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Remarks on Energy Based Control of a Nonlinear,
Underactuated, MIMO and Unstable Benchmark

Guangyu Liu

Abstract—In the last decade, energy based control theory has
undergone a significant breakthrough in dealing with underactated
mechanical systems with two successful and similar tools, controlled
Lagrangians and controlled Hamiltanians (IDA-PBC). However, be-
cause of the complexity of these tools, successful case studies are
lacking, in particular, MIMO cases. The seminal theoretical paper
of controlled Lagrangians proposed by Bloch and his colleagues
presented a benchmark example–a 4 d.o.f underactuated pendulum
on a cart but a detailed and completed design is neglected. To
compensate this ignorance, the note revisit their design idea by
addressing explicit control functions for a similar device motivated
by a vector thrust body hovering in the air. To the best of our
knowledge, this system is the first MIMO, underactuated example
that is stabilized by using energy based tools at the courtesy of the
original design idea. Some observations are given based on computer
simulation.

Keywords—Controlled Lagrangian, Energy Shaping, Spherical In-
verted Pendulum, Controlled Hamiltonian.

I. INTRODUCTION

THe method of controlled Lagrangians (CL) [1] is a
constructive approach to the derivation of stabilizing

control laws for Lagrangian mechanical systems where the
Lagrangian has the form of kinetic minus potential energy. The
theory had its origins in [2], [3], [4] and was systematically
introduced in [5], [1]. Various supplementary and additional
results have appeared in the literature as well (e.g. [6], [7]).
The method of controlled Lagrangians was developed in two
salient phases: (i) the controlled Lagrangian method dealt with
mechanical systems with symmetry and provided symmetry-
preserving kinetic shaping and feedback-controlled dissipation
for state-space stabilization in all variables but the symmetry
variables [5]; (ii) the potential shaping complemented the
kinetic shaping by breaking the symmetry and stabilizing the
remaining state variables [1]. The key notion of the method of
controlled Lagrangians was total energy shaping, which had
advantages over the classical potential shaping methods [8].
Meanwhile, there had been a development of its Hamiltonian
counterpart, which is called port-controlled Hamiltonian [9],
[10]. The relation between these two methods was studied
in [11], [12]. In principle, both methods are passivity based
control tools and equivalent to each other in terms of simple
mechanical systems.

Applying the method of controlled Lagrangian for the
spherical inverted pendulum was presented in [4], [5], [1]. The
design in [4], [5] did not solve the stabilization of full phase
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space because, on one hand, the tool with kinetic shaping
alone could not regulate the translational position, on the other
hand, the nutation angle was an additional symmetry which
was out of control by the method 1. We observed that the
complete method in [1] cannot directly solve the regulation
of the nutation angle (an additional symmetry). Due to this
reason, a model in pure Cartesian coordinates was presented
in [1]. The authors also showed in the same paper that the
complete theory with both the kinetic energy and potential
energy was applicable to the spherical inverted pendulum
model in pure Cartesian coordinates by checking all matching
conditions. Then, to complete the design, one was left to make
other conditions satisfied in the asymptotic stability theorem.
However, the rest is ignored in the paper and no simulation is
presented.

The objective of this paper is to draw people’s attention
on a challenging nonlinear control system, which is MIMO,
underactuated and unstable, that can be controlled by energy
based control methods (to the best of our knowledge, it is the
only successful example of its kind). To this end, we apply
the tool in [1] for a more general model which is also in
pure Cartesian coordinates. The device is motivated by several
real-life applications, for example, an abstraction of a vector
thrusted body hovering in a constant altitude. The metric tensor
of the new model is invertible at the absence of the cart while
the original one does not. Furthermore, some observations are
given based on computer simulation. The work completes the
original design [1]. Perhaps, more importantly, this tutorial-
like note shows how this complex and powerful tool works
for a challenging benchmark system. Although port-controlled
Hamiltonian [9], [10] is considered to be more general than
controlled Lagrangians, applying port-controlled Hamiltonian
for such a system is still very hard where one must solve a
set of second order partial differential equations. From this
aspect, the case study is inspiring and aspiring.

The remaining of the paper is organized as follows: in
Section II, we review the controlled Lagrangian method; we
present a model of the spherical inverted pendulum in Section
III; we complete the control design in Section IV; computer
simulation is carried out in Section V; final observation is
given in Section VI.

1The nutation angle is with respect to the generalized coordinates: two
translational variables and two angles–procession and nutation.
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II. PRELIMINARIES

A. The Notations

We consider a mechanical system with configuration space
a n-dimensional manifold Q = S×G and let the configuration
coordinates be denoted by q = (xα, θa) ∈ Rn, where
coordinates xα ∈ S with index α going from 1 to n − r
are called the shape variables and coordinates θa ∈ G, with
index a going from 1 to r are called the group variables and
the corresponding S, G are called the shape space and the
Abelian group respectively. We assume that the Lagrangian
of the system does not depend on the variables θa but may
depend on its derivative (i.e., the velocity), the group variables
are fully actuated and the shape variables are unactuated. TQ
denotes tangent bundle to Q and we have (q̇, q) ∈ TQ for
q ∈ Q.

