.
Suppose we prefer the update, that is we set the newly added
R4 higher preference than the existing conflicting R 2. After
the update, the new authorization domain has the following
answer set:

{holds(S, A, O),¬holds(S1, A, O)}

We call the logic program with partial ordering < on the
rules prioritized logic program P [11]. P is defi ned to be a
triplet (Π,R, <), where Π is an extended logic program, R
is a naming function mapping each rule in Π to a name, and
< is a strict partial ordering on names. The partial ordering <

in P plays an essential role in the evaluation of P . We also
use P(<) to denote the set of <-relations of P . Intuitively <

represents a preference of applying rules during the evaluation
of the program. In particular, if R(r) < R(r′) holds in P , rule

r′ would be preferred to apply over rule r during the evaluation
of P .

The evaluation of a PLP will be based on its ground form.
It is to fi nd the answer set of the authorization domain. Given
a PLP P = (Π,R, <). We say P is well formed if there
does not exist a rule r′ that is an instance of two different
rules r1 and r2 in Π and R(r1) < R(r2) ∈ P(<). In the
rest of this paper, we will only consider well formed PLPs
in our discussions, and consequently, the evaluation for an
arbitrary program P = (Π,R, <) will be based on its ground
instantiation P ′ = (Π′,R′, <′). Therefore, in our context a
ground prioritized (or extended) logic program may contain
infi nite number of rules. In this case, we will assume that this
ground program is the ground instantiation of some program
that only contains fi nite number of rules.

Definition 2: Let Π be a ground extended logic program
and r a rule with the form R0 ← R1, · · · , Rm, not Rm+1, · · ·,
not Rn (r does not necessarily belong to Π). Rule r is defeated
by Π iff Π has an answer set and for any answer set Ans(Π)
of Π, there exists some Ri ∈ Ans(Π), where m + 1 ≤ i ≤ n.

Let us consider program example 2 once again. If we choose
R2 < R4 and R2 is defeated by D − {R2}, rule R2 should
be ignored during the evaluation of D. We will get the unique
answer set {holds(S, R, O1), O ∈ O1, holds(S1, R, O)}.

To calculate the set of access facts of an authorization
domain, we need to evaluate its corresponding extended logic
program. That is, to fi nd the answer set of prioritized logic
program P . Now, we present the procedure for fi nding the
answer set. We start from a reduced set or the reduct of P .

Definition 3: Let P = (Π,N , <) be a prioritized extended
logic program. P< is a reduct of P with respect to < if and
only if there exists a sequence of sets Πi (i = 0, 1, · · ·) such
that:

1) Π0 = Π;
2) Πi = Πi−1−{r1, r2, · · · | (a) there exists r ∈ Πi−1 such

that
for every j (j = 1, 2, · · ·), N (r) < N (rj) ∈ P(<)

and
r1, · · · , are defeated by Πi−1−{r1, r2, · · ·}, and (b)

there
does not exist a rule r′ ∈ Πi−1 such that N(rj) <

N(r′)
for some j (j = 1, 2, · · ·) and r′ is defeated by

Πi−1 − {r′}};
3) P< =

⋂
∞

i=0 Πi.
In Defi nition 3, P< is a ground extended logic program

obtained from Π by eliminating some less preferred rules from
Π. In particular, if R(r) < R(r1), R(r) < R(r2), · · ·, and
Πi−1 −{r1, r2, · · ·} defeats {r1, r2, · · ·}, then rules r1, r2, · · ·
will be eliminated from Πi−1 if no less preferred rule can
be eliminated (i.e. conditions (a) and (b)). This procedure is
continued until a fi xed point is reached. It is worth to note that
the generation of a reduct of a PLP is based on the ground form
of its extended logic program part. Furthermore, if R(r1) <

R(r2) holds in a PLP where r1 or r2 includes variables, then
R(r1) < R(r2) is actually viewed as the set of <-relations
R(r′1) < R(r′2), where r′1 and r′2 are ground instances of r1

and r2 respectively.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

456

Definition 4: Let P = (Π,∇, <) be a PLP and Gl the set
of all ground literals in the language of P . For any subset
S of Gl, S is an answer set of P , denoted as AnsP (P), iff
S = Ans(P<) for some reduct P< of P . Given a PLP P , a
ground literal L is entailed from P , denoted as P |= L, if L

belongs to every answer set of P .
Using Defi nitions 3 and 4, it is easy to conclude that in

example 2, if we assign R2 > R4, P has a unique reduct as
follows:
P< = {holds(S1R, O1)←,
¬holds(S1, R, O)←, O ∈ O1 ←}

from which we obtain the following answer set of P :
AnsP (P1) = {holds(S1, R, O1),
¬holds(S1, R, O), O ∈ O1)}

