International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:7, 2008

Program Camouflage: A Systematic Instruction
Hiding Method for Protecting Secrets

Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Matsumoto

Abstract—This paper proposes an easy-to-use instruction hid-
ing method to protect software from malicious reverse engineering
attacks. Given a source program (origina) to be protected, the
proposed method (1) takes its modified version (fake) as an input,
(2) differences in assembly code instructions between origina and
fake are analyzed, and, (3) self-modification routines are introduced
so that fake instructions become correct (i.e., original instructions)
before they are executed and that they go back to fake ones after
they are executed. The proposed method can add a certain amount
of security to a program since the fake instructions in the resultant
program confuse attackers and it requires significant effort to discover
and remove all the fake instructions and self-modification routines.
Also, this method is easy to use (with little effort) because all a user
(who uses the proposed method) has to do is to prepare a fake source
code by modifying the original source code.

Keywords—Copyright protection, program encryption, program
obfuscation, self-modification, software protection.

I. INTRODUCTION

ECENTLY, many software products contain secret infor-

mation, such as the cipher keys of a digital rights man-
agement system, conditional branch instructions for license
checking, and agorithms that are commercialy valuable [5],
[12]. As the number such software increases, protecting inter-
nal secrets from being leaked out to software users via reverse
engineering has become an overarching issue in today’s soft-
ware industry.

So far, various methods for protecting software against mali-
cious reverse engineering attacks have been proposed, such as
program encryption, program obfuscation and anti-debugging
techniques [5]. All these methods can add a certain amount
of security to software; however, they are often difficult to
use especially when we consider hiding a specific piece of
information in a program. For example, name obfuscation is
one of the easy-to-use protection techniques that can hide
al the symbols (variable names, function names and method
names, etc.) in a program, however, it is unclear how it
will contribute to conceal specific secrets, e.g. cipher keys
and conditional branches in a program. On the other hand,
more powerful protection techniques, such as control flow
obfuscation, can directly hide the specific secret (conditional

Yuichiro Kanzaki is with the Department of Information and Computer
Sciences, Kumamoto National College of Technology, Koshi, Kumamoto,
Japan, email: kanzaki@knct.ac.jp

Akito Monden is with the Graduate School of Information Science, Nara
Institute of Science and Technology, lkoma, Nara, Japan, email: akito-
m@is.naist.jp

Masahide Nakamura is with the Graduate School of Engineering, Kobe
University, Kobe, Hyogo, Japan, email: masa-n@cs.kobe-u.ac.jp

Ken-ichi Matsumoto is with the Graduate School of Information Science,
Nara Institute of Science and Technology, Ikoma, Nara, Japan, email: matu-
moto@is.naist.jp

if (check (input*constl+const2))
funcl () ;

14

(a) Original Source Code

if (check (input*constl-const2))

funcl () ;
' 7
(b) Fake Source Code
[Self-modification Routine }\
: Replace
with “addl”

imull -8 (%ebp), %eax

rsubl -12 (%ebp), seax;
Tmovi T Tgeax, (3esp)
call check

je L5

N

if (check(input*constl-const2))..
V
(c) Protected Code

Fig. 1 Concept of program camouflage

branches in this case), however, they are not always effective
in obfuscating secret parts of a program that are required to
be hidden.

In this paper, we propose an easy-to-use, systematic method
for protecting software which is able to hide an arbitrary part
of a program with an arbitrary code. The proposed method
enables us to determine how secret parts of a program are
hidden at the source code level. All a user who uses the
proposed method has to do is to construct a fake source
code by modifying the original source code. When an attacker
statically analyzes the (binary) program that is protected by
the proposed method, the program appears the fake code.
However, when the program is executed, the origina code
is performed. We call such a protection mechanism program
camouflage.