We use the tensor of type (r, s), that is, T j1,...,jr

i1,...,is
with r

covectors and s vectors. As is standard practice, gab represents
a matrix with index a going from 1 to m and b going from
1 to n, gab denotes the inverse of the matrix gab if n = m.
We use comma to denote the partial derivative of a tensor as
follows τ b

δ,α = ∂τb
δ

∂α . The summation convention over repeated

indices is implied to the tensor product, for example, ηa
α

�
=

gαcg
ca =

∑r
i=1 gαig

ia with repeated index c going from 1 to
r, and gaβẋa =

∑r
i=1 giβẋi with repeated index a going from

1 to r.
In the case of the spherical inverted pendulum, xα with

α going from X to Y represents the angular positions and
θa with a going from x to y represents the translational
positions. We denote the metric tensor g

�
= gij with i, j

going through x, y,X, Y respectively. If one is comfortable

with matrix notations, we can represent gij =
(

gab gaα

gβb gβα

)
where a, b going from x to y and α, β going from X to Y .
We use English character a, b to represent that both indices go
from x and y and a, b are independent of each other and the
same argument applies to Greek character α, β. In addition,
we denote a state xe with subscript e the equilibrium.

B. Lagrangian and Controlled Lagrangian

Using the above notations, the Lagrangian L : TQ → R for
the mechanical system is defined as

L
(
xα, ẋβ , θa, θ̇b

)
=

1
2
gij q̇

iq̇j − V (q)

=
1
2
gαβẋαẋβ + gαaẋαθ̇a +

1
2
gabθ̇

aθ̇b

−V (xα, θa) (1)

where gij is the metric tensor, 1
2gij q̇

iq̇j is the kinetic en-
ergy and V (q) is the potential energy. The controlled Euler-
Lagrange equations for the given Lagrangian (1) are

d
dt

∂L
∂ẋα

− ∂L
∂xα

= 0

d
dt

∂L
∂θ̇a

− ∂V

∂θa
= ua, (2)

where the controls ua only act in the θa directions.

The modification of L involves changing the metric tensor
gij that defines the kinetic energy (1/2)gij q̇

iq̇j and modifying
the potential energy that breaks the symmetry in the group
variables θa by introducing quantities τ, σ, ρ, ε. Thus, the
controlled Lagrangian takes the form

L̃ �
= L

(
xα, ẋβ , θa, θ̇a + τa

αẋα
)

+
1
2
σgabτ

a
ατ b

βẋαẋβ

+
1
2
(ρ − 1)gab

(
θ̇a + gacgαcẋ

α + τa
αẋα

)
×

(
θ̇b + gbdgβdẋ

β + τ b
βẋβ

)
− Vε(xα, θa), (3)

where L̃ denotes the controlled Lagrangian subject to some
quantities τ, σ, ρ, ε, Vε(·, ·) is an arbitrary function to be
defined which depends on the parameter ε. The controlled La-
grangian implies a new potential energy function V ′(xα, θa) =
V (xα, θa)+Vε(xα, θa). Quantities τ, σ will be defined by the
matching conditions and the values σ, ρ, ε are determined by
stability theorems which is reviewed next.

C. The Matching Theorem

The complete controlled Lagrangian method uses a mod-
ified kinetic energy (kinetic shaping) and a modified poten-
tial energy (potential shaping). The Euler-Lagrange equations
corresponding to the controlled Lagrangian L will be our
closed-loop equations. The new terms appearing in those
equations corresponding to the directly controlled variables
θa are interpreted as control inputs. The modifications to the
Lagrangian are chosen so that no new terms appear in the
equations corresponding to the variables that are not directly
controlled. We refer to this procedure as matching.

We summarize the simplified matching conditions in [5],
[1]:

SM-1: σab = σgab for a constant σ (this defines σab);
SM-2: gab is independent of xα;
SM-3: τ b

α = −(1/σ)gabgαa (this defines τ b
α);

SM-4: gαa,δ = gδa,α (a second condition on the metric);
SM-5: ∂2V

∂xα∂θa gadgβd = ∂2V
∂xβ∂θa gadgαd (the condition for

the existence of Vε).

Theorem 2.1: (Matching theorem [1]) Under Assumptions
(SM-1)-(SM-5), the Euler-Lagrange equations

d
dt

∂L̃
∂ẋα

− ∂L̃
∂xα

= 0 ,
d
dt

∂L̃
∂θ̇a

− ∂L̃
∂θa

= 0,

(4)

for the controlled Lagrangian L̃ coincide with the controlled
Euler-Lagrange equations (2).

