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Abstract—In this paper, the existence of 2n positive periodic
solutions for n species non-autonomous Lotka-Volterra cooperative
systems with harvesting terms is established by using Mawhin’s con-
tinuation theorem of coincidence degree theory and matrix inequality.
An example is given to illustrate the effectiveness of our results.
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I. INTRODUCTION

THE n species Lotaka-Volterra cooperative model with

harvesting terms is described as follows ([1,2]):

ẋi(t) = xi(t)
(

ai − bixi(t) +
n∑

j=1,j �=i

cijxj(t)
)
− hi,

i = 1, 2, . . . , n, where xi(t)(i = 1, 2, . . . , n) is the densities

functions of the ith species; ai and bi are all positive constant

and denote the intrinsic growth rate, death rate, respectively;

cij > 0 stand for the cooperative rate between the ith species

and the jth species; hi(i = 1, 2, . . . , n) is the ith species

harvesting terms standing for the harvests. Since realistic

models require taking into account the effect of changing

environment we will consider the following nonautonomous

model

ẋi(t) = xi(t)
(

ai(t) − bi(t)xi(t) +
n∑

j=1,j �=i

cij(t)xj(t)
)

−hi(t), i = 1, 2, . . . , n. (1)

In addition, the effects of a periodically varying environment

are important for evolutionary theory as the selective forces

on systems in a fluctuating environment differ from those in a

stable environment. Therefore, the assumptions of periodicity

of the parameters are a way of incorporating the periodicity

of the environment (e.g, seasonal effects of weather, food

supplies, mating habits, etc ), which leads us to assume that

ai(t), bi(t), cij(t) and hi(t)(i, j = 1, 2, . . . , n) are all positive

continuous ω-periodic functions.

A very basic and important problem in the study of a

population growth model with a periodic environment is the

global existence and stability of a positive periodic solution,

which plays a similar role as a globally stable equilibrium does

in an autonomous model. Also, only a few results concerning
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the existence of positive periodic solutions to system (1) can

be found in the literature. This motivates us to investigate the

existence of a positive periodic or multiple positive periodic

solutions for system (1). In fact, it is more likely for some

biological species to take on multiple periodic change reg-

ulations and have multiple local stable periodic phenomena.

Therefore it is essential for us to investigate the existence of

multiple positive periodic solutions for population models. Our

main purpose of this paper is by using Mawhin’s continuation

theorem of coincidence degree theory [3], to establish the

existence of 2n positive periodic solutions for system (1).

For the work concerning the multiple existence of periodic

solutions of periodic population models which was done using

coincidence degree theory, we refer to [4-10].

The organization of the rest of this paper is as follows.

In Section 2, by employing the continuation theorem of

coincidence degree theory and matrix inequality, we establish

the existence of 2n positive periodic solutions of system (1).

In Section 3, an example is given to illustrate the effectiveness

of our results.

II. EXISTENCE OF 2n POSITIVE PERIODIC SOLUTIONS

In this section, by using Mawhin’s continuation theorem

and linear inequality, we shall show the existence of positive

periodic solutions of (1). To do so, we need to make some

preparations.

Let X and Z be real normed vector spaces. Let L :
Dom L ⊂ X → Z be a linear mapping and N : X ×
[0, 1] → Z be a continuous mapping. The mapping L will

be called a Fredholm mapping of index zero if dim Ker L
= codim Im L < ∞ and Im L is closed in Z. If L is a

Fredholm mapping of index zero, then there exists continuous

projectors P : X → X and Q : Z → Z such that

Im P = Ker L and Ker Q = Im L = Im (I − Q), and

X = Ker L
⊕

Ker P,Z = Im L
⊕

Im Q. It follows that

L|Dom L∩Ker P : (I − P )X → Im L is invertible and its

inverse is denoted by KP . If Ω is a bounded open subset

of X , the mapping N is called L-compact on Ω̄ × [0, 1], if

QN(Ω̄×[0, 1]) is bounded and KP (I−Q)N : Ω̄×[0, 1] → X
is compact. Because Im Q is isomorphic to Ker L, there exists

an isomorphism J : Im Q → Ker L.

