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Abstract—This paper considers the (2+1)-dimensional breaking
soliton equation in its bilinear form. Some exact solutions to this
equation are explicitly derived by the idea of three-wave solution
method with the assistance of Maple. We can see that the new idea
is very simple and straightforward.
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I. INTRODUCTION

Wnamic processes in physics, mechanics, chemistry and
biology which can be represented by nonlinear partial dif-
ferential equations. The study of exact solutions of nonlinear
evolution equations plays an important role in soliton theory
and explicit formulas of nonlinear partial differential equations
play an essential role in the nonlinear science. Also, the
explicit formulas may provