
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1001

Optimization of Unweighted Minimum
Vertex Cover

S. Balaji, V. Swaminathan and K. Kannan

Abstract—The Minimum Vertex Cover (MVC) problem is a classic
graph optimization NP - complete problem. In this paper a competent
algorithm, called Vertex Support Algorithm (VSA), is designed to
find the smallest vertex cover of a graph. The VSA is tested on a
large number of random graphs and DIMACS benchmark graphs.
Comparative study of this algorithm with the other existing methods
has been carried out. Extensive simulation results show that the VSA
can yield better solutions than other existing algorithms found in the
literature for solving the minimum vertex cover problem.

Keywords—vertex cover, vertex support, approximation algo-
rithms, NP - complete problem.

I. INTRODUCTION

THE classical minimum vertex cover problem involves
graph theory and finite combinatorics and is categorized

under the class of NP - complete problems in terms of its
computational complexity. In 1972, in a landmark paper Karp
has shown that the vertex cover problem is NP - complete
[12], meaning that it is exceedingly unlikely that to find an
algorithm with polynomial worst - case running time. The
minimum vertex cover problem remains NP - complete even
for certain restricted graphs, for example, the bounded degree
graphs [10]. Minimum vertex cover has attracted researchers
and practitioners not only because of the NP - completeness
but also because of many difficult real - life problems which
can be formulated as instances of the minimum vertex cover.
Examples of such areas where the minimum vertex cover
problem occurs in real world applications are communications,
particularly in wireless telecommunications, civil, electrical
engineering, especially in multiple sequence alignments for
computational biochemistry [19].

Due to computational intractability of the MVC problem,
many researchers have instead focused their attention on the
design of approximation algorithm for delivering quality solu-
tions in a reasonable time. Garey and Johnson [9] presented a
simple approximation algorithm based on maximal matching
gave an approximation ratio 2 for the general graphs. The
first fixed parameter tractable algorithm for k - vertex problem
(decision version: Given a graph G, deciding if G has a vertex
cover of k vertices, k being the parameter), was done by
Fellows [8]. Recently, Dehne et al [6] have reported that
they used fixed parameter tractable algorithm to solve the

S. Balaji is with the Department of Mathematics, SASTRA University,
Thanjavur, India. e-mail: balaji maths@yahoo.com.

V. Swaminathan is with the Ramanujan Research centre, Saraswathi
Narayanan College, Madurai, India. e-mail: sulanesri@yahoo.com.

K. Kannan is with Department of Mathematics, SASTRA University,
Thanjavur, India. e-mail: kkannan@maths.sastra.edu.

Fig. 1. (a) Possible vertex cover of G (b) Minimum vertex cover of G

minimum vertex cover problem on coarse-grained parallel
machines successfully. Khuri et al [14] presented an evolu-
tionary heuristic for the minimum vertex cover problem.For
a comprehensive survey on the analysis of approximation
algorithms for MVC, the reader is referred to Hochbaum [11],
Monien and Speckenmeyer [16], Berman and Fujito [2], Tang
et al [20], Shyu, Yin and Lin [18], Xu and Ma [23], Aggarwal
et al[1], Bourjolly et al[4] Katayama et al[13]and Pullan[17].

In this paper for efficiently solving minimum vertex cover
problem, a competent algorithm called Vertex Support Algo-
rithm (VSA) is proposed. The proposed algorithm designed
with the term called support of vertices, which involves the
sum of the degrees of adjacency vertices, to get a near
smallest vertex cover of the graph. Its effectiveness is shown
by conducting extensive computational experiments on a large
number of random graphs[1][23] and DIMACS benchmark
graphs [7]. The simulation results show that the VSA can find
the optimum solution.

The paper is organized as follows. Section 2 briefly de-
scribes the minimum vertex cover problem and its theoretical
background. Section 3 outlines the VSA. In Section 4 graph
models used in the experiments is briefly described. Section
5 provides experiments done and their results. Section 6
summarizes and concludes the paper.