The Mawhin’s continuous theorem [3, p.40] is given as

follows:

Lemma 1. ([3]) Let L be a Fredholm mapping of index zero
and let N be L-compact on Ω̄ × [0, 1]. Assume
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(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ)
is such that x /∈ ∂Ω ∩ Dom L;

(b) QN(x, 0)x �= 0 for each x ∈ ∂Ω ∩ Ker L;
(c) deg(JQN(x, 0),Ω ∩ Ker L, 0) �= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩ Dom L.

In this paper, since we need some related properties of M -

matrix we introduce them as follows.

Definition 1. ([11]) If a real matrix A = (aij)n×n satisfies
the following conditions (i) and (ii):
(i) aii > 0, i = 1, 2, . . . , n, aij ≤ 0, i �= j, i, j = 1, 2, . . . , n,
(ii) A is a positive-definite matrix,
then A is called a M -matrix.

Lemma 2. ([11]) If matrix A = (aij)n×n is a M -matrix, then
A−1 exists and its every element is nonnegative.

For the sake of convenience, we denote by f l =
mint∈[0,ω] f(t), fM = maxt∈[0,ω] f(t), f̄ = 1

ω

∫ ω

0
f(t) dt,

respectively, here f(t) is a continuous ω-periodic function.

In this paper, matrix A = (aij) ≥ 0 means that each elements

aij ≥ 0.
For simplicity, we need to introduce some notations as

follows.

D =

⎛
⎜⎜⎜⎝

bl
1 −cM

12 . . . −cM
1n

−cM
21 bl

2 · · · −cM
2n

...
...

...
...

−cM
n1 −cM

n2 · · · bl
n

⎞
⎟⎟⎟⎠

n×n

,

D−1

⎛
⎜⎜⎜⎝

aM
1

aM
2
...

aM
n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

H+
1

H+
2
...

H+
n

⎞
⎟⎟⎟⎠

n×1

,

l±i =
al

i ±
√

(al
i)2 − 4bM

i hM
i

2bM
i

,

L±
i =

aM
i ±

√
(aM

i )2 − 4bl
ih

l
i

2bl
i

,

G−
i =

hl
i

aM
i +

n∑
j=1,j �=i

cM
ij H+

j

=
hl

i

bl
iH

+
i

, i = 1, 2, . . . , n.

Throughout this paper, we need the following assumptions.

(H1) al
i > 2

√
bM
i hM

i , i = 1, 2, . . . , n;
(H2) Matrix D is a positive-definite matrix.

Lemma 3. Suppose that matrix A = (aij)n×n is a M -matrix,
then AX < B implies X < A−1B.

Proof: In fact, there exists a positive vector ε0 =
(ε1, ε2, . . . , εn)T ∈ Rn such that AX − B + ε0 =
(0, 0, . . . , 0)T which imply that X − A−1B + A−1ε0 =
(0, 0, . . . , 0)T . According to Lemma 2.2, there has at least

one positive element in the every row of A−1, which imply

A−1ε0 > (0, 0, . . . , 0)T . Thus, we obtain X < A−1B.

Lemma 4. Assume that (H1) and (H2) hold, then we have
the following inequalities:

G−
i < L−

i < l−i < l+i < L+
i < H+

i , i = 1, 2, . . . , n.

Proof: In fact,

G−
i =

hl
i

aM
i +

n∑
j=1,j �=i

cM
ij HM

j

=
hl

i

bl
iH

+
i

<
hl

i

aM
i

<
hl

i

al
i

<
2hl

i

aM
i +

√
(aM

i )2 − 4bl
ih

l
i

= L−
i ,

L−
i =

2hl
i

aM
i +

√
(aM

i )2 − 4bl
ih

l
i

<
2hM

i

al
i +

√
(al

i)2 − 4bM
i hM

i

= l−i < l+i ,

l+i =
al

i +
√

(al
i)2 − 4bM

i hM
i

2bM
i

<
aM

i +
√

(aM
i )2 − 4bl

ih
l
i

2bl
i

= L+
i ,

L+
i =

aM
i +

√
(aM

i )2 − 4bl
ih

l
i

2bl
i

<
aM

i

bl
i

=

bl
iH

+
i −

n∑
j=1,j �=i

cM
ij H+

j

bl
i

< H+
i .

Theorem 1. Assume that (H1) and (H2) hold. Then system
(1) has at least 2n positive ω-periodic solutions.