Actually, applying Theorem 2.1 defines a control law

ua
�
= ucon

a =
d

dt
(1/σgαaẋα) +

ρ − 1
ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
(5)

where the acceleration terms and parameters σ, ρ, ε is chosen
to satisfy the stability conditions next.
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D. Asymptotic Stability Theorem

In the case that Theorem 2.1 is satisfied, the energy function
associated with the closed-loop system, can be used as a
Lyapunov function, that is, the energy function Ẽ for the
controlled Lagrangian L̃. Then, the stability criteria based
on the Lyapunov function can be established. To achieve
asymptotic stability, a dissipative control udiss

a is added, that
is, we redefine the control law (5) as follows

ua
�
= ucon

a +
1
ρ
udiss

a . (6)

In this case, the Euler-Lagrange equation in terms of controlled
Lagrangian are

d
dt

∂L̃
∂θ̇a

− ∂L̃
∂θa

=
(
− 1

σ
+

ρ − 1
ρ

)
gadgαdu

diss
a

d
dt

∂L̃
∂θ̇a

− ∂L̃
∂θa

= udiss
a (7)

where the additional term udiss
a in (7) does not affect the

matching conditions.
Here, we review a result which is used in our case. To

this end, we need two extra assumptions which replace the
assumption SM-5 and introduce a new coordinate chart.

A new coordinate chart for Q is defined as follows:

(xα, ηa)
�
= (xα, θa + ha(xα)), (8)

where the function h : U → g for an open subset U in S
is the solution of the first order partial differential equation
∂ha

∂xα =
(

ρ−1
ρ − 1

σ

)
gacgαc with ha(xe) = 0.

Two extra assumptions are:

SM-5’: The potential V (xα, θa) is of the form V (xα, θa) =
V1(xα)+V2(θa) where V1 has a maximum at (xα) =
(xα

e ) ((SM-5’) is a particular case of (SM-5)).
SM-6: The matrix (gaα(xα

e )) is one-to-one (injective).

In the new coordinates (xα, ηa), V (xα, θa) = V1(xα) +
V2(θa)) becomes V (xα, ηa) = V1(xα) + V2(ya − ha(xα)).
Then, the solution Vε is given by

Vε(xα, θa)
�
= Vε(xα, ηa) = −V2(ya −ha(xα))+ Ṽε(ηa), (9)

where Ṽε(ηa) is an arbitrary function and the total modified
potential energy function is given by

V ′
ε (xα, ηa)

�
= V (xα, θa) + Vε(xα, ηa) = V1(xα) + Ṽε(ηa),

(10)
We express the kinetic energy as follows

K̃ =
1
2
Aαβẋαẋβ +

1
2
ρgabζ̇

aζ̇b (11)

where ζ̇a = ẏa + (1/ρ)gabgαbẋ
α and Aαβ = gαβ − (1 −

1/σ)gαdg
dagαβ . The controlled energy, Ẽ, is written in new

coordinates as

Ẽ = K̃ + V1(xα) + Ṽε(ηa). (12)

In the new coordinates (xα, ẋα, ηa, η̇a), the controlled La-
grangian takes the form

L̃ �
=

1
2

(
gαβ −

(
ρ − 1

ρ
− 1

σ

)
gabgαagβb

)
ẋαẋβ

+gαaẋαη̇a +
1
2
ρgabη̇

aη̇b − V1(xα) − Ṽε(ηa) (13)

and the Euler-Lagrange equations are

d
dt

∂L̃
∂ẋα

− ∂L̃
∂xα

= 0 ,
d
dt

∂L̃
∂η̇a

− ∂L̃
∂ηa

= udiss
a . (14)

LaSalle’s invariance principle gives the asymptotic stability
of the equilibrium as follows.

Theorem 2.2: (Asymptotic Stabilization-Specific Case [1]):
Assume that conditions (SM-1)-(SM-4), (SM-5’) and (SM-6)
hold. Let (xα

e ) be the maximum point of V1 of interest. Then,
there is an explicit feedback control such that (xα

e , θa
e , 0, 0)

becomes an asymptotically stable equilibrium such that

d

dt
Ẽ = cb

agbdη̇
aη̇b ≥ 0 (15)

and the total control law (6) is written as follows

ua = −κ

(
gβa,γ − gδaAδα

(
gαβ,γ − 1

2
gβγ,α

−(1 + κ)gαdg
dagβa,γ

))
ẋβẋγ + κgδaAδα ∂V

∂xα

+κgδaAδα 1
ρ
gαdg

db

(
−∂V ′

∂θb
+ udiss

b

)

+
ρ − 1

ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
+

1
ρ
udiss

a (16)

where κ
�
= −1/σ, Aαβ

�
= gαβ − (1 + κ)gαdg

dagβa, udiss
a =

cd
agbd

(
ρ−1

ρ − κ
)

gacgαcẋ
α with cd

a a positive definite matrix
and parameters to satisfy the following three conditions:

1) Vε(ηa) should be chosen to have a maximum at ηa
e = θa

e ;
2) ρ < 0;
3) κ > max

{
λ| det(gαβ − λgαagabgbβ)|xα=xα

e
= 0

}− 1 .