II. MINIMUM VERTEX COVER PROBLEM

Let G = (V, E) be an undirected graph, a set S V is a
minimum vertex cover of G if (i) for every edge (u, v) E,
either u S or v S or both u,v S and (ii) among all covers of
E, S has the minimum cardinality, i.e., is minimum.

To illustrate the minimum vertex cover problem, consider
the problem of placing guards with associated costs of guards
[21] in a museum where corridors in the museum correspond
to edges and task is to place a minimum number of guards
so that there is at least one guard at the end of each corridor.
Fig. 1 depicts the problem in brief.

Minimum vertex cover problem is a special case of set
cover problem[5] which takes as input an arbitrary collection
of subsets of the universal set V, and

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1002

the task is to find a smallest subsets from S whose union is
V. The minimum vertex cover problem also closely related
to many other hard graph problems and so it is of interest
to the researchers in the field of design of optimization
and approximation algorithms. For instance the independent
set problem[12][10] is similar to the minimum vertex cover
problem because a minimum vertex cover defines a maximum
independent set(MIS) and vice versa. The MIS and MVC
problems are related in that the maximum independent set
contains all those vertices that are not in the minimum vertex
cover of the graph. Another interesting problem that is closely
related to the minimum vertex cover is the edge cover which
seeks the smallest set of edges such that each vertex is included
in one of the edges.

There are two versions of the vertex cover problem: the
decision and optimization versions. In the decision version,
the task is to verify for a given graph G whether there exists a
vertex cover of a specified size but in the optimization version
the task is to find a vertex cover of minimum size. In this paper
we consider the optimization version of the minimum vertex
cover with the goal of obtaining optimum solution. Now the
minimum vertex cover problem is formulated as an integer
programming problem by using the following conditions:
Binary variables a (i = 1,2,3,...,n; j = 1,2,3,...,n) form the
adjacency matrix of the graph G. Each variable has only two
values (1 or 0) according as an edge exists or not. In other
words, if an edge (v ,v) is in E, then a is 1 else a is 0. For
example the graph of Fig.1 has the following adjacency matrix

A =

The output of the program expresses the vertex v is in the
vertex cover or not. v =1 if it is in the vertex cover otherwise
v =0. Thus the total number of vertices in the vertex cover
can be expressed by Z = . At least one vertex
of the edge () must be included in the vertex cover, so
we have the constrained condition of the minimum vertex
cover can be written as 1. Thus the problem can be
mathematically transformed into the following optimization
problem as

Min Z =

Subject to

E

V

III. TERMINOLOGIES, ALGORITHM AND

COMPUTATIONAL COMPLEXITY

Neighborhood of a vertex: Let G = (V, E), V is a vertex set
and E is an edge set, be an undirected graph and let = n
and = m. Then for each v V, the neighborhood of v is
defined by and N[v] =
v N(v).

Degree of a vertex: The degree of a vertex v V, denoted
by d(v) and is defined by the number of neighbors of v.

Support of a vertex: The support of a vertex v V is defined
by the sum of the degree of the vertices which are adjacent to
v, i.e., support(v) = s(v) = .

A. Vertex Support Algorithm (VSA)- Proposed

The following algorithm is designed to find the general
minimum vertex cover of a graph G. Adjacency matrix
of the given graph G of n vertices and m edges are given
as the input of the program. The degree d(v) and support
s(v) of each vertex v V are calculated. Support of the vertex
calculated by the relation . Add the vertex
which has the maximum value of s(v) into the vertex cover

. If one or more vertices have equal maximum value of
the s(v), in this case if (d(v) d(v)), add the vertex v
into the vertex cover otherwise add v into . Update
the adjacency matrix of G by putting zero in to the row and
column entries of the corresponding vertex . Proceed
the above process until the edge set E has no edges. i.e., up
to . The pseudo-code of the proposed algorithm
is given below.