Proof: By making the substitution

xi(t) = exp{ui(t)}, i = 1, 2, . . . , n (2)

system (1) can be reformulated as

u̇i(t) = ai(t) − bi(t)eui(t) +
n∑

j=1,j �=i

cij(t)euj(t)

−hi(t)e−ui(t), i = 1, 2, . . . , n. (3)

Let

X = Z

=
{

u = (u1, u2, . . . , un)T ∈ C(R,Rn) : u(t + ω) = u(t)
}

and define

‖u‖ =
n∑

i=1

max
t∈[0,ω]

|ui(t)|, u ∈ X or Z.
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Equipped with the above norm ‖ · ‖, X and Z are Banach

spaces. Let

N(u, λ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(t) − b1(t)eu1(t)

+λ
n∑

j=2

c1j(t)euj(t) − h1(t)e−u1(t)

...

ai(t) − bi(t)eui(t)

+λ
n∑

j=1,j �=i

cij(t)euj(t) − hi(t)e−ui(t)

...

an(t) − bn(t)eun(t)

+λ
n−1∑
j=1

cnj(t)euj(t) − hn(t)e−un(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

, u ∈ X

Lu = u̇ = du(t)
dt . We put Pu = 1

ω

∫ ω

0
u(t)dt, u ∈

X; Qz = 1
ω

∫ ω

0
z(t)dt, z ∈ Z. Thus it follows that Ker L =

Rn, Im L = {z ∈ Z :
∫ ω

0
z(t)dt = 0} is closed in Z,

dim Ker L = n = codim Im L, and P,Q are continuous

projectors such that

Im P = Ker L, Ker Q = Im L = Im (I − Q).

Hence, L is a Fredholm mapping of index zero. Furthermore,

the generalized inverse (to L) KP : Im L → Ker P
⋂

Dom L
is given by

KP (z) =
∫ t

0

z(s)ds − 1
ω

∫ ω

0

∫ s

0

z(s)ds.

Then

QN(u, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
ω

∫ ω

0
F1(s, λ)ds

...
1
ω

∫ ω

0
Fi(s, λ)ds

...
1
ω

∫ ω

0
Fn(s, λ)ds

⎞
⎟⎟⎟⎟⎟⎟⎠

n×1

and

Kp(I − Q)N(u, λ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ t

0
F1(s, λ)ds − 1

ω

∫ ω

0

∫ t

0
F1(s, λ)dsdt

+( 1
2 − t

ω )
∫ ω

0
F1(s, λ)ds

...∫ t

0
Fi(s, λ)ds − 1

ω

∫ ω

0

∫ t

0
Fi(s, λ)dsdt

+( 1
2 − t

ω )
∫ ω

0
Fi(s, λ)ds

...∫ t

0
Fn(s, λ)ds − 1

ω

∫ ω

0

∫ t

0
Fn(s, λ)dsdt

+( 1
2 − t

ω )
∫ ω

0
Fn(s, λ)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

where

Fi(s, λ) = ai(s) − bi(s)eui(s) + λ
n∑

j=1,j �=i

cij(s)euj(s)

−hi(s)e−ui(s), i = 1, 2, . . . , n.

Obviously, QN and KP (I − Q)N are continuous. Similar to

the proof of Theorem 2.1 in [12], it is not difficult to show that

KP (I − Q)N(Ω) is compact for any open bounded set Ω ⊂
X by using the Arzela-Ascoli theorem. Moreover, QN(Ω) is

clearly bounded. Thus, N is L-compact on Ω with any open

bounded set Ω ⊂ X.
In order to use Lemma 1, we have to find at least 2n

appropriate open bounded subsets in X. Considering the

operator equation Lu = λN(u, λ), λ ∈ (0, 1), we have

u̇i(t) = λ

(
ai(t) − bi(t)eui(t) + λ

n∑
j=1,j �=i

cij(t)euj(t)

−hi(t)e−uj(t)

)
, i = 1, 2, . . . , n. (4)

Assume that u ∈ X is an ω-periodic solution of system (3)

for some λ ∈ (0, 1). Then there exist ξi, ηi ∈ [0, ω] such

that ui(ξi) = maxt∈[0,ω] ui(t), ui(ηi) = mint∈[0,ω] ui(t), i =
1, 2, . . . , n. It is clear that u̇i(ξi) = 0, u̇i(ηi) = 0, i =
1, 2, . . . , n. From this and (3), we have