III. MODELLING IN PURE CARTESIAN COORDINATES

Successfully applying the controlled Lagrangian method to
the spherical inverted pendulum depends on which model is
used. We observe that the method of controlled Lagrangians
can not derive the full control law to the model in the
coordinates: nutation and procession angles (φ, θ) in [4], [5]
but can derive a control law for the model in pure Cartesian
coordinates considered in [1]. However, the model in [1] has a
problem that the inverse of metric tensor gij does not exist if
the mass of cart is not incorporated. This motives us to derive
a new model in pure Cartesian coordinates.

We consider the spherical inverted pendulum (see Fig. 1)
be a rigid body. Here, we assume that our pendulum is a
pole with the uniform mass density other than the bob with
mass on the top of the massless pole. Let the 4-dimentional
configuration space Q = S ×G. We denote the Cartesian co-
ordinates (x, y) ∈ G be the local coordinates for translational
coordinates of the pendulum and assume that there are two
independent controls (Fx, Fy) that can move the pendulum
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Fig. 1. The configuration of the spherical inverted pendulum

in x and y directions. We take Cartesian coordinates (X, Y )
as the coordinates in S where (X, Y ) is the projections of
the center of mass on the horizontal plane under the local
chart with the origin attached to the bottom of the pendulum
as was suggested in [1]. Thus, q = (x, y,X, Y ) ∈ Q is the
vector of the generalized coordinates. As shown in Fig. 2,
an infinitesimal section with the length dl along the pole is
regarded as an particle with volume 1 · dl, the mass of the
infinitesimal section (resp. the particle) is m

2Ldl where l is the
length of the particle to the pivot and the velocity vector of
the particle is Vl =

(
ẋ + lẊ

L , ẏ + lẎ
L , l

L
XẊ+Y Ẏ√
L2−X2−Y 2

)
.

Then, the kinetic energy of the pendulum can be expressed
as the sum of the kinetic energy of all particles along the pole
and we redefine the kinetic energy in [1] as follows

T = 1
2

∫ 2L

0
m
2L < Vl, Vl > dl

= 1
2

⎛
⎜⎜⎝

ẋ
ẏ

Ẋ

Ẏ

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

m 0 m 0
0 m 0 m

m 0 4m
3

L2−Y 2

L2−X2−Y 2
4m
3

XY
L2−X2−Y 2

0 m 4m
3

XY
L2−X2−Y 2

4m
3

L2−X2

L2−X2−Y 2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

ẋ
ẏ

Ẋ

Ẏ

⎞
⎟⎟⎠

= 1
2gij q̇

iq̇j ,

where gij is the metric tensor.
The total potential energy is given by 2

V
�
= mg(

√
L2 − X2 − Y 2 − L). (17)

We define the Lagrangian of the pendulum L : TQ �→ Q

L = K(ẋ, ẏ, X, Y, Ẋ, Ẏ ) − V (X,Y ), (18)

which is independent of (x, y), the cyclic variables.
Then, applying Euler-Lagrange equations (2) to (18) gives

the equations of dynamics, xα with index α going from X to
Y , θa with index a going from x to y and ua with index α

going from x to y, that is, (ux, uy)
�
= (Fx, Fy).

2Noting that we do not use the same potential energy as [1] and the potential
energy in our formulation is non-positive in order to make the closed loop
energy function a Lyapunov candidate.

dl

L2

l

L
dlm

2
⋅

Fig. 2. A partical in the spherical inverted pendulum

IV. CONTROL DESIGN AND DOMAIN OF ATTRACTION

A. Outline

In this section, we apply Theorem 2.2 to the spherical
inverted pendulum to obtain the control law. In addition, we
estimate the domain of attraction for the closed loop system.
To this end, we proceed as follows:

Step 1: We check that all matching conditions in The-
orem 2.2 are satisfied by defining the controlled
Lagrangian L̃ in (3) with respect to the Lagrangian
(18) of the spherical inverted pendulum 3;

Step 2:We modify the potential energy function such that
the new potential energy function has a maximum
at the upper equilibrium of the pendulum and after
completing step 1-2, we are ready to compute the
control law;

Step 3:We compute the control law according to the general
control formula (16) and choose the parameters in
the obtained control law to satisfy the remaining
conditions in Theorem 2.2 such that the asymptotic
stability of the closed loop system is achieved;

Step 4:We provide a technical lemma to give an estimate
of the domain of attraction. In fact, for any given
compact subset of the upper space of the pendulum,
the asymptotic stability can be achieved by adjusting
a parameter in the controller.