Input: G (V, E)
Output: Z =
while E do
step 1:
for i 1 to n
for j 1 to n

step 2:
for i 1 to n
for j 1 to n

step 3:
;

k = 1;
select the vertex which has the maximum value of s(v)
in to
for i 2 to n
if

;
t = i;

end if
if multiple vertices have equal maximum value of s(v)
then follow step 3a
step 3a:
if()

;

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1003

t = i;

end if
if()

;
t = i-k;

end if
k = k+1;
end for
step 4:
for i 1 to n

;
;

end for
end while.
for i 1 to n
if

;
else

;
end for
end

B. Computational Complexity

The worst case complexity of finding the solution of the
minimum vertex cover problem using VSA can be obtained
as follows: Assume that there are n vertices and m edges, in
the proposed algorithm, calculation of degree of vertices in
step 1 and support of vertices in step 2 requires O()and
O() running time respectively. To pick the vertex which has
the maximum value of s(v) in step 3 requires O() running
time. The procedure of the algorithm goes up to m steps (worst
case). So the overall running time of the procedure of SRA
can be deduced as follows: m(O()+ O()+ O()) =
O() = O().

IV. GRAPH MODELS

This section outlines the graph models used to assess the
effectiveness of the proposed algorithm in previous section.
The graph models used are (i) G(n, p) graphs[3] and (ii)
G(n, m) graphs[3][22]. The models are standard random
graph models from the graph theory and all the graphs are
undirected.

A. G(n, p) Model

The G(n, p) model is also called Erdos Renyi random
graph model[3], consists of graphs of n vertices for which
the probability of an edge between any pair of nodes is given
by a constant . To ensure that graphs are almost always
connected, p is chosen so that . To generate a
G(n, p) graph we start with an empty graph. Then we iterate
through all pairs of nodes and connect each of these pairs with
probability p.

1) Algorithm to generate (G, n, p)graphs: The pseudo code
for generating G(n, p) graphs as follows

initialize graph G(V, E)
for i 1 to n
for j i+1 to n
add edge (i, j) to E with probability p
return (G).
The expected number of edges of G(n, p) graph is

and expected degree is np. Graphs are generated for
different p and n values.

B. G(n, m) Model

The G(n, m) model consists of all graphs with n vertices
and m edges. The number of vertices n and the number of
edges m are related by m = nc, where c 0 is constant. To
generate a random G(n, m) graph, we start with a graph
with no edges. Then, cn edges are generated randomly using
uniform distribution over all possible graphs with cn edges.
Each node is thus expected to connect to 2c other nodes on
average. The pseudo-code for the random graph generation is
shown in the following algorithm.

1) Algorithm to generate (G, n, c)graphs: The pseudo code
for generating G(n, m) graphs as follows

initialize graph G(V, E)

for i 1 to m
repeat
e random edge
until e not present in E
E E
return (G).

V. EXPERIMENTAL RESULTS AND ANALYSIS

All the procedures of VSA have been coded in C++ lan-
guage. The experiments were carried out on an Intel Pentium
Core2 Duo 1.6 GHz CPU and 1 GB of RAM. The effectiveness
of the VSA heuristic was evaluated using 136 instances. These
instances are divided into 3 sets as shown in the TABLE
I. Simulations are carried out on three types of graphs: the
randomly generated small size, moderate and large scale
graphs for the minimum vertex cover problem.

TABLE I
MVC INSTANCES

Problem No. of Scale Graph Optimal

set Instances Model Solution

1 36 small-large G(n, p) Unknown

2 80 small-large DIMACS Known

3 20 moderate G(n, m) Unknown

A. Results for random graphs

We first tested the VSA on 36 random graphs generated
based on the concept explained in Section 4.1. The result
we recorded for each test graph and their information are
shown in the TABLE II and these results are compared with

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1004

the theoretical evaluation of expected MIS(MVC) for G(n, p)
random graphs, shown in [15], and it is guaranteed that the
proposed algorithm estimations are quite well to the expected
size of the minimum vertex cover. In the 36 instances tested the
maximum time taken of 29 seconds, (3000, 0.8; 4000, 0.9 &
5000, 0.8), is an encouraging one but also it is comparatively
very less time for finding the MVC of random graphs of large
number of vertices with high density. So, it is interest to see the
performance of the proposed algorithm on benchmark graphs
with known optimal (best known) solutions.

