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An Approach to Control Design for Nonlinear
Systems via Two-stage Formal Linearization and

Two-type LQ Controls
Kazuo Komatsu, and Hitoshi Takata

Abstract In this paper we consider a nonlinear control design for
nonlinear systems by using two-stage formal linearization and two-
type LQ controls. The ordinary LQ control is designed on almost
linear region around the steady state point. On the other region,
another control is derived as follows. This derivation is based on
coordinate transformation twice with respect to linearization functions
which are defined by polynomials. The linearized systems can be
made up by using Taylor expansion considered up to the higher order.
To the resulting formal linear system, the LQ control theory is applied
to obtain another LQ control. Finally these two-type LQ controls
are smoothly united to form a single nonlinear control. Numerical
experiments indicate that this control show remarkable performances
for a nonlinear system.

Keywords Formal Linearization, LQ Control, Nonlinear Control,
Taylor Expansion, Zero Function.

I. Introduction

Awide range of nonlinear analysis tools have been pro-
vided so far (e.g. [1]–[8]), but it is usually uneasy to

treat with nonlinear dynamical control systems. In a typical
control problem, we may apply a feedback control theory to
systems by linearization of Taylor expansion truncated at the
first order about the desired equilibrium point(e.g. [7]). This
approach is simple and easy to design, but clearly local; that
is in general, it can only guarantee asymptotic stability. In
order to extend the validity of the linearization approach, there
are many studies provided like input-output linearization [6],
extended linearization [8], exact linearization [6] and so on.
Their conditions to linearize the systems are usually strict and
may be difficult to design for real nonlinear systems. On the
other hand there is a formal linearization method [9]–[13] to
ease off linearizable conditions.

In this paper we propose a nonlinear control design for
single input nonlinear systems using the formal linearization
method. This approach is based on a combination of LQ
controls. On almost linear region around the origin, the
ordinary LQ control [14] is used. To the other nonlinear
region, another LQ-type control is acquired by making use
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of formal linearization of two processes as follows. In the
first process, we introduce a first stage linearization function
which is composed of the polynomials of state variables for
the system. By it, a given nonlinear system is transformed into
bilinear one with respect to the first stage linearization function
using Taylor expansion truncated up to higher order. In the
second process, we introduce a second stage linearization
function which is made by the linear combination of the first
stage linearization function. A zero function is also introduced
which is almost zero except for the neighborhood of the origin.
From the bilinear system at the first stage, we obtain a formal
linear system with respect to the second stage linearization
function by using this zero function. Its inversion is easy to
calculate because of including the original state itself within
the second stage linearization function. To this formal linear
system we apply the LQ control theory [14] to get another LQ
control which is effective on the nonlinear region. Finally these
LQ controls, which are obtained on two different regions, are
smoothly united to design a single nonlinear feedback control
by selecting functions of sigmoid type.

Numerical experiments of stabilization nonlinear problem
are illustrated and indicate that this controller show remarkable
performances.

II. Statement of problem

For the sake of simplicity, we consider a nonlinear control
problem using a formal linearization method for scalar sys-
tems. For vector systems, it is straightforward. We consider a
class of nonlinear systems of the form

Σ : ẋ(t) = f
(
x(t)
)
+ bu, x ∈ D, (1)

where t > 0 denotes time, overdot represents derivative with
respect to t, x is a state variable, D is domain, f ∈ CN is
nonlinear function with f (0) = 0, b is a constant and u is a
input. The D is divided into an almost linear region in the
neighborhood of x = 0 and the other nonlinear region. For
each region, a linearized system is obtained by applying the
formal linearization approach so that the LQ control theory is
applicable. These two-type LQ controls is smoothly united to
form a single nonlinear control.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4024

III. Nonlinear Control by Formal Linearization

    A. Control on Almost Linear Region

We design the ordinary LQ control on the almost linear
region in the neighborhood of x = 0. The given system (1)
is linearized by Taylor expansion truncated at the first order
about the origin

Σ0 : ẋ = Āx + bu (2)

where

Ā = f ′(0) =
∂

∂x
f (x)|x=0 .