0 = ai(ξi) − bi(ξi)eui(ξi) + λ
n∑

j=1,j �=i

cij(ξi)euj(ξi)

−hi(ξi)e−ui(ξi), i = 1, 2, . . . , n (5)

and

0 = ai(ηi) − bi(ηi)eui(ηi) + λ
n∑

j=1,j �=i

cij(ηi)euj(ηi)

−hi(ηi)e−ui(ηi), i = 1, 2, . . . , n. (6)

By (5) we have

aM
i +

n∑
j=1,j �=i

cM
ij euj(ξj) ≥ ai(ξi) +

n∑
j=1,j �=i

cij(ξi)euj(ξi)

= bi(ξi)eui(ξi) + hi(ξi)e−ui(ξi)

> bl
ie

ui(ξi),

namely

bl
ie

ui(ξi) −
n∑

j=1,j �=i

cM
ij euj(ξj) < aM

i , i = 1, 2, . . . , n,

which can be rewritten by the following matrix form⎛
⎜⎜⎜⎝

bl
1 −cM

12 · · · −cM
1n

−cM
21 bl

2 · · · −cM
2n

...
...

...
...

−cM
n1 −cM

n2 · · · bl
n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

eu1(ξ1)

eu2(ξ2)

...

eun(ξn)

⎞
⎟⎟⎟⎠ <

⎛
⎜⎜⎜⎝

aM
1

aM
2
...

aM
n

⎞
⎟⎟⎟⎠ .

By assumption (H2) and Lemma 3, we obtain⎛
⎜⎜⎜⎝

eu1(ξ1)

eu2(ξ2)

...

eun(ξn)

⎞
⎟⎟⎟⎠ <

⎛
⎜⎜⎜⎝

bl
1 −cM

12 · · · −cM
1n

−cM
21 bl

2 · · · −cM
2n

...
...

...
...

−cM
n1 −cM

n2 · · · bl
n

⎞
⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎝

aM
1

aM
2
...

aM
n

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

H+
1

H+
2
...

H+
n

⎞
⎟⎟⎟⎠ (7)
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According to (6) and (7), we obtain

aM
i +

n∑
j=1,j �=i

cM
ij H+

i > ai(ηi) +
n∑

j=1,j �=i

cij(ηi)euj(ηi)

= bi(ηi)eui(ηi) + hi(ηi)e−ui(ηi)

> hl
ie

−ui(ηi),

that is,

hl
ie

−ui(ηi) < aM
i +

n∑
j=1,j �=i

cM
ij H+

i ,

which implies that

eui(ηi) >
hl

i

aM
i +

n∑
j=1,j �=i

cM
ij H+

j

=
hl

i

bl
iH

+
i

= G−
i . (8)

(7) and (8) give⎛
⎜⎜⎜⎝

u1(ξ1)
u2(ξ2)

...

un(ξn)

⎞
⎟⎟⎟⎠ <

⎛
⎜⎜⎜⎝

lnH+
1

lnH+
2

...

lnH+
n

⎞
⎟⎟⎟⎠ (9)

and ⎛
⎜⎜⎜⎝

u1(η1)
u2(η2)

...

un(ηn)

⎞
⎟⎟⎟⎠ >

⎛
⎜⎜⎜⎝

lnG−
1

lnG−
2

...

lnG−
n

⎞
⎟⎟⎟⎠ (10)

respectively. Moreover, according to (5), we have

bM
i eui(ξi) + hM

i e−ui(ξi) > al
i, i = 1, 2, . . . , n,

namely,

bM
i e2ui(ξi) − al

ie
ui(ξi) + hM

i > 0, i = 1, 2, . . . , n,

which implies that⎛
⎜⎜⎜⎝

u1(ξ1)
u2(ξ2)

...

un(ξn)

⎞
⎟⎟⎟⎠ >

⎛
⎜⎜⎜⎝

ln l+1
ln l+2

...

ln l+n

⎞
⎟⎟⎟⎠

or ⎛
⎜⎜⎜⎝

u1(ξ1)
u2(ξ2)

...

un(ξn)

⎞
⎟⎟⎟⎠ <

⎛
⎜⎜⎜⎝

ln l−1
ln l−2

...