TABLE II
SIMULATION RESULTS FOR THE 1 SET OF INSTANCES

Graph VSA Graph VSA

n p Time(s) n p Time(s)

100 0.7 85 1 700 0.7 654 6

0.8 80 1 0.8 648 3

0.9 69 1 0.9 628 12

150 0.8 127 1 1000 0.7 917 17

0.9 113 3 0.8 893 8

0.95 96 2 0.9 888 28

200 0.7 181 1 2000 0.7 1871 23

0.8 174 3 0.8 1858 18

0.9 157 5 0.9 1841 27

300 0.7 279 2 3000 0.7 2857 15

0.8 271 1 0.8 2833 29

0.9 249 5 0.9 2811 17

400 0.7 377 1 4000 0.7 3827 28

0.8 369 2 0.8 3794 27

0.9 347 4 0.9 3764 29

500 0.7 468 1 5000 0.7 4773 23

0.8 459 5 0.8 4751 29

0.9 441 3 0.9 4717 24

B. Results for DIMACS benchmark graphs

To test the performance of VSA approach, further we have
tested the proposed algorithm on benchmark graphs with
known results, they have been extracted from DIMACS[7]
challenge suite. That suite structured from the perspective of
finding maximum cliques, so we considered the benchmark
graphs as . We compare the heuristic performance with
implementation of the algorithms KLS[13], OCH[1] and the
results were shown in the TABLES III & IV. The first two
columns reports the type of the instances such as name,
cardinality of the instances; the third gives the best results
obtained in the challenge, the forth,fifth and sixth gives the
minimum vertex cover found by corresponding algorithms.
Sixth column reports the optimality achieved by proposed
algorithm, in which * indicates the instances where proposed
algorithm fail to reach the optimality, mostly in MANN type
of instances. In TABLES V and VI, we listed the CPU time
(in seconds) and success rate to find the MVC of the DIMACS
instances. TABLES III, IV, V & VI shows that proposed
algorithm could find the optimal solution for most of the
DIMACS benchmark graphs i.e., out of 80 instances tested
the proposed algorithm reaches the optimum value for 73
instances.