Let a cost function be

J0 =

∫ ∞
0

(Q0x2 + R0u2)dt (3)

where Q0 ≥ 0 and R0 > 0. An application of the LQ control
theory to this linearized system (2) and (3) yields

u0(x) = −R−1bP0x (4)

where P0 satisfies the Riccati equation

2P0Ā + Q0 − P2
0b2R−1

0 = 0. (5)

    B. Control on Nonlinear Region

We design another type LQ control on nonlinear region
except for the neighborhood of x = 0. In this region we
exploit a formal linearization method of polynomial type [9]–
[13] using Taylor expansion truncating up to the N-th order.
To linearize the system, we need two processes and define two
types of formal linearization functions. At the first process, a
first stage formal linearization function is defined as

φ(x) = [x, x2, x3, · · · , xN]T (6)

= [φ1(x), φ2(x), φ3(x), · · · , φN(x)]T

where T denotes transpose. The derivative of the element of
the φ is

φ̇i(x) = ixi−1 ẋ

= ixi−1
(

f (x) + bu
)

(i = 1, 2, · · · ,N). (7)

Applying Taylor expansion to the nonlinear function f (x)
about x = 0, (7) becomes

φ̇i(x) = ixi−1
(

f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f (3)(0)x3 + · · · + bu
)

where

f (i)(0) =
∂i

∂xi
f (x)|x=0 .

Truncating it up to the N-th order yields

φ̇i(x) ≈ i f ′(0)xi +
i

2!
f ′′(0)xi+1 +

i
3!

f (3)(0)xi+2 +

· · · + i
(N − i + 1)!

f (N−i+1)(0)xN + ibxi−1u

= i f ′(0)φi +
i

2!
f ′′(0)φi+1 +

i
3!

f (3)(0)φi+2 +

· · · + i
(N − i + 1)!

f (N−i+1)(0)φN + ibφi−1u. (8)

So a bilinear system with respect to the first stage linearization
function

φ̇(x) = Aφ(x) + b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2φ1
...

NφN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u (9)

is derived where

[Ai j] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ i
( j − i + 1)!

f ( j−i+1)(0)
]

(i ≤ j)

[0] (i > j)
,

(i, j = 1, 2, · · · ,N).

In order to transform the bilinear system (9) into a formal
linear system, the second stage linearization function h is
defined by the linear combination of φ as follows

h(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(x)
h2(x)
h3(x)
...

hN(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
C21 C22 · · · C2N

C31 C32 · · · C3N
...

...
. . .

...
CN1 CN2 · · · CNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1(x)
φ2(x)
φ3(x)
...

φN(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

= Cφ(x).

The derivative of h by (9) is

ḣ(x) = Cφ̇ = CAφ(x) + bC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2φ1
...

NφN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u

= CAφ + bg(x)u (11)

where

g(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(x)
g2(x)
...

gN(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2φ1
...

NφN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

gi(x) =

{
1 (i = 1)
Ci1 + 2Ci2φi + · · · + NCiNφN−1 (2 ≤ i ≤ N)

.

(12)
This coefficient Ci j ( j = 1, 2, · · · ,N) in (12) may be determined
so that each gi(x) (2 ≤ i ≤ N) is approximately zero by the
following zero function.

We here introduce a zero function

G(Mi, x) = e−Mi

√
x2+ε (13)

which is almost zero except for the neighborhood of x = 0.
Here Mi is a natural number and ε is a small value (ε ≥ 0)
(see Fig. 1). Expanding this zero function truncating up to the
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Fig. 1 Zero function

(N − 1)-th order at x = x0 yields

G(Mi, x) ≈ G(Mi, x0) +G′(Mi, x0)(x − x0) (14)

+
G′′(Mi, x0)

2!
(x − x0)2 + · · · + G(N−1)(Mi, x0)

(N − 1)!
(x − x0)N−1.

Comparing gi(x) in (12) and this G(Mi, x), Ci j (i =

2, · · · ,N, j = 1, 2, · · · ,N) is so determined on condition

Mi � Mk (gi(x) � gk(x))

that C is non-singular. Using this C in (10), the second stage
linearization function in (11) is approximated by

ḣ(x) ≈ CAφ(x) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u = CAC−1h(x) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u (15)

except for the neighborhood of x = 0. Thus, a formal linear
system is design as

Σ1 : ḣ(x) = Dh(x) + Bu (16)

where
D = CAC−1, B = [b, 0, · · · , 0]T .