ln l−n

⎞
⎟⎟⎟⎠ (11)

Similarly, by (6), we get⎛
⎜⎜⎜⎝

u1(η1)
u2(η2)

...

un(ηn)

⎞
⎟⎟⎟⎠ >

⎛
⎜⎜⎜⎝

ln l+1
ln l+2

...

ln l+n

⎞
⎟⎟⎟⎠

or ⎛
⎜⎜⎜⎝

u1(η1)
u2(η2)

...

un(ηn)

⎞
⎟⎟⎟⎠ <

⎛
⎜⎜⎜⎝

ln l−1
ln l−2

...

ln l−n

⎞
⎟⎟⎟⎠ (12)

By the assumptions (H1), (H2) and Lemma 4, we have

lnG−
i < ln l−i < ln l+i < lnH+

i , i = 1, 2, . . . , n. (13)

From (9), (10), (11), (12) and (13), we obtain, for all t ∈ R,

lnG−
i < ui(t) < ln l−i

or

ln l+i < ui(t) < lnH+
i , i = 1, 2, . . . , n. (14)

For convenience, we denote

Gi =
(
lnG−

i , ln l−i
)
, Hi =

(
ln l+i , lnH+

i

)
, i = 1, 2, . . . , n.

Clearly, l±i , G−
i and H+

i , i = 1, 2, . . . , n are independent of

λ. For each i = 1, 2, . . . , n, we choose an interval between

two intervals Gi and Hi and denote it as Δi, then define the

set{
u = (u1, . . . , un)T ∈ X : ui(t) ∈ Δi, t ∈ R, i = 1, . . . , n

}
.

Obviously, the number of the above sets is 2n. We denote

these sets as Ωk, k = 1, 2, . . . , 2n. Ωk, k = 1, 2, . . . , 2n are

bounded open subsets of X, Ωi∩Ωj = φ, i �= j. Thus Ωk(k =
1, 2, . . . , 2n) satisfies the requirement (a) in Lemma 1.

Now we show that (b) of Lemma 1 holds, i.e., we prove

when u ∈ ∂Ωk ∩ Ker L = ∂Ωk ∩ Rn, QN(u, 0) �=
(0, 0, . . . , 0)T , k = 1, 2, . . . , 2n. If it is not true, then when

u ∈ ∂Ωk ∩ Ker L = ∂Ωk ∩ Rn, k = 1, 2, . . . , 2n, constant

vector u = (u1, u2, . . . , un)T with u ∈ ∂Ωk, k = 1, 2, . . . , 2n,

satisfies∫ ω

0

ai(t) dt −
∫ ω

0

bi(t)eui dt −
∫ ω

0

hi(t)e−ui dt = 0.

In view of the mean value theorem of calculous, there exist n
points ti(i = 1, 2, . . . , n) such that

ai(ti) − bi(ti)eui − hi(ti)e−ui = 0, i = 1, 2, . . . , n. (15)

Following the arguments of (5)-(14), we have

lnG−
i < ui(ti) < ln l−i or ln l+i < ui(ti) < lnH+

i . (16)

Then u belongs to one of Ωk ∩ Rn, k = 1, 2, . . . , 2n. This

contradicts the fact that u ∈ ∂Ωk ∩Rn, k = 1, 2, . . . , 2n. Thus

condition (b) in Lemma 1 is satisfied. Finally, we show that (c)
in Lemma 1 holds. Note that the system of algebraic equations

ai(ti) − bi(ti)exi − hi(ti)e−xi = 0, i = 1, 2, . . . , n

has 2n distinct solutions since (H1) and (H2) hold,

(x∗
1, x

∗
2, . . . , x

∗
n) = (ln x̂1, ln x̂2, . . . , ln x̂n), where x±

i =
ai(ti)±

√
(ai(ti))2−4bi(ti)hi(ti)

2bi(ti)
, x̂i = x−

i or x̂i = x+
i , i =

1, 2, . . . , n. It is easy to verify that

lnG−
i < lnx−

i < ln l−i < ln l+i < lnx+
i < lnH+

i .
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Therefore, (x∗
1, x

∗
2, . . . , x

∗
n) uniquely belongs to the corre-

sponding Ωk. Since Ker L = Im Q, we can take J = I. A

direct computation gives, for k = 1, 2, . . . , 2n,

deg
{
JQN(u, 0),Ωk ∩ Ker L, (0, 0)T

}

= sign
[ n∏

i=1

(
− bi(ti)x∗

i +
hi(ti)

x∗
i

)]
.