If the preference ordering is R2 < R4, P has a unique
reduct as follows:
P< = {holds(S1R, O1)←, O ∈ O1 ←,

holds(S1, R, O)← holds(S1, R, O1),
O ∈ O1, not ¬holds(S1, R, O)}

from which we obtain the following answer set of P :
AnsP (P1) = {holds(S1, R, O1), O ∈
O1, holds(S1, R, O)}

Example 3: Now we consider another authorization domain
D, it’s corresponding program P is:

R1 : holds(S, W, O3)←,
R2 : holds(S, W, O)←

not holds(S, W, O1),
R3 : holds(S, W, O2)←,
R4 : holds(S, W, O1)←

not holds(S, W, O),
R1 > R2, R3 > R4.

According to Defi nition 3, it is easy to see that P has two
reducts:
{holds(S, W, O3)←,

holds(S, W, O2)←,
holds(S, W, O1)← not holds(S, W, O)},

and
{holds(S, W, O3)←,

holds(S, W, O)← not holds(S, W, O1),
holds(S, W, O2)←}.

From Defi nition 4, it follows that P has two answer sets:
{holds(S, W, O3), holds(S, W, O1), holds(S, W, O2)}
and
{holds(S, W, O3), holds(S, W, O), holds(S, W, O2)}.

IV. UNIQUE ANSWER SET OF AN AUTHORIZATION DOMAIN

Example 4 has two answer sets. If an access request
holds(S, W, O1) is presented, according to one answer set,
the access request is granted; according to the other answer
set, the same request will be denied.

Now we investigate the unique answer set of an autho-
rization domain. To investigate this issue, we fi rst extend the
concept of local stratifi cation for general logic programs [1]
to extended logic programs.

Definition 5: Let Π be an extended logic program and Gl

be the set of all ground literals of Π.
1) A local stratification for Π is a function stratum from

Gl to the countable ordinals.
2) Given a local stratifi cation stratum, we extend it

to ground literals with negation as failure by setting
stratum(not F ) = stratum(F ) + 1, where F is a
ground literal.

3) A rule F0 ← F1, · · · , Fm, not Fm+1, · · ·, not Fn in Π
is locally stratified with respect to stratum if

stratum(F0) ≥ stratum(Fi), where 1 ≤ i ≤ m,
and
stratum(F0) > stratum(notFj), where m + 1 ≤
j ≤ n.

4) Π is called locally stratified with respect to stratum if
all of its rules are locally stratifi ed.

For an extended logic program which represents certain
authorization domain, if such rules exist:

a← notb

b← nota

We will have two answer sets {a} and {b}.
The above defi nition is to ensure that in an extended logic

program, there does not exist such rules resulting in multiple
answer sets.

For instance, if we assign stratum(nota)=1, according to
condition 2 of the defi nition stratum(a)=stratum(nota) - 1 =
0. from rule a← notb and the condition 3, stratum(notb) <0,
so stratum(b) < stratum(notb) <0. From rule b ← nota

and the condition 3, stratum(b) > stratum(nota) >1. So a
domain consists the above rules does not satisfy the defi nition,
it is not locally stratifi ed.

Let Π be a ground extended logic program and r be a rule
in Π of the form:

F0 ← F1, · · · , Fm, not Fm+1, · · ·, not Fn.
We use pos(r) to denote the set of literals in the body
of r without negation as failure {F1, · · · , Fm}, and neg(r)
the set of literals in the body of r with negation as failure
{Fm+1, · · · , Fn}. We specify body(r) to be pos(r) ∪ neg(r).
We also use head(r) to denote the head of r: {F0}. Then
we use Gl(r) to denote head(r) ∪ body(r). By extending
these notations, we use pos(Π), neg(Π), body(Π), head(Π),
and Gl(Π) to denote the unions of corresponding components
of all rules in Π, e.g. body(Π) =

⋃
r∈Π body(r). If Π is a

non-ground program, then notions pos(Π), neg(Π), body(Π),
head(Π), and Gl(Π) are defi ned based on the ground instan-
tiation of Π.

The following defi nition is to specify under which condi-
tions an extended logic program is locally stratifi ed.

Definition 6: Let Π be an extended logic program and rp

and rq be two rules in Π. We defi ne a set D(rp) of literals
with respect to rp as follows:
D0 = {head(rp)};
Di = Di−1 ∪ {head(r) | head(r′) ∈ pos(r) where
r ∈ Π and r′ are those rules such that head(r′) ∈
Di−1};
D(rp) =

⋃
∞

i=1Di.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

457

We say that rq is defeasible through rp in Π if and only if
neg(rq)∩D(rp) 
= ∅. rp and rq are called mutually defeasible
in Π if rq is defeasible through rp and rp is defeasible through
rq in Π.

Intuitively, if rq is defeasible through rp in Π, then there
exists a sequence of rules r1, r2, · · · , rl, · · · such that head(rp)
occurs in pos(r1), head(ri) occurs in pos(ri+1) for all i =
1, · · ·, and for some k, head(rk) occurs in neg(rq). Under
this condition, it is clear that by triggering rule rp in Π, it
is possible to defeat rule rq if rules r1, · · · , rk are triggered
as well. As a special case that D(rp) = ∅, rq is defeasible
through rp iff head(rp) ∈ neg(rq). The following proposition
simply describes the relationship between local stratifi cation
and mutual defeasibility.

Proposition 1: Given a ground extended logic program Π.
If Π is locally stratifi ed, then there are no mutually defeasible
pairs of rules in Π.

Proposition 2: Let Π be a ground extended logic program.
If Π is locally stratifi ed, then Π has a unique answer set.

The above result is easy to prove from the corresponding
result for general logic programs showed in [6] based on
Gelfond and Lifschitz’s translation from an extended logic
program to a general logic program [7]. It is observed that
for a PLP P = (Π,N , <), if Π is locally stratifi ed, then P
will also have a unique answer set. In other words, Π’s local
stratifi cation implies that P has a unique answer set.

For instance, if these rules are in an authorization domain:
a← b...

c← a...

d← c...

e← ...notd

Let the fi rst rule be rp and the last one be rq . Once rule rp

takes effect, we have a in the answer set. Suppose all other
conditions for rest of the rules taking effect are satisfi ed, we
will have c, d in the answer set as well. This will prevent
rq from taking effect. So rule rq is defeasible through rp.
Similarly, if rule rq is triggered fi rst, then the other rules cannot
take effect since the result contradicts with the condition
triggering rule rq . So we say rule rp and rule rq are mutually
defeasible. The domain has two answer sets: {a, c, d} and {e}.

Theorem 1: Every prioritized logic program has a <-
partition.

Theorem 2: (Unique Answer Set Theorem) Let P =
(Π,N <) be a ground PLP and {Π1, · · · , Πk} be a <-partition
of Π in P . P has a unique reduct if there does not exist two
rules rp and rq in Πi and Πj (i, j > 1) respectively such that
rp and rq are mutually defeasible in Π. P has a unique answer
set if P has a unique locally stratifi ed reduct.

Proof: According to Proposition 3, it is suffi cient to only
prove the fi rst part of this theorem: P has a unique reduct if
there does not exist two rules rp and rq in Πi and Πj (1 < i, j)
respectively such that rp and rq are mutually defeasible in Π.

We assume that P has two different reducts, say P<(1)

and P<(2). This follows that there exist at least two different
rules rp and rq such that (1) rp ∈ Πi and rq ∈ Πj , where
1 < i, j; (2) rq ∈ P

<(1), rq 
∈ P
<(2), and rp 
∈ P

<(1); and
(3) rp ∈ P<(2), rp 
∈ P<(1), and rq 
∈ P<(2). According to

Defi nition 2, P<(1) and P<(2) are generated from two reduct
chains {Π(1)

0 , Π
(1)
1 , · · ·} and {Π(2)

0 , Π
(2)
1 , · · ·} respectively.

Without loss of generality, suppose that for all 0 ≤ i < k,
Π

(1)
i = Π

(2)
i , and

Π
(1)
k = Π

(1)
k−1 − {r1, · · · , rl, rp, · · ·},

Π
(2)
k = Π

(2)
k−1 − {r1, · · · , rl, rq, · · ·},

where we set Πk−1 = Π
(1)
k−1 = Π

(2)
k−1 and the only difference

between Π
(1)
k and Π

(2)
k is due to rules rp and rq . Let rp and

rq have the following forms:

rp : Lp ← · · ·, not L′

p, · · ·,
rq : Lq ← · · ·, not L′

q, · · ·.

Comparing Π
(1)
k and Π

(2)
k , it is clear that the only difference

between these two programs is about rules rp and rq . Since
Π

(1)
k defeats rp and Π

(2)
k defeats rq , it follows that L′

q ∈ S
(1)
k

and L′

p ∈ S
(2)
k , where S

(1)
k and S

(2)
k are answer sets of Π

(1)
k

and Π
(2)
k respectively. Then there must exist some rule in Π

(1)
k

of the form:

r(1) : L′

p ← · · ·,

and some rule in Π
(2)
k of the form:

r(2) : L′

q ← · · ·.

Furthermore, since Π
(1)
k −{rp, rq} does not defeat rule rp and

Π
(2)
k − {rp, rq} does not defeat rule rq (otherwise Π

(1)
k =

Π
(2)
k ), it is observed that rule rq triggers rule r(1) in Π

(1)
k that

defeats rp, and rule rp triggers rule r(2) in Π
(2)
k that defeats

rq . This follows that rp and rq are mutually defeasible in Π.