TABLE III
SIMULATION RESULTS FOR DIMACS BENCHMARK GRAPHS

Optimum KLS OCH VSA

brock200 1 200 179 181 - 179

brock200 2 200 188 190 188 188

brock200 3 200 185 187 - 185

brock200 4 200 183 186 183 183

brock400 1 400 373 380 373 373

brock400 2 400 371 377 371 371

brock400 3 400 369 377 369 369

brock400 4 400 367 377 367 367

brock800 1 800 777 777 780 777

brock800 2 800 776 776 776 776

brock800 3 800 775 775 775 775

brock800 4 800 774 774 777 774

C125.9 125 91 - 91 91

C250.9 250 206 - 206 206

C500.9 500 443 - 443 443

C1000.9 1000 932 - 932 932

C2000.5 2000 1984 - 1984 1984

C2000.9 2000 1923 - 1923 1923

C4000.5 4000 3982 - - 3982

c-fat200-1 200 188 188 - 188

c-fat200-2 200 176 176 - 176

c-fat200-5 200 142 - - 144*

c-fat500-1 500 486 486 - 486

c-fat500-2 500 474 474 - 474

c-fat500-5 500 446 448 - 446

c-fat500-10 500 126 127 126 126

DSJC500.5 500 487 487 487 487

DSJC1000.5 1000 985 985 985 985

gen200 p0.9 44 200 156 - 156 156

gen200 p0.9 55 200 145 - 145 145

gen400 p0.9 55 400 345 - 347 345

gen400 p0.9 65 400 335 - 335 335

gen400 p0.9 75 400 325 - 325 325

Hamming6-2 64 32 30 32 32

Hamming6-4 64 60 60 60 60

Hamming8-2 256 128 128 128 128

Hamming8-4 256 240 240 240 240

Hamming10-2 1024 512 512 512 512

Hamming10-4 1024 984 - 984 984

Johnson8-2-4 28 24 24 24 24

Since we know the optimal solution value for each instance
we tested, we can measure the quality of the solution derived
by an algorithm by computing ratio between them. That is, we
define the quality measure ratio as value/optimum, where value
is the value of a solution found by an algorithm and optimum
is the optimal solution value. We note that smaller the ratio
indicates that the performance of an algorithm is guaranteed
one. In TABLE VII we sum up the information concerning
the ratios.

C. Results for G(n, m) random graphs

In this experiment the parameter set opted like small-large
scale problems, that is V varied from 50 to 1000. Here we used

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1005

TABLE IV
SIMULATION RESULTS FOR DIMACS BENCHMARK GRAPHS

Optimum KLS OCH VSA

Johnson8-4-4 70 56 56 56 56

Johnson16-2-4 120 112 112 112 112

Johnson32-2-4 496 480 - 481 480

keller4 171 160 164 160 160

keller5 776 749 750 749 749

keller6 3361 3302 - 3303 3307*

MANN a9 45 29 29 29 29

MANN a27 378 252 261 258 253*

MANN a45 1035 690 - 697 692*

MANN a81 3321 2221 - 2228 2237*

p hat300-1 300 292 292 292 292

p hat300-2 300 275 275 275 275

p hat300-3 300 274 274 274 274

p hat500-1 500 491 491 491 491

p hat500-2 500 464 464 464 464

p hat500-3 500 450 453 453 450

p hat700-1 700 689 693 689 689

p hat700-2 700 656 656 657 656

p hat700-3 700 638 641 640 639*

p hat1000-1 1000 900 900 900 900

p hat1000-2 1000 954 956 955 954

p hat1000-3 1000 934 938 937 935*

p hat1500-1 1500 1488 1490 1488 1488

p hat1500-1 1500 1435 1436 1436 1435

p hat1500-1 1500 1406 1409 1409 1406

san200-0.7.1 200 170 185 170 170

san200-0.7.2 200 182 188 188 188

san200-0.9.1 200 130 155 135 130

san200-0.9.2 200 140 161 143 140

san200-0.9.3 200 156 169 156 156

san400-0.5.1 400 387 393 387 387

san400-0.7.1 400 360 380 360 360

san400-0.7.2 400 370 385 370 370

san400-0.7.3 400 378 388 378 378

san400-0.9.1 400 300 350 304 300

san1000 1000 900 - 900 900

sanr200-0.7 200 282 284 282 282

sanr200-0.9 200 158 159 158 158

sanr400-0.5 400 387 387 387 387

sanr400-0.7 400 379 379 379 379

the G(n, m) graph model to generate the random graphs. For
most of the test instances the optimal solutions are unknown,
we obtained the time (in sec.) taken by the VSA for finding
the minimum vertex cover of the graph. These results are
shown in the Fig. 2 where the major axis represents the size
(in terms of number of vertices) of the 20 test instance’s and
for each test instances the time taken by VSA were plotted
as points and for each instances their points are linked by a
line. It is clear from the Fig. 2 that the time taken by the
VSA to find the optimum value of each of the MVC instances
increases steadily when the size of the problem increases and
the maximum time taken is 7.41 sec. With this figure we show
that the proposed algorithm took very less time to produce a

TABLE V
TIME TAKEN (SEC.) AND SUCCESS RATE FOR DIMACS INSATNCES

Density Time(s) Success(%)
brock200 1 0.745 1 100
brock200 2 0.496 1 100
brock200 3 0.605 1 100
brock200 4 0.658 1 100
brock400 1 0.748 1 100
brock400 2 0.749 1 100
brock400 3 0.748 1 100
brock400 4 0.749 1 100
brock800 1 0.649 2 100
brock800 2 0.651 2 100
brock800 3 0.649 5 100
brock800 4 0.65 4 100