Fig. 1 shows a basic concept of the program camouflage.
Let us suppose that a source code to be protected has a secret
conditional branch such as Fig. 1(a), and the user tries to
fake the branch as Fig. 1(b) (the operator '+ is changed

2525

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:7, 2008

to '-"). The proposed method first analyzes the differences
in assembly code instructions between origina and fake,
and then self-modification routines are introduced so that
fake instructions become correct (i.e., original instructions)
before they are executed. In this example, the self-modification
routine rewrites the instruction “subl -12 (%ebp) , $eax”
(subtraction) to the instruction “addl -12 (%ebp) , $eax”
(addition), when the program is executed (Fig. 1(c)) * .

In this manner, a user can hide an arbitrary part of the
program with an arbitrary code simply by preparing a fake
source code. In addition, the user is not required to possess
knowledge about assembly (machine) language. We believe
that these advantages lead to efficient program protection.

The rest of this paper is organized as follows. In Section |1,
we review the related work. Section |11 describes the proposed
method in detail. In Section 1V, we show an example of the
camouflaged program and discussit. In Section V, we examine
how much overhead on the execution time is imposed by the
proposed method. Finally, Section VI concludes the paper.

Il. RELATED WORK

The basic idea of the proposed method is based on in-
struction camouflage method, which is previously proposed
by the authors [13], [14]. Instruction camouflage is done
according to the following procedure. First, many instructions
are randomly selected as the targets of instruction camouflage
a the assembly language level. Second, fake instructions
to overwrite the targets are generated. The content of fake
instructionsis determined at random. Finally, self-modification
routines are generated and inserted into the program. This
procedure is very simple and easy to automate camouflaging
programs. However, instructions that should be hidden from
attackers (i.e., instructions that can be a clue to success in
analyzing the program) may be left un-camouflaged. Besides,
in order to hide the specific instructions manually, the user
is required to be familiar with assembly language. With the
proposed method, on the other hand, the user is able to hide
instruction that the user wants to hide without knowledge about
assembly language since the user can determine the content
of the camouflage at the source code level.

In addition, many methods for protecting software against
malicious reverse engineering attacks have been proposed so
far. Program encryption [2], [4], [6] is a method for protecting
programs using an encryption algorithm. A part of the program
is encrypted beforehand and is decrypted by self-modification
during execution. Program obfuscation [5], [7], [17] is a
technique in which a program is modified in a way such that it
becomes more difficult to analyze (more complex) it without
modifying its specifications. Anti-debugging [3] is atechnique
that aims to deter attackers from attacking with a debugger.
The proposed method is a technique that is not controversial
with respect to program encryption, program obfuscation, or
anti-debugging. Conseguently, analysis of the program is made
even more difficult by combining the proposed method with
these approaches.

1in this paper, it is assumed that the type of CPU used is Intel X86 and
show assembly codes in AT& T syntax.

I11. PROPOSED METHOD
A. Outline of program camouflage

We first outline program camouflage method and provide
some definitions. Fig. 2 shows an outline of program camou-
flage.

The original source code S is a source code to be protected.
A user who uses the proposed method (e.g., a program
developer) prepares a fake source code Sy by modifying S
(Step 1). The assembly codes obtained by compiling S and S
are denoted as original assembly code A and fake assembly
code Ay, respectively.

We then compare A and A, and determine what operations
are needed to obtain A from A (Step 2). Such an operation
is defined as a restoring operation, which has three types:
change, add, and delete. RO(Ay, A) is a set of restoring
operations that are needed to obtain A from Ay.

Next, self-modification routines based on the restoring op-
erations are generated (Step 3). The self-modification routine
has two types: restoring routine and hiding routine. A restoring
routine restores the origina instruction hidden by a fake
instruction. In contrast, a hiding routine rewrites a restored
instruction to a fake instruction.

Finally, by adding the self-modification routines to Ay,
the user can obtain a camouflaged assembly code A, that
is functionally equivalent to the original one, but is more
complex for attackers to analyze (Step 4).

The details of each step are described in the following
section.

B. Procedure of program camouflage
(Sep 1) Constructing a fake source code

Sy is constructed by changing, adding, and/or deleting
instructions in S. In the example illustrated in Fig. 2(a) and
(b), the instruction

“if (keyl*10 +key2==45) break;”
in S is changed to

“if (keyl*5<=25)
in Sf.

The content of S is not restricted as long as both S and
Sy are compilable by the same compiler. However, the larger
the difference between S and Sy, greater is the number
of self-modification routines that are required, which causes
an increase in the performance overheads. The performance
overhead imposed by the proposed method will be described
in Section V.

break;”

(Step 2) Differential analysis
We compile S and Sy and get their assembly codes A and
Ay, respectively. We then compare A and Ay and get the
restoring operations RO(Ay, A). Specifically, we use Myers's
difference algorithm [16] to obtain RO(Ay, A).
The restoring operation has three types as follows:
change(if,i): The operation of changing the instruction
iy in Ay to the instruction 7 in A.
add(if,i): The operation of adding the instruction i
in A just after the instruction 75 in Ay.

2526

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

if (keyl*10+key2==45)
break;

(a) Original Source Code S

Compile

movl -8 (%ebp), %edx
leal (%edx, $eax, 2), $eax
cmpl $45,
je L3

[41]
[42]
[43]
[44]

$eax

(c) Original Assembly Code A

(Step 2) (—)<

Vol:2, No:7, 2008
(Step 1)

-

if (keyl*5<=25)
break;

(b) Fake Source Code S;

Compile

[41] cmpl $25, %eax
[42] jle L3

(d) Fake Assembly Code A

change (inst (A4 41),
“cmpl $45, %eax”)
change (inst (A; 42),
“je L3")
add (inst (Ag, 40),
“movl -8 (%ebp), $edx”)
add (inst (Af, 40),
“leal (%edx, %eax,2),%eax’”)

(e) Restoring Operations RO(A; A)

(Step 3)

)

A y

> P (Step4)

(movb $0;<74, DEST
(movb $0x7E, DEST)

J
(f) Self-Modification Routines

a

A RS

(

yr—

(9) Camouflaged Assembly Code A,

Fig. 2 Outline of program camouflage

delete(iy):

’if in Af.

If al restoring operations in RO(Ay, A) are done with Ay,
Ay becomes a program functionally equivalent to A.

Fig. 2(c) and (d) shows an example of A and Ay, which
correspond to Fig. 2(a) and (b), respectively. The numbers in
brackets in Fig. 2(c) and (d) indicate the serial numbers of the
instructions in the program.

Ay does not have the following instructions:

e “movl -8 (%ebp), ¥edx” (the 41st instruction in A)
e “leal (%edx,%eax,2),%eax” (the 42nd instruc-
tion in A).
This is because the instruction “key1*10+key2” in S has
been changed to “keyl1*5” in S;. Similarly, Ay has the
instructions “cmpl 25, $eax” and “jle L3" instead of
“cmpl 45, %eax” and “je L3", since “==45" in S has
been changed to “<=25" in S;.

The operation of deleting the instruction

In this example, RO(Ayf, A) consists of four restoring
operations as follows:
o change(inst(Ay,41), “cmpl $45, %eax”)
o change(inst(Ay,42), “je L3")
o add(inst(Ay,40),
“movl -8(%ebp), %edx”)
o add(inst(Ay,40),
“leal (%edx, %eax,2),%eax”)
where inst(Ay, j) means the j-th instruction in Ay.

(Step 3) Generating self-modification routines

Self-modification routines are generated based on
RO(Ayf,A). Now, RR;, and HR; are defined as the
restoring routine and the hiding routine, respectively, for
the k-th restoring operation dy, in RO(Ay, A), and dest is
defined as the address of the instruction (i.e., location of the
instruction) modified by RRy or HRy. Also, srcr (Or srcy)

2527

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

. Vol:2, N
is defined as the instruction that overwrites the instruction at

dest by RRy. (or HRy).
RRy, and HR), are generated as below.

(D] First, srcg, srcy, and dest, are determined accord-
ing to the type of dj.

If di is change(iy,i), srcg is identical to 4, and
srcy isidentical to if. dest is the address of i .

If dy is add(if,), an instruction i,, whose length
is the same as that of i, is first generated. Then, i,
is inserted just after iy in Ay. srcg is identical to
i, and srcy isidentical to i,. dest is the address of

(1-3)

(1-b)

ig-

If di, isdelete(iy), aninstruction i, isfirst generated

in a random manner, which does not change the

execution state (i.e., does not change the values of
the registers) when it is executed at the address of
ig. srcg isidentical to iy, and srcy is identical to

iy. dest is the address of i.

(20 We compare srcg with srcy a the binary code
level, and construct instruction(s) to write a number
of bytes, to turn srcy into srcg. This instruction(s)
is defined as RRy,.

(3 Inthe same way, we construct instruction(s) to write
a number of bytes, to turn srcg into srcy. This
instruction(s) is defined as HRy,.

(1-c)

According to the procedure described above, we provide an
example of how to generate self-modification routines. In this
example, we generate RR;, and HRy, for the restoring opera-
tion change (inst(Ay,42), “je L3”) shown in Fig. 2(e).

(1) Sinced; ischange(inst(Ay,42),"je L3"), srcgis
“je L3", and srcy is the 42nd instruction in Ay,
that is, “jle L3". dest is the address of the 42nd
instruction in Ay.

(2) Itisassumed that the binary representation (in hex)
of srcg(*je L3") and srcy(“jle L3") is “74
11" and “7E 11", respectively.

In order to turn srcy at dest into srcr, RRy
changes the first byte of the instruction at dest from
“7E” to “74". When a label DEST points to dest,
RRy, can be generated as follows:

movb $0x74,DEST

This routine means that the first byte of the instruc-
tion where the label DEST is pointing is overwritten
with the immediate value “74” in hex. When this
routine runs, the instruction at dest is set to srcg.

(3) Inthe same way as (2), HRy, is generated.

Inorder toturn srcg at dest into srcy, HRj, changes
the first byte of the instruction at dest from “74” to
“TE".
When a label DEST points a dest, RRj can be
generated as below:

movb $0x7E,DEST

When this routine runs, the instruction at dest is set
to srcy.

L, 2
c&ép%SI nserting self-modification routines

Finally, we insert the self-modification routines to Ay and
obtain A..

We can automatically determine the position of inserting the
self-modification routines based on the instruction camouflage
method [13], [14].

IV. EXAMPLE OF PROGRAM CAMOUFLAGE

In this section, we provide an example of camouflaging
a program. It is assumed that the user has constructed the
fake source code Sy shown in Fig. 3(b) from the origina
source code S shown in Fig. 3(a). Specificaly, the following
operations have been done with S:

o The instruction “if (keyl * 10 + key2 == 45)
break;” has been deleted.
o« The instruction “if (keyl + key2 <= 70)"

has been added and connected with the instruction
“printf ("Password OK.\n")".

e The ingruction “if(keyl * 5 <= 25)" has
been added and connected with the instruction
“printf ("Invalid Password.\n")".

o« The while statement has been deleted (the control

structure of the program has been changed).

In this example, RO(Ay, A) consists of nine restoring
operations as follows (refer to the numbers in brackets in
Fig. 3(c) for the serial numbers of the instructions in Ay):

o change(inst(Ay,14),

“imull $10,-4 (%ebp), $eax”)

o change(inst(Ay,16),

“addl -8 (%ebp),%eax”)

o change(inst(Af,17), “cmpl $45, %eax”)

o change(inst(Ay,18), “je _L2")

o change(inst(Ay,22), “jmp L2")

o delete(inst(Ay,23))

o delete(inst(Ay,24))

o delete(inst(Ay,25))

o delete(inst(Ay,28))

Fig. 3(c) shows an example of the camouflaged assembly
code. In Fig. 3(c), the labels “DEST1:”, “DEST2:", ...,
“DESTk:" ..., “DEST9:” point to addresses to be modified
by self-modification routines RR;, and HRy.