Example 4: An authorization domain D = {R1, R2, R3},
where
R1: holds(S, A, O)←
R2: holds(S1, A, O)← holds(S, A, O)
R3: holds(S2, A, O)← ¬holds(S1, A, O)
This domain does not have a unique answer set since R1 and
R3 are mutually defeasible. It has two answer sets:
{holds(S, A, O), holds(S1, A, O)} and {holds(S2, A, O)}

Example 5: Here is another domain D =
{R1, R2, R3, R4, R5}, where
R1: holds(S, A, O)←
R2: holds(S1, A, O)←
R3: holds(S2, A, O)← ¬holds(S3, A, O)
R4: holds(S4, A, O)← holds(S, A, O)
R5: holds(S5, A, O)← holds(S1, A, O),
¬holds(S3, A, O)
This domain does not contain any pair of defeasible rules. It
is locally stratifi ed. It has a unique answer set:
{holds(S, A, O), holds(S1, A, O), holds(S2, A, O),
holds(S4, A, O), holds(S5, A, O)}

V. CONCLUSION

In this paper, we proposed a new approach to solve conflicts
in authorizations. So far, certain research has been done using
logic in authorizations as mention in introduction. These works
either focus on authorization representation, or delegation.
Little has been done in conflict resolution of authorization.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:9, 2007

458

In our work, we employed a prioritized logic program
to resolve authorization conflicts in an authorization domain
specifi ed by a logic language. By assigning each rule a
name representing its preference ordering, using a fi xed point
semantics to delete those less preferred rules (the rules will
not take effect under current state), then using answer set
theory to evaluate the authorization domain to get the preferred
authorizations. We also investigated the uniqueness of the
answer set of an authorization domain and discussed the
conditions under which the domain has a unique answer
set. In our future work, we will consider the implementation
issue with authorization evaluation and dynamic policy update.
A related work using logic programs for conflict resolution
in reasoning has been implemented in (removed for blind
review) It is our future work to use logic programs(stable
model semantics) to implement the approach for authorization
conflict resolution presented in this paper.

REFERENCES
[1] K.R. Apt and R.N. Bol, Logic programming and negation: A survey.

Journal of Logic Programming, 19,20 (1994) 9-71.
[2] E. Bertino, F. Buccafurri, E. Ferrari and P. Rullo, “A Logic-based

Approach for Enforcing Access Control”. Computer Security, vol.8,
No.2-2, pp109–140, 2000.

[3] E. Bertino, B. Catania, E. Ferrari and P. Perlasca, “A Logical Framework
for Reasoning about Access Control Models”. ACM Transactions on
Information and System Security, Vol.6, No.1, pp71–127, 2003.

[4] J. Chomicki, J. Lobo and S. Naqvi, “A Logical Programming Approach
to Conflict Resolution in Policy Management”. Proceedings of Inter-
national Conference on Principles of Knowledge Representation and
Reasoning, pp121–132, 2000.

[5] V. Crescini and Y. Zhang, “A logic Based Approach for Dynamic Access
Control”. Proceedings of 17th Australian Joint Conference on Artifi cial
Intelligence (AI 2004), pp623-635, 2004.

[6] M. Gelfond and V. Lifschitz, The stable model semantics for logic
programming. In Proceedings of the Fifth Joint International Conference
and Symposium, pp 1070-1080. MIT Press, 1988.

[7] M. Gelfond and V. Lifschitz, Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9 (1991) 365-386.

[8] S. Jajodia, P. Samarati, M.L. Sapino and V.S. Subrahmanian, “Flexible
Support for Multiple Access Control Policies”. ACM Transactions on
Database Systems, Vol.29, No.2, pp214–260, 2001.

[9] N. Li, B. Grosof and J. Feigenbaum, “Delegation Logic: A Logic-
based Approach to Distributed Authorization”. ACM Transactions on
Information and System Security, Vol.6, No.1, pp128–171, 2003.

[10] T.Y.C. Woo and S.S. Lam, “Authorization in Distributed systems: A
Formal Approach”. Proceedings of IEEE Symposium on Research in
Security and Privacy, pp33-50, 1992.

[11] Y. Zhang and Y. Bai, “The Characterization on the Uniqueness of
Answer Set for Prioritized Logic Programs”. Proceedings of the Interna-
tional Symposium on methodologies on Intelligent Systems, pp349–356,
2003.

[12] Y. Zhang, C.M. Wu and Y. Bai Implementing Prioritized Logic Pro-
gramming, AI Communications, Vol.14, No. 4, pp183–196, 2001.