C125.9 0.898 1 100
C250.9 0.899 1 100
C500.9 0.9 6 100
C1000.9 0.901 13 100
C2000.5 0.5 18 100
C2000.9 0.9 26 100
C4000.5 0.5 30 100

c-fat200-1 0.077 1 100
c-fat200-2 0.163 1 100
c-fat200-5 0.426 1 96
c-fat500-1 0.036 1 100
c-fat500-2 0.073 1 100
c-fat500-5 0.186 1 100
c-fat500-10 0.374 1 100
DSJC500.5 0.5 13 100

DSJC1000.5 0.5 20 100
gen200 p0.9 44 0.9 1 100
gen200 p0.9 55 0.9 1 100
gen400 p0.9 55 0.9 6 100
gen400 p0.9 65 0.9 9 100
gen400 p0.9 75 0.9 8 100

Hamming6-2 0.905 1 100
Hamming6-4 0.349 1 100
Hamming8-2 0.969 3 100
Hamming8-4 0.639 2 100
Hamming10-2 0.99 9 100
Hamming10-4 0.829 23 100
Johnson8-2-4 0.556 1 100

minimum vertex cover for each of the test instances of G(n,
m) graph model also.

VI. CONCLUSION

A new VSA for MVC of graphs using vertex cover has been
proposed and its effectiveness has been shown by simulation
experiments. The terminology support of a vertex introduced
in the new model, with that, the new model can find the
minimum vertex cover effectively. Experimental result shows
that this approach greatly reduce the execution time and in
addition, the simulation results show that the new VSA can
yield better solutions than KLS and OCH heuristics found
in the literature. At the same time, our approach gives best
solutions for DIMACS benchmark graph instances and also
for random graphs. The proposed algorithm has led to give
near optimal solutions for most of the test instances where we
know the optimal solutions. Furthermore attractiveness of this
heuristic is its outstanding performance in the optimization of
MVC.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

1006

TABLE VI
TIME TAKEN (SEC.) AND SUCCESS RATE FOR DIMACS INSTANCES

Density Time(s) Success(%)
keller6 0.818 25 91

MANN a9 0.927 1 100
MANN a27 0.99 12 99
MANN a45 0.996 33 99
MANN a81 0.999 43 98
p hat300-1 0.244 1 100
p hat300-2 0.489 1 100
p hat300-3 0.744 1 100
p hat500-1 0.253 2 100
p hat500-2 0.505 5 100
p hat500-3 0.752 3 100
p hat700-1 0.249 1 100
p hat700-2 0.498 15 100
p hat700-3 0.748 18 98
p hat1000-1 0.245 8 100
p hat1000-2 0.49 23 100
p hat1000-3 0.744 30 98
p hat1500-1 0.253 23 100
p hat1500-1 0.506 26 100
p hat1500-1 0.754 24 100
san200-0.7.1 0.7 1 100
san200-0.7.2 0.7 1 100
san200-0.9.1 0.9 5 100
san200-0.9.2 0.9 17 100
san200-0.9.3 0.9 23 100
san400-0.5.1 0.5 6 100
san400-0.7.1 0.7 1 100
san400-0.7.2 0.7 1 100
san400-0.7.3 0.7 19 100
san400-0.9.1 0.9 8 100

san1000 0.502 1 100
sanr200-0.7 0.697 1 100
sanr200-0.9 0.898 1 100
sanr400-0.5 0.501 1 100
sanr400-0.7 0.7 1 100

TABLE VII
AVERAGES AND STANDARD DEVIATIONS OF THE RATIO VALUES

Algorithm Min. Average Max. Std. Dev.
VSA 1.00 1.06 1.18 0.06
OCH 1.00 1.26 1.45 0.13
KLS 1.15 1.40 1.70 0.17

REFERENCES

[1] C. Aggarwal , J. B Orlin and R. P Tai, Optimized cross cover for the
independent set problem, Operations Research, Vol. 45, (1997), 226-234.