The camouflaged assembly code consists of instructions
only included in the fake assembly code and self-modification
routines. Therefore, an attacker will not be able to understand
the program as long as the attacker reads only a part of it. For
example, if the attacker reads only the part consisting of the
following instructions:

[16] addl -4 (%ebp), %$eax

[17] cmpl $70, %eax

[18] jg L2,
it will seem as if the operation “keyl+key2<=70" was
performed. In fact, this part is modified by restoring routines
a run-time, and the operation “keyl*10+key2==45" is
performed.

For simplification, we have shown one of the smallest self-
modification routines in this example. In order to make static

2528

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:2, No:7, 2008

int main() {
int keyl, key2;

while (1) {
scanf (*%d”, &keyl);
scanf (*%d”, &key2);

break;

printf ("Password OK.¥n") ;

if (keyl * 10 + key2 == 45)

printf ("Invalid Password.¥n") ;

int main() {
int keyl, key2;

scanf (*%d”, &keyl);
scanf (*%d”, &key2);

if (keyl + key2 <= 70)

if (keyl * 5 <= 25) {

printf ("Password OK.¥n") ;

printf ("Invalid Password.¥n") ;

return 0O; return 0O;
! }
(a) Origina Source Code (b) Fake Source Code
’ DEST2: # change to
[ConﬁantDedammon] # "addl —8(%ebp),%eax”
LCl:.ascii "&d¥o" [18] addl -4(%ebp), %eax
LC3:.ascii "Invalid Password.¥O0" DEST3: # change to "cmpl $45, $eax"

LC4:.ascii "Password OK.¥0"

[Pre-processing)

_main:

movb $O0xF8, DEST2+2
[01] pushl %ebp
[02] movl %esp, %ebp

[03] pushl %edx
[04] pushl %edx

[05] call _ main
subb $0x07, DEST5+1
L2:
movb $0x6B, DEST1
movw S$OxO0AFC, DEST1+2

[Get “keyl” and "key2”]

movw $0x9090, DEST7 :}
movb $0x90, DEST7+2
[06] 1leal -4(%ebp), %eax

[07] pushl %eax
[08] pushl %eax

movw $0x9090, DESTS8
[09] pushl $LC1
[10] call scanf
[11] leal -8(%ebp), %eax

[12] pushl %eax
[13] pushl %eax

movb $0x74, DEST4
[14] pushl SLC1
[15] call _scanf

movb $0x2D, DEST3+2

[Fake as “if(keyl+key2 <= 70)"]
DEST1:

change to

"imull $10,-4(%ebp), seax"

[16] movl -8(%ebp), %eax
ret # added (padding)
[17] addl $24, %esp
movb

$0x8B, DEST1 }
movw $O0xF845, DEST1+2
movb $0x90, DEST9 v

[19] cmpl $70, %eax

DEST4: # change to "je _L2"
[20] Jg _L2
[21] pushl SLC3
RR2 [22] call puts
[

23] popl %edx
movl $0x90909090, DESTé6
DEST5: # change to "jmp L2"
[24] jmp L2+7

RRs | | Fake as “if(key1*s <= 25)" |

L2:

N movb $0x45, DEST3+2
RR1 DEST6: # delete

[25] imull $5, -4(%ebp), %eax

DEST7: # delete

[26] cmpl $25, %eax
RR7 DEST8: # delete

[27]1 Jg L3

[28] pushl ~$LC4

movw $0x7F27, DESTS
RRs [29] call puts
DESTY9: # delete
[30] popl %eax
_L3:
movw $0x83F8, DEST7
movb $0x19, DEST7+2
RR4 movl $0x6B45Fc05, DEST6

addb $0x07, DEST5+1
movb $0x7F, DEST4

[Post-processing]

