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A new seed projection method for solving shifted
systems with multiple right-hand sides

Chao Li,Hao Liu

Abstract—In this paper, we propose a new seed projection method
for solving shifted systems with multiple right-hand sides. This
seed projection method uses a seed selection strategy. Numerical
experiments are presented to show the efficiency of the newly method.
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jection.

I. INTRODUCTION

THROUGHOUT this paper, we consider techniques for
the solutions of several shifted systems of equations

(A− σiI)xi = bi, i = 1, · · · , p, (1)

with σi ∈ R, bi ∈ Rn, and A ∈ Rn×n. I is the identity matrix
in Rn×n, set Ai = A− σiI , Ai is an n× n nonsingular and
nonsymmetric real matrix.

Such shifted systems arise in a variety of practical applica-
tions such as control theory, structural dynamics, and quantum
chromodynamics; see [1,2] and references therein. In many
practical applications, the right-hand sides are not arbitrary,
and often there is information sharable among the right-hands.

When Ai ≡ Aj = A, ∀i, j = 1, · · · , p, problem (1) reduces
to linear systems with multiple right-hand sides

AX = B = [b1, b2, · · · , bp] . (2)

Two methods for solving (2) have been discussed in the
literature are block iterative method [3], and seed projection
method [4]. When bi ≡ bj = b, ∀i, j = 1, · · · , p, equation (1)
can be written as shifted systems

(A− σiI)xi = b, i = 1, · · · , p. (3)

Because of the invariance of Krylov subspace under shifting,
i.e.,Km (A, v) = Km (A− σI, v), a nature solution to prob-
lem (3) is the krylov subspace method such as FOM method
[2], QMR method [5], GMRES method [6], etc. In generally,
σi �= σj , bi �= bj for i �= j. Based on the seed projection
method for the CG method proposed in [4], Gu and Zhu
propose a seed projection method using the GMRES method
for solving (1), see [7]. This method is effective especially
when the right-hand sides are close. This method (referred
as the GS-shift method) generates a Krylov subspace from
a set of vectors obtained by solving one of the system (1),
called a seed system, by GMRES method and then projects the
residuals of other nonseed systems, called nonseed systems,
orthogonally onto the generated Krylov subspace to get the
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approximate solutions. The whole process is repeated with
another unsolved system as a seed until all the systems are
solved.

From [8], we know that seed selection plays an important
role in the seed projection method. It is interesting to give a
good approach to the seed selection that increase the conver-
gence rate of the GS-shift method. In this paper, we propose
a new seed projection method which uses a seed selection
strategy for solving (1). Numerical experiments are given in
this paper will show that our method is more effective than
the GS-shift method.

In section 2, we give a quick overview of GS-shift method.
In section 3, we present the new seed projection method with a
seed selection strategy for solving shifted systems with multi-
ple right-hand sides. In section 4, some numerical experiments
are presented to show the efficiency of the method. Finally, we
make some concluding remarks in section 5.

II. GS-SHIFT METHOD

In this section, we recall the GS-shift algorithm for solving
(1). This will allow us to simplify the presentation of the new
method in section 3. Details of the algorithm can be found in
[7]. We summarize it in the following algorithm.

Algorithm 1. GS-Shift
1) xi = xi

(0), ri = bi −Aixi, i = 1, · · · , p.
2) For l = 1, 2 · · · , p, until all the systems are solved
3) Set s = l, select the lth system as seed system.
4) For k = 1, 2, · · · , until seed system convergence
5) [Vm+1, H]=Arnoldi(As, rs).
6) ds = arg min

d∈Rm

∥∥βe1 − H̄md
∥∥
2
, where β = ‖rs‖2.

7) x̄s = xs + Vmds.
8) r̄s = bs −Asx̄s.
9) For j = l + 1, · · · , p, compute all the approximate

projection solutions of the nonseed systems
10) dj = arg min

d∈Rm

∥∥V T
m+1rj − H̄jd

∥∥
2
, where H̄j = H̄m +

(σs − σj)
(
Im
0

)
.