B. Step 1: Defining Controlled Lagrangian and checking
matching conditions

For the configuration coordinates q = (θa, xα) with index
a going from x to y and index α going from X to Y , we let
θa = (x, y), xα = (X, Y ). As we can seen from the kinetic
energy T = 1

2gij q̇
iq̇j in (17), we read the sub-matrices of the

metric tensor gij as follows gab =
(

m 0
0 m

)
, gαa = gaβ =(

m 0
0 m

)
, gαβ =

(
4m
3

L2−Y 2

L2−X2−Y 2
4m
3

XY
L2−X2−Y 2

4m
3

XY
L2−X2−Y 2

4m
3

L2−X2

L2−X2−Y 2

)
. So, we

can define the controlled Lagrangian as the formula in (3).

3The matching conditions were checked in [1] for the simplified model in
pure Cartesian coordinates.
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We check that all matching conditions (SM-1)-(SM-4),
(SM-5’) and (SM-6) in Theorem 2.2 are satisfied:

(SM-1) is satisfied if we define σab
�
= σgab = σmδab where

σ is constant and δab is the Kronecker δij =
{

0 i �= j
1 i = j

.

(SM-2) is satisfied because gab is constant matrix, which is
independent of (X, Y ).

(SM-3) is satisfied if we define τ b
α

�
= −(1/σ)gabgαa such

that τx
X = τy

Y = −(1/σ), τx
Y = τy

X = 0.
(SM-4) is satisfied because gXx,Y = ∂m

∂Y = 0, gY x,X =
∂0
∂X = 0, gXy,Y = ∂0

∂Y = 0 and gY y,X = ∂m
∂X = 0.

(SM-5’) is satisfied because V = V1(xα) + 0 =
mg(

√
L2 − X2 − Y 2 − L) and V1 has a maximum at the

equilibrium (X, Y ) = (0, 0).
(SM-6) is satisfied since the mapping gαa(xα

e ) =(
m 0
0 m

)
(X,Y )=(0,0)

evaluated at the equilibrium is injective.

C. Step 2: Defining the Modified Potential Energy Function

Since all matching conditions (SM-1)-(SM-4), (SM-5’) and
(SM-6) in Theorem 2.2 are satisfied, according to the proce-
dure, we must modify the potential energy function, which is
referred to as the symmetry breaking.

Firstly, to modify the potential energy, we introduce the
new coordinate chart. The solutions of the partial differential
equations ∂hx

∂X = ρ−1
ρ − 1

σ , ∂hx

∂Y = 0, ∂hy

∂Y = ρ−1
ρ − 1

σ

and ∂hy

∂X = 0 with boundary conditions hx|(X,Y )=(0,0) = 0
and hy|(X,Y )=(0,0) = 0 in this case are trivial, which are
hx =

(
ρ−1

ρ − 1
σ

)
X , hy =

(
ρ−1

ρ − 1
σ

)
Y . We define the new

coordinate chart (ηa, xα) = (ηx, ηy, X, Y ) according to (8),
where ηx = x +

(
ρ−1

ρ − 1
σ

)
X , ηy = y +

(
ρ−1

ρ − 1
σ

)
Y.

Next, we define the potential V ′
ε for the controlled La-

grangian. To this end, we define a negative definite function
as Ṽε(ηa)

�
= −εmg

(
(ηx)2 + (ηy)2

)
which has a maximum at

the equilibrium (ηx, ηy) = (0, 0) when ε > 0. As shown in
(10), the potential V ′

ε for the controlled Lagrangian in the new
coordinates is given by

V ′
ε

�
= mg(

√
L2 − X2 − Y 2 − L) − εmg

(
(ηx)2 + (ηy)2

)
.

(19)

D. Step 3: Computing the control law

According to the general formula (16), we obtain the control
law as

ux
�
= F̃x(q, q̇, κ, ρ, ε), uy

�
= F̃y(q, q̇, κ, ρ, ε) (20)

where κ, ρ, ε are design parameters to be defined which
is given in appendix. To make the closed loop system
asymptotically stable, we determine κ, ρ and ε by applying
Theorem 2.2. We choose ε > 0 such that the appended
potential energy function Ṽε is negative definite. We also
check that the following conditions are satisfied.
(1) Ṽε(ya) has a maximum at the equilibrium
(θa

e ) = (xe, ye) = (0, 0) because the equilibrium
(xα

e ) ∈ Q/G, i.e., (X, Y ) = (0, 0), are the maximum

point of V1 according to (SM-5’) and the constructed function
Ṽε(ya) have a maximum at the equilibrium (ya

e ) = (0, 0).
(2) We assign ρ to be a negative real number.
(3) We assign κ a positive real number such that κ >
max

{
λ ∈ R | det(gαβ − λgαagabgbβ)|xα=xα

e
= 0

} − 1, that

is, κ > max
{

λ ∈ R | det
(

(4/3 − λ)m 0
0 (4/3 − λ)m

)
= 0

}
−

1 and obtain κ > 1/3. Consequently, we have κ > 1/3, ρ < 0
and ε > 0.

E. Step 4: Estimating the Domain of Attraction

The function h : U → R is valid for U = {(X, Y ) ∈
R2|√X2 + Y 2 < L} which corresponds to the upper space
as the case that the pendulum is above the horizontal plane.
We use R2×U ⊂ Q as a domain of a local chart on Q and the
new local chart on TQ is given as: (x, y, X, Y, ẋ, ẏ, Ẋ, Ẏ ) ∈
(R2 ×U)×R4. Likewise, for the new local chart (xα, ηa) on
R2 × U ⊂ Q, its corresponding local chart on TQ is given
as: (x, y, X, Y, ẋ, ẏ, Ẋ, Ẏ ) �→ (ηx, ηy, X, Y, η̇x, η̇y, Ẋ, Ẏ ) ∈
(R2 × U) × R4.

By (12), the energy function in the new chart is written as

Ẽ =
1
2

(
Ẋ

Ẏ

)T

Aαβ

(
Ẋ

Ẏ

)
+

1
2
mρ

(
(η̇x)2 + (η̇y)2

)
(21)

−mg(L −
√

L2 − X2 − Y 2) − εmg
(
(ηx)2 + (ηy)2

)
.

where Aαβ =
(

α1 − m(1 + κ) α2

α2 α3 − m(1 + κ)

)
with α1 =

4m
3

L2−Y 2

L2−X2−Y 2 , α2 = 4m
3

XY
L2−X2−Y 2 and α3 = 4m

3
L2−X2

L2−X2−Y 2

Then, we can conclude the next result,
Corollary 4.1: Suppose that all conditions in Theorem 2.2

are satisfied. For any compact subset Ũ ∈ U , there exists a
κ∗ > 1/3 such that for κ > κ∗, the controlled energy (21)
is negative definite and the corresponding Lyapunov function
V = −Ẽ is positive definite for all states

(ηx, ηy, X, Y, η̇x, η̇y, Ẋ, Ẏ ) ∈ (R2 × Ũ) × R4.

Furthermore, let the set Ωc = {(xα, ηa, ẋα, η̇a) ∈ TQ|V ≤
c} ⊂ (R2× Ũ)×R4 be a positively invariant set for some c ∈
R. Let the set E = {(xα, ηa, ẋα, η̇a) ∈ Ωc|η̇a = 0 or d

dt Ẽ =
0} and M is the largest invariant subset of E . Then, Ωc is an
estimate of domain of attraction and M = (xa

e , ẋa
e , ηα

e , η̇α
e ) =

(0, 0, 0, 0).
Proof: The proof is carried out in two steps: at step one,

we find κ∗ such that for κ > κ∗, the energy function is
negative definite; at step two, we show that the set Ωc is an
estimate of domain of attraction and our argument is based
on the result for the general case in [1] where the LaSalle’s
invariance principle is used to establish the stability.

At the first stage, we try to make the energy (21) negative
definite and zero at zero.

We check that:
(1) −mg(L − √

L2 − X2 − Y 2) ≤ 0 for (X, Y ) ∈ U where
the equality holds if and only if X = Y = 0;
(2) −εmg

(
(ηx)2 + (ηy)2

) ≤ 0 for (ηx, ηy) ∈ R2 where the
equality holds if and only if ηx = ηy = 0;
(3) 1

2mρ
(
(η̇x)2 + (η̇y)2

) ≤ 0 where the equality holds if and
only if η̇x = η̇y = 0.
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Then, to make the energy function (21) negative definite, we
must render the first quadratic term in (21) negative definite
with respect to (Ẋ, Ẏ ) by adjusting the parameter κ. This
implies the symmetric matrix Aαβ is negative definite, that is,
α1−m(1+κ) < 0 and (α1−m(1+κ))(α3−m(1+κ))−α2

2 < 0
are satisfied. To this end, we let κ satisfy

κ >
1
3
, κ >

‖α1‖∞
m

− 1

κ > 2m
(‖α1‖∞ + ‖α3‖∞ +

(‖α1‖2
∞ + 4‖α2‖2

∞+

‖α1‖∞‖α3‖∞ + ‖α3‖2
∞

)1/2
)
− 1 (22)

simultaneously where we introduce infinity norm ‖ · ‖∞ such
that αi ≤ ‖αi‖∞, i = 1, 2, 3 for all (X, Y ) ∈ Ũ ⊂ U . We
define κ∗ = infκ∈R+{κ satisfies (22)}.

For κ > κ∗, the controlled energy (21) is negative definite
with a maximum at (0, 0, 0, 0, 0, 0, 0, 0) ∈ (Ũ × R2) × R4.
We conclude that the corresponding Lyapunov function V is
positive definite at a domain (R2 × Ũ) × R4. Seeing from
(22), we conclude that as κ∗ → ∞ implies ‖αi‖∞ → ∞ and√

X2 + Y 2 → L, the set Ũ expands to U .
At the second stage, we show that Ωc is an estimate of

domain of attraction by applying LaSalle’s invariance princi-
ple. Here, we relax the conditions in [1] for general cases.
Specifically, we do not shrink Ωc as the domain of attraction.