[31] leave

[32] xorl %eax, %eax
movb $OxFC, DEST2+2
movb $0x58, DEST9

[33] ret

RR3

HR1
RRo9

5

RRe

HR3

HRs

HR7

HRe
HRs5
HRa

HR2
HR9

(c) Camouflaged Assembly Code

Fig. 3

Example of program camouflage

2529

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:7, 200

analysis difficult, self-modification routines can be made com-
plex using other obfuscation methods, such as the obfuscation
of the assembly code [15] and mutation [11]. In addition, the
distance between fake instructions and the self-modification
routines tends to be small, since this example program is very
short. However, if the size of the target program is large,
self-modification routines can be scattered over a wide range,
which further increases the cost of analyzing the program.

V. PERFORMANCE OVERHEAD

In this section, we examine how much overhead on the
execution time is imposed by the proposed method. The target
of camouflage is a program which decrypts 8 bytes of the en-
crypted datain the program, based on the 7 bytes of input data.
The encryption algorithm used in the program is C2 (Cryp-
tomeria Cipher) [1], which is designed for the CPPM (Content
Protection for Prerecorded Media)/CPRM (Content Protection
for Recordable Media) Digita Rights Management scheme.

First, we camouflaged the subroutine of the program for
decryption algorithm. Then, we measured the execution time
10 times for each version with different proportion of the cam-
ouflaged instructions to the total instructions in the subroutine.
By the proportion of camouflaged instructions, we characterize
the degree of the camouflage in the program, which is in
proportion to the degree of the difference between the original
assembly code and the fake assembly code. The proportion of
the camouflaged instructions was varied from 10% to 50%
with an interval of 10%.

The content of fake source code here was determined at
random for simplicity. The computer used in the experiment
had Windows XP as the OS, a main memory size of 1.5
Gbytes, and a Pentium 4 CPU (clock frequency 2.8 GHz)
based on 1A-32 (Intel Architecture 32) [8]. The execution time
was measured as the difference in the value of the processor’'s
time-stamp counter from immediately before the start of the
camouflaged program to immediately after the termination of
the program. The value of the processor’s time-stamp counter
was acquired by using the RDTSC (Read Time-Stamp Counter)
instruction [9].

1.08
1.07 -]
1.06
1.05 -
1.04 -

1.03 -

Program execution time [sec.]

1.02

0 10 20 30 40 50

The proportion of camouflaged instructions [%]

Fig. 4 Overhead on the execution time

Fig. 4 shows the result of the execution time measurement.
The horizontal axis shows the proportion of camouflaged
instructions, while the vertical axis shows the average pro-
gram execution time. It can be seen from Fig. 4 that the
average execution time tends to increase with the number of
camouflaged instructions. When approximately 50% of the
entire instructions are camouflaged, the average execution
time is approximately 1.07 seconds. This is approximately
1.03 times the execution time (approximately 1.04 second)
when no instruction is camouflaged. We guess that the self-
modification mechanism imposes an extra overhead to CPU,
due to architectural issues such as incoherence of cache
memory, or prediction failure of conditiona branches [10].

V1. CONCLUSION

In this paper, we have proposed program camouflage
method. All a user who uses the proposed method has to do
is to construct a fake source code by modifying the original
source code. When an attacker statically analyzes the program
that is protected by the proposed method, the program appears
the fake code. However, when the program is executed, the
original code is performed.

Since a user can determine the content of the camouflage
a the source code level, it is easy to hide specific instruc-
tions or constant values of the program from attackers. For
example, consider that (part) instruction “ (a+b) *5==10" is
to be converted into fake instruction “a*8>=10". For this
conversion by the (previous) instruction camouflage method,
the user has to read the assembly code and understand the
behavior of the program (e.g., the control flow, data flow,
and stack operations). On the other hand, with the proposed
method, the user simply has to change the “ (a+b) *5==10"
to “a*8>=10" at the source code level. In addition, it is
easy to camouflage a program on a module basis, not on an
instruction basis. For example, a user can fake an encryption
algorithm F; used in the program as another encryption
algorithm E», simply by replacing E; with E» at the source
code level. We believe that these advantages lead to efficient
program camouflage.