Its inversion is simply obtained from (6) and (10) by

x̂(t) = [1 0 0 · · · 0]h(x(t)). (17)

Let a cost function be

J1 =

∫ ∞
0

(hT Q1h + R1u2)dt (18)

where Q1 ≥ 0 and R1 > 0. An application of the LQ control
theory to this linearized system (16) and (18) yields

u1(x) = −R−1BT P1h(x) (19)

where P1 satisfies the Riccati equation

P1D + DT P1 + Q1 − P1BR−1
1 BT P1 = 0. (20)

   C. Nonlinear Control

The two-type LQ controls of (4) and (19) are smoothly
united as follows. We introduce selecting functions of sigmoid
type

I0(k, a, x) = 1 − 1
1 + ek(x+a)

− 1
1 + e−k(x−a)

(21)

to select u0 in the neighborhood region of x = 0, and

I1(k, a, x) =
1

1 + ek(x+a)
+

1
1 + e−k(x−a)

(22)

to select u1 in the other region, where a is a proper separation
point of the regions (see Fig. (2)).

x
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Fig. 2 Selecting functions

Finally we design a single nonlinear feedback control as

û(x) = u0(x)I0(k, a, x) + u1(x)I1(k, a, x) (23)

using (4) (19) (21) and (22). Thus the closed-loop system
becomes

ẋ(t) = f
(
x(t)
)
+ bû(x). (24)

IV. Numerical Experiments

In this section we illustrate numerical experiments of a
stabilizing nonlinear feedback control problem. Consider a
nonlinear system:

ẋ(t) = x2(t) + bu. (25)

This system is transformed into a bilinear system with respect
to the first stage linearization function φ of (6). When the order
of φ is N = 3, the system is

φ̇(x) =
∂

∂t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
x2

x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 2
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠φ(x) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

2φ1

3φ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ u (26)

In order to investigate the accuracy of this first stage lineariza-
tion, we show the trajectories of the state variable x̂ for a free
system φ̇(x) = Aφ(x) when u = 0 and its approximated value
x̂ is obtained by inversion

x̂(t) = [1 0 0 · · · 0]φ(x(t)). (27)
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Fig. (3) shows true value x(t) and x̂(t) when the order of φ(x)
is varied as N = 1 to 6 and an initial value is x(0) = 0.1 .
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Fig. 3 x and x̂ by the first stage linearization

In the second stage, a coefficient C in (15) is determined
by approximating gi(x) (i = 2, 3, · · · ,N) in (12) by the zero
function G(Mi, x) in (13). The order of the second stage
linearization function h(x) is set N = 3 and the parameters
are put M2 = 2, M3 = 3, ε = 0.01 and x0 = 1.5 in the zero
function. Then C becomes

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

0.804 −0.277 0.037
0.419 −0.197 0.121

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the formal linear system (16) is

ḣ(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
3.124 −4.617 1.405
1.611 0.461 −4.728
0.667 1.038 −3.584

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ h(x) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ u.

Solving the Riccati equation (20) and P1 is

P1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
3.662 −4.699 3.499
−4.699 15.27 −17.516
3.499 −17.516 22.905

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
when the parameters of a cost function (18) are

Q1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R1 = 1.

The LQ control is

u1(t) = −[3.662 − 4.699 3.499]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
h1(x)
h2(x)
h3(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −[3.662 − 4.699 3.499]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x

C21x +C22x2 +C23x3

C31x +C32x2 +C33x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

On the other hand, in the neighborhood of the origin, the linear
system (2) is

ẋ = u

and the LQ control for this system is

u0 = −x

when the parameters are

Q0 = 1,R0 = 1.

From the selecting functions (21) and (22), the closed-loop
system of (24) becomes

ẋ = x2 + u0(x)I0(k, a, x) + u1(x)I1(k, a, x). (28)

Fig. (4) shows results of time responses of the closed-loop
system (28) at x(0) = 2 when the order of the formal linear
system is varied as N = 1 to 6. In this case, parameters of the
zero function are set

k = 50, a = 0.2.

When the order of the linearization functions is N = 1, the
linearized system is the same as the ordinary LQ control
system. It means that the proposed method can stabilize the
system even in the region in which the conventional method
can not stabilize. The performance is improved as N increases.

t

x

N=6
N=5

N=4
N=3

N=2
N=1

0 2 4 6
0

1

2

Fig. 4 Results for stabilizing nonlinear system

V. Conclusions

This paper has introduced a nonlinear control for nonlinear
systems using two-stage formal linearization based on Taylor
expansion truncated up to higher order. This approach is easily
applicable to nonlinear systems and relax the linearizability
conditions. Numerical experiments show that the proposed
approach is effective in stabilizing nonlinear feedback control
problem and can improve the performance of the nonlinear
control as the order of the formal linear system is increased.
Future study is required to clarify the way of selection of
parameters such as N, Mi, k and a.
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