11) x̄j = xj + Vmdj .
12) r̄j = bj −Aj x̄j .
13) If ‖r̄j‖2 ≤ ε, delete the jth system.
14) End(j).
15) If ‖r̄s‖2 ≤ ε, go to 17).
16) End(k).
17) End(l).

We now make a few description about the algorithm. We
apply restarted GMRES method to solve the seed system,
function Arnoldi applies the Arnoldi procedure to build an
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orthogonal basis Vm+1 = [v1, ..., vm] for the Krylov subspace
Km+1 (As, rs). The well-known relation AsVm = Vm+1H̄m

holds, where H̄m is the upper Hessenberg matrix, then we
can deduce the relation AjVm = Vm+1H̄j , where H̄j =

H̄m+(σs − σj)
(
Im
0

)
. The solution of seed system is given

by x̄s = xs + Vmds, where ds = arg min
d∈Rm

∥∥βe1 − H̄md
∥∥
2
,

and β = ‖rs‖2. The solutions of the nonseed systems are
approximated by projecting the residual r̄j = bj −Aj x̄j onto
Km+1 (As, rs), and solving the least squares problem dj =
arg min

d∈Rm

∥∥V T
m+1rj − H̄jd

∥∥
2
. Thus the approximate solution

of the nonseed systems can be derived by x̄j = xj + Vmdj .
After the current seed system is solved to desired accuracy,
the whole process is repeated with another unsolved system
as a seed until all the systems are solved.

III. GS-SHIFT METHOD WITH A SEED SELECTION
STRATEGY

In this section, we propose a new seed projection method
with a seed selection strategy to solve (1). As reported in [8,9],
the seed plays an important role in the reduction of the norm
of nonseed residuals. A good seed system should allow more
information shareable among the nonseed systems. In order
to let a seed system include more content of each system,
the seed system can be chosen as a linear combination of
current residuals. However, this will cause extra work to solve
an artificial system. So we usually restrict the seed to one of
the current residuals. One possible way is to choose the seed
such that

‖rs‖2 ≥ ‖rj‖2, j = 1, · · · , p, (4)

i.e.,
‖rs‖2 = max

1≤j≤p
‖rj‖2. (5)

In our algorithm, referred to as GSS-Shift, we select the
seed system according to (5). In generally, a new seed is
selected when the current seed system is convergent. However,
our algorithm select a new seed once the GMRES method,
which we solve the solution of the seed system, restart. This
alternative of seeds is a primary move for restarting the
GMRES phase instead of restarting the GMRES phase till the
seed system convergence. Details of the GSS-Shift algorithm
can be described as follows.

Algorithm 2. GSS-Shift

1) xi = xi
(0), ri = bi −Aixi, i = 1, · · · , p.

2) [s, rs]=SEED(R), where R = [r1, r2, · · · , rp].
3) β = ‖rs‖2.
4) While β > ε
5) [Vm+1, H]=Arnoldi(As, rs).
6) ds = arg min

d∈Rm

∥∥βe1 − H̄md
∥∥
2
.

7) x̄s = xs + Vmds.
8) r̄s = bs −Asx̄s.
9) For j = 1, · · · , p, and j �= s, compute all the approximate

projection solutions of the nonseed systems
10) If ‖rj‖2 > ε

11) dj = arg min
d∈Rm

∥∥V T
m+1rj − H̄jd

∥∥
2
, where H̄j = H̄m +

(σs − σj)
(
Im
0

)
.

12) x̄j = xj + Vmdj .
13) r̄j = bj −Aj x̄j .
14) End(If).
15) End(j).
16) Set xi := x̄i, ri := r̄i, i = 1, · · · , p.
17) [s, rs]=SEED(R), β = ‖rs‖2.
18) End(While).

We note that the function SEED is used to obtain the seed
system by (5). When R is applied on the function SEED,
returns s and rs , where s is the index of column of R having
the maximum norm.

The properties of residuals about GS-Shift algorithm also
apply to our algorithm, details about the properties can be
found in [7].