In the last step, V is positive definite in a domain R2 ×
Ũ ×R4. By Theorem 2.2, the time derivative of the Lyapunov
function satisfy dV̇

dt ≤ 0. So, Ωc is a positively invari-
ant set such that (xα(0), ηa(0), ẋα(0), η̇a)(0) ∈ Ωc implies
(xα(t), ηa(t), ẋα(t), η̇a(t)) ∈ Ωc for t ≥ 0.

The set E is a subset of Ωc where dV
dt = 0. As M

is the largest invariant subset of E , we suppose z(t) =
(xα(t), ηa(t), ẋα(t), η̇a(t)) ∈ M for all t ≥ 0 and then,
in M, we have ηa(t) = ηa(0) = ηa

e = 0, η̇a(t) = 0,
gacgαcẋ

α = 0 (i.e., ẋα = 0) for all t ≥ 0, where we use
some results: equations (40) and (43) in [1, page 1563]. So, we
have z(t) = (xα(t), 0, 0, 0) ∈ M for all t ≥ 0. Substituting
these conditions into Euler-Lagrange equations (14) for xα

variables, we know that z(t) = (xα(t), ηa
e (t), 0, 0) ∈ M

complies with the following equation (the general form is
given by equation (45) in [1, page 1563]):(

Ẍ

Ÿ

)
=

(
3gX

√
L2−X2−Y 2

4L2

3gY
√

L2−X2−Y 2

4L2

)
. (23)

In [1], the authors shrink Ωc to study the linearized dy-
namics of the general form which includes (23) to conclude
a general stability result. Here, we directly investigate the
nonlinear dynamics (23). Since 3g

√
L2−X2−Y 2

4L2 > 0 in U ,
there is only one equilibrium (xα, ẋα) = (Xe, Ye, Ẋe, Ẏe) =
(0, 0, 0, 0) of the dynamics (23) such that any trajectory
(X(t), Y (t), Ẋ(t), Ẏ )(t) starting in U ×R2 will escape from
U × R2 except when the trajectory is the equilibrium. Thus,
we have the invariant equilibrium z(t) = (0, 0, 0, 0) ∈ M.
The above argument implies that the largest invariant set in E
is the origin: M �

= (xα
e , ẋβ

e , ηa
e , η̇b

e) = (0, 0, 0, 0).
Then, we conclude that any states starting in Ωc approach

an invariant set M which contains only the origin as t → ∞.

Remark 1: It is easy to check that the result in Corollary 4.1
in the new chart (xα, ηa) implies a similar result in original
chart (xα, θa) because the mapping T : (xα, θa) → (xα, ηa)
is invertible in the whole upper space. For κ > κ∗, the only
restriction on initial conditions is the restriction on shape
variables (X,Y ), i.e., (X, Y ) ∈ Ũ ⊂ U . Therefore, for all
initial conditions of other states in R6 and (X, Y ) ∈ Ũ , we
can find a domain Ωc with some c ∈ R which contains those
initial conditions such that all trajectories do not leave Ωc for
all t ≥ 0. As seen from the first step of the proof, as Ũ expands
to U , we need κ∗ → ∞ to make the energy negative definite.

V. COMPUTER SIMULATION

To ease the visualization of the projections in the moving
frame, we give the total projection length in the horizontal
plane, that is, 2r = 2

√
X2 + Y 2. Let the pendulum length

2L = 0.6 (m) and m = 0.35 (kg) and g = 9.8 (N/s2).
By trials and errors, we start with all values of parameters

1, then change those values with increasing some values or de-
creasing some values and finally select the design parameters
as κ = 100, ρ = −0.02, ε = 1 × 10−4, and cx

x = cy
y = 0.01,

cy
x = cx

y = 0.
Remark 2: Admittedly, one has the freedom to tune the

parameters in the control function (20) such as κ, ρ, ε, cx
x,

cy
y, cy

x and cx
y . The design process is, however, not systematic

and the design parameters are difficult to optimize. Many of
our choices lead to very bad performance. For example, with
an increase in ε = 1 × 10−3 and other design parameters as
before, the trajectory oscillates heavily before converging to
the origin (see Figure 3).

Case 1: Let the exogenous disturbance and unmodelled
dynamics be zero. Figure 4 shows the simulation result with
the initial values

(x, ẋ, y, ẏ, X, Ẋ, Y, Ẏ ) = (20, 2,−20, 2, 0.1, 0.1,−0.1, 0.1).

which indicates a large domain of attraction.
Analytically, there exist a compact set Ωc ⊂ U , the domain

of attraction for the given parameters. However, it is unclear
how the domain of attraction increases with those design pa-
rameters. Here, we approximately estimate some projections of
the domain of attraction associated with the nominal controlled
system based on the (quantitative) simulation study. To reduce
the complexity of analysis, let (ẋ(0), ẏ(0), Ẋ(0), Ẏ (0)) =
(0, 0, 0, 0) be initial conditions for the rates. Figure 5 shows the
projections in two scenarios: first, let (x(0), y(0)) = 0 and all
initial angles inside the outer layer converge to the origin and
diverge outside the outer layer; second, let

√
x(0)2 + y(0)2 =

570(m) (this implies many cases for (x(0), y(0))) and only
initial angles inside the inner layer, a very small neighborhood
about the origin, converge to the origin. The result indicates
that the method of controlled Lagrangain yields some bounded
domain of attraction (maybe large).

Case 2: Introduce an exogenous input to the system (2)
such that its right hand side becomes (−CXẊ, −CY Ẏ , ux −
Cxẋ, uy−Cy ẏ), where Cx = Cy = 10−4 (N ·s/m) and CX =
CY = 5×10−4 (N ·s/m). Figure 6 shows the simulation result
with the initial values

(x, ẋ, y, ẏ, X, Ẋ, Y, Ẏ ) = (2, 0, 2, 0, 0, 0, 0, 0).
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Fig. 3. The oscillatory trajectory results from inappropriate design parameters

Eventually, the pendulum falls over. The controlled Lagrangian
design yields relatively poor robustness for this set of design
parameters.

However, our claims in the domain of attraction and the
robustness are based on a simulation study and should be
interpreted tentatively since we have not explored all degrees
of freedom in the simulations. A better alternative would be
to analytically analyze robustness but the the best of our
knowledge this problem remains open in the literature.

Remark 3: Controlled Lagrangians and controlled Hamilto-
nians solve the matching conditions for an open loop system
without physical damping. It has been shown that physical
damping can affect stability in the closed loop because when-
ever the kinetic energy is modified, physical damping terms
do not always enter as dissipation with respect to the closed
energy function [13]. Some ongoing research is dedicated
to make controlled Lagrangians and controlled Hamiltonians
more robust to physical damping [13], [14].

Remark 4: The approach is also summarized in [15] to-
gether with several other design approaches in a flavor of
comparing the performance based on computer simulation.

VI. CONCLUSION

We derive an explicit controller for the spherical inverted
pendulum which was initially proposed in [1] via the method
of controlled Lagrangians in the same paper. Simulation results
show that the closed loop system yields a large domain of
attraction. However, the performance is very sensitive to the
design parameters. For the design parameters that we have
used, the closed loop system may yield poor robustness.
Therefore, it is desirable to systematically address the tuning
rules and make the closed loop system more robust in future
work.

APPENDIX A
CONTROL FUNCTION

The explicit formula of the full control law (20) is given
in next page where we define the constant κρ

�
= ρ−1

ρ + κ to
shorten the expression.
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Fig. 4. Simulation results in Case 1
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ux =
mκ

L2(1 − 3κ) + 3(X2 + Y 2)(1 + κ)

(
−3gX

√
L2 − X2 − Y 2 − 4(Y 2 − L2)XẊ2 + 4(X2 − L2)XẎ 2 − 8X2Y ẊẎ

L2 − X2 − Y 2

+3
(

L2 − X2

ρ
+

3Y 2(1 + κ)
ρ(1 − 3κ)

) (
2εg (x + κρX) + cx

x

(
ẋ + κρẊ

)
+ cy

x

(
ẏ + κρẎ

))
+

12XY

ρ(1 − 3κ)
×(

2εg (y + κρY ) + cx
y

(
ẋ + κρẊ

)
+ cy

y

(
ẏ + κρẎ

)))
+

m

ρ

(
2εg (x + κρX) + cx

x

(
ẋ + κρẊ

)
+ cy

x

(
ẏ + κρẎ

))
.

uy =
mκ

L2(1 − 3κ) + 3(Y 2 + X2)(1 + κ)

(
−3gY

√
L2 − Y 2 − X2 − 4(X2 − L2)Y Ẏ 2 + 4(Y 2 − L2)Y Ẋ2 − 8Y 2XẎ Ẋ

L2 − Y 2 − X2

+3
(

L2 − Y 2

ρ
+

3X2(1 + κ)
ρ(1 − 3κ)

) (
2εg (y + κρY ) + cy

y

(
ẏ + κρẎ

)
+ cx

y

(
ẋ + κρẊ

))
+

12Y X

ρ(1 − 3κ)
×(

2εg (x + κρX) + cy
x

(
ẏ + κρẎ

)
+ cx

x

(
ẋ + κρẊ

)))
+

m

ρ

(
2εg (y + κρY ) + cy

y

(
ẏ + κρẎ

)
+ cx

y

(
ẋ + κρẊ

))
.
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