[2] P. Berman and T. Fujito, On approximation properties of the independent
set problem for low degree graphs, Theory of Computing Syst., Vol. 32,
(1999), 115 - 132.

[3] B. Bollobas, Random graphs, 2nd Ed., Cambridge, UK: Cambridge
University press (2001).

[4] J. M. Bourjolly , P. Gill , G. Laporte and H. Mercure, An exact quadratic
0-1 algorithm for the stable set problem, American Mathematical Society
Providence, RI. 1996, pp. 53-73.

[5] T. H. C. E. Cormen, R. L. R. Leiserson, and C. Stein, Introduction to
algorithms, 2nd ed., McGraw - Hill, New York (2001).

[6] F. Dehne et. al, Solving large FPT problems on coarse grained parallel
machines, Available: http://www.scs.carleton.ca/fpt/papers/index.htm.

[7] DIMACS clique benchmarks, Benchmark instances made available by
electronic transfer at dimacs.rutgers.edu, Rutgers Univ., Piscataway. NJ.
(1993).

[8] M. R. Fellows, On the complexity of vertex cover problems, Technical
report, Computer science department, University of New Mexico (1988).

[9] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the theory NP - completeness, San Francisco: Freeman (1979).

Fig. 2. Time taken (in sec.) by VSA for 3rd set of instances

[10] M. R. Garey, D. S. Johnson and L. Stock Meyer, Some simplified NP
- complete graph problems, Theoretical computer science, Vol. 1563,
(1999), 561 - 570.

[11] D. S. Hochbaum Efficient bounds for the stable set, vertex cover and
set packing problems, Discrete Appl. Mathematics, Vol. 6, (1983), 243 -
254.

[12] R. M. Karp, Reducibility among combinatorial problems, Plenum Press,
New York, (1972), pp 85 - 103.

[13] K, Katayama, A. Hamamoto and H. Narihisa, An effective local search
for the maximum clique problem, Information Processing Letters, Vol. 95,
(2005), 503-511.

[14] S. Khuri and T. Back, An evolutionary heuristic for the minimum vertex
cover problem, J. Kunze and H. Stoyan, editors, KI - 94 workshops
(Extended Abstracts), Bonn (1994), pp. 83 - 84..

[15] D. Matula, On the complete subgraph of a random graph, Combinatory
mathematics and its Applications, (1970), pp. 356-369.

[16] B. Monien and E. Speckenmeyer Ramsey numbers and an approximation
algorithm for the vertex cover problems, Acta Informatica, Vol. 22,
(1985), 115 - 123.

[17] W. Pullan, Optimisation of unweighted/weighted maximum independent
sets and minimum vertex covers, Discrete Optimization, Vol. 6, (2009),
214-219.

[18] S.J. Shyu, P.Y. Yin and B.M.T. Lin, An ant colony optimization algorithm
for the minimum weight vertex cover problem, Annals of Operations
Research, Vol. 131, (2004), 283 - 304.

[19] U. Stege, Resolving conflicts from problems in computational Biology,
Ph.D thesis, No.13364, ETH Zurich (2000).

[20] C. Z. Tang, X. Xu et al., An algorithm based on Hopfield network
learning for minimum vertex cover problem, Lecture Notes in computer
science, Vol. 3173, (2004), 430 - 435,.

[21] M. Weight and A. K. Hartmann, The number of guards needed by a
museum - a phase transition in vertex covering of random graphs, Phys
- Rev. Lett., 84, 6118 (2000b).

[22] M. Weight and A. K. Hartmann, Minimal vertex covers on finite-
connectivity random graphs - A hard-sphere lattice-gas picture, Phys.
Rev. E, 63, 056127.

[23] X. Xu and J. Ma, An efficient simulated annealing algorithm for the
minimum vertex cover problem, Nerocomputing, Vol. 69, Issues 7-9,
(2006), 613 - 616.