It can be seen in the experiment that the more the proportion
of camouflaged instructions increases, the more expensive the
performance overhead becomes. Therefore, too much cam-
ouflage should not be applied to such programs that require
high performance or real-time properties. On the other hand,
programs that can sacrifice performance but requires a strong
protection have a benefit of the high degree of camouflage.
Thus, the proposed method should be applied with a careful
consideration on the target program itself and the objective of
the protection.

ACKNOWLEDGMENT

The research was supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Young Scientists
(B), 20700034, 2008(Japan).

2530

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:7, 2008

REFERENCES

[1] 4C-Entity, Policy statement on use of content protection for recordable
media, (CPRM) in certain applications, 2001, http://www.4centity.com/
(Available online).

[2] D. W. Aucsmith, Tamper Resistant Software: An Implementation, ser.
Lecture Notes in Computer Science. Springer-Verlag, 1996, vol. 1174,
pp. 317-333.

[3] P Cervan, Crackproof Your Software. San Francisco: No Starch Press,
2002.

[4] F. Cohen, Operating system protection through program evolution, Com-
puters and Security, vol. 12, no. 6, pp. 565-584, 1993.

[5] C. Collberg and C. Thomborson, Watermarking, tamper-proofing, and ob-
fuscation — tools for software protection, IEEE Transactions on Software
Engineering, vol. 28, no. 8, pp. 735-746, June 2002.

[6] D. Grover, Ed., The Protection of Computer Software: Its Technology and
Applications. Cambridge University Press, 1989.

[7]1 F. Hohl, Time limited blackbox security: Protecting mobile agents from
malicious hosts, ser. Lecture Notes in Computer Science. Springer-
Verlag, 1998, vol. 1419, pp. 92-113.

[8] 1A-32 Intel Architecture software developer’s manual vol.1 : Basic Archi-
tecture, Intel Co., http://www.intel.co.jp/ (Available onling).

[9] 1A-32 Intel Architecture software developer’s manual vol.2 : Instruction
Set Reference, Intel Co., http://www.intel.co.jp/ (Available online).

[10] 1A-32 Intel Architecture software developer’s manual vol.3 : System
Programming Guide, Intel Co., http://www.intel.co.jp/ (Available online).

[11] J. Irwin, D. Page, and N. Smart, Instruction stream mutation for non-
deterministic processors, in Proc. ASAP2002, July 2002, pp. 286-295.

[12] Y. Kanzaki, Protecting secret information in software processes and
products, Ph.D. dissertation, Nara Institute of Science and Technology,
Mar. 2006.

[13] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto, A software
protection method based on instruction camouflage, Wiley Publishers,
Electronics and Communications in Japan, Part 3, vol. 89, no. 1, pp.
47-59, January 2006.

[14] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto, Exploiting
self-modification mechanism for program protection, in Proc. 27th IEEE
Computer Software and Applications Conference, Dallas, USA, Nov.
2003, pp. 170-179

[15] M. Mambo, T. Murayama, and E. Okamoto, A tentative approach
to constructing tamper-resistant software, in Proc. 1997 New Security
Paradigm Workshop, Sep. 1997, pp. 23-33.

[16] E. W. Myers, An O(ND) difference algorithm and its variations, Algo-
rithmica, vol. 1, no. 2, pp. 251-266, 1986.

[17] C. Wang, J. Hill, J. Knight, and J. Davidson, Software tamper resis-
tance: Obfuscating static analysis of programs, Department of Computer
Science, University of Virginia, Technical Report SC-2000-12, Dec. 2000.

2531