Since ai(ti) − bi(ti)x∗
i − hi(ti)

x∗
i

= 0, i = 1, 2, . . . , n, then

deg
{
JQN(u, 0),Ωk ∩ Ker L, (0, 0)T

}

= sign
[ n∏

i=1

(
ai(ti) − 2bi(ti)x∗

i

)]
= ±1, k = 1, 2, . . . , 2n.

So far, we have proved that Ωk(k = 1, 2, . . . , 2n) satisfies

all the assumptions in Lemma 1. Hence, system (3) has at

least 2n different ω-periodic solutions. Thus by (2.1) system

(1) has at least 2n different positive ω-periodic solutions. This

completes the proof of Theorem 1.

III. AN EXAMPLE

Now, let us consider the following four species cooperative

system with harvesting terms:

xi(t) =
(

ai(t) − bi(t)xi(t) +
4∑

j=1,j �=i

cij(t)xj(t)

−hi(t)
)

, i = 1, 2, 3, 4, (17)

where a1(t) = 3 + sin t, b1(t) = 6+sin t
10 , h1(t) =

9+cos t
15 , a2(t) = 3 + cos t, b2(t) = 6+cos t

10 , h2(t) =
3+cos t

5 , a3(t) = 3 + sin 2t, b3(t) = 6+sin 2t
10 , h3(t) =

8+cos 2t
10 , a4(t) = 3 + cos 2t, b4(t) = 6+cos 2t

10 , h4(t) =
8+sin 2t

10 and cij(t) = 1
10 , i �= j, i, j = 1, 2, 3, 4. By the simple

calculation, we have⎛
⎜⎜⎝

al
1

al
2

al
3

al
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2
2
2
2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

bl
1

bl
2

bl
3

bl
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2
1
2
1
2
1
2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

hl
1

hl
2

hl
3

hl
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

8
15
2
5
7
10
7
10

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

aM
1

aM
2

aM
3

aM
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

4
4
4
4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

bM
1

bM
2

bM
3

bM
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

7
10
7
10
7
10
7
10

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

hM
1

hM
2

hM
3

hM
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2
3
4
5
9
10
9
10

⎞
⎟⎟⎠ ,

D =

⎛
⎜⎜⎝

1
2 − 1

10 − 1
10 − 1

10− 1
10

1
2 − 1

10 − 1
10− 1

10 − 1
10

1
2 − 1

10− 1
10

1
10 − 1

10
1
2

⎞
⎟⎟⎠ ,

D−1 =

⎛
⎜⎜⎝

5
2

5
6

5
6

5
6

5
6

5
2

5
6

5
6

5
6

5
6

5
2

5
6

5
6

5
6

5
6

5
2

⎞
⎟⎟⎠ .

According to the following calculation,

det
(

1
2 − 1

10− 1
10

1
2

)
= 0.24 > 0,

det

⎛
⎝

1
2 − 1

10 − 1
10− 1

10
1
2 − 1

10− 1
10 − 1

10
1
2

⎞
⎠ = 0.108 > 0,

det

⎛
⎜⎜⎝

1
2 − 1

10 − 1
10 − 1

10− 1
10

1
2 − 1

10 − 1
10− 1

10 − 1
10

1
2 − 1

10− 1
10

1
10 − 1

10
1
2

⎞
⎟⎟⎠ = 0.0432 > 0,

we have known that matrix D is positive-definite. In addition,

we obtain⎛
⎜⎜⎝

al
1

al
2

al
3

al
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2
2
2
2

⎞
⎟⎟⎠ >

⎛
⎜⎜⎝

2
√

bM
1 hM

1

2
√

bM
2 hm

2

2
√

bM
3 hM

3

2
√

bM
4 hM

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2
√

105
15

2
√

14
5

3
√

7
5

3
√

7
5

⎞
⎟⎟⎟⎠ .

Therefore, all conditions of Theorem 1 are satisfied. By

Theorem 1, system (17) has at least sixteen positive 2π-

periodic solutions.
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