IV. NUMERICAL EXPERIMENTS

In this section, we give some experimental results of us-
ing the GSS-Shift algorithms to solve (1) and compare its
performances with the GS-Shift method and the restarted
GMRES(m) algorithm that applied on each system separately,
denoted by G-Shift.

For all the methods, we use a restarted strategy every m
iterations, i.e., we apply m steps of Arnoldi process every
restarted. The initial guess is X(0) = 0 and the stopping
criterion is ‖rj‖2 < 10−6 for j = 1, · · · , p. All codes are
written in Matlab.

The experiments are based on the following matrix A and
shift array Σ = [σ1, · · · , σp], hence Ai = A − σiI . The
matrix A in these problems is a bidiagonal matrix with 0.1
in each superdiagonal position. Set A = (D; 0.1), where D is
a diagonal matrix. In addition, p = 5 is set.
A1 = (D1; 0.1), D1 = diag(1, 2, · · · , 1000);
A2 = (D2; 0.1), D2 = diag(−1,−2,−3,−4, 5, 6, · · · , 1000).
Σ(1) = [0.000,−0.001,−0.002,−0.003,−0.004];
Σ(2) = [0.0,−0.1,−0.2,−0.3,−0.4];
Σ(3) = [−0.072,−0.036,−0.018,−0.009,−0.009].
Two kinds of right-hand sides are chosen.
B1 = [b1, b2, · · · , bp],
(bj)i = − cos (5 cos (ti − 2 (j − 1)π/128)), j = 1, · · · , p,
where ti = 1 + 0.1(i− 1), i = 1, · · · , n;
B2 = [b1, b2, · · · , bp],
(bj)i = j · cos ((2j + i)× 106

) · sin ((3 (4− j) + i)× 106
)
,

i = 1, · · · , n; j = 1, · · · , p.

TABLE I
NUMBER OF ITERATIONS TO CONVERGENCE OF EACH SYSTEM FOR

A = A1 WITH m = 15

RHS Σ GSS-Shift GS-Shift G-Shift
B1 Σ(1) (72)21,15,9,11,16 (96)34,25,17,10,10 (170)34,34,34,34,34

Σ(2) (71)32,9,10,7,13 (90)34,22,15,12,7 (148)34,32,29,27,26
Σ(3) (73)16,14,12,14,17 (97)32,24,17,12,12 (167)32,33,34,34,34

B2 Σ(1) (79)4,15,21,7,32 (111)32,27,30,10,12 (168)32,32,37,36,31
Σ(2) (79)17,15,22,11,14 (117)32,25,26,17,17 (147)32,30,32,29,24
Σ(3) (83)7,14,17,11,34 (118)30,26,29,17,16 (163)30,31,36,35,31
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TABLE II
NUMBER OF ITERATIONS TO CONVERGENCE OF EACH SYSTEM FOR

A = A2 WITH m = 25

RHS Σ GSS-Shift GS-Shift G-Shift
B1 Σ(1) (64)27,9,9,7,12 (128)46,33,24,15,10 (255)46,52,52,52,53

Σ(2) (92)10,5,9,9,59 (150)46,35,24,22,23 (295)46,56,58,66,69
Σ(3) (67)32,6,10,8,11 (130)48,35,17,17,13 (259)48,53,53,52,53

B2 Σ(1) (68)2,9,21,5,31 (155)45,41,43,7,19 (260)45,50,58,54,53
Σ(2) (89)3,9,11,14,52 (198)45,43,45,28,37 (299)45,53,65,64,72
Σ(3) (73)6,9,27,5,26 (176)46,41,47,21,21 (262)46,51,58,54,53

In Tables 1 and 2, we list the number of iterations to conver-
gence for each seed system to be refined. In the parentheses,
we give the total number of iterations. The experiment result
show that our method is more efficient than other two methods.

V. CONCLUSION

In this paper, we have proposed a new GMRES seed
projection method for solving shifted systems with multiple
right-hand sides. To define the new method, we use a seed
selection strategy. Experimental results show that our method
is effective than the GS-Shift method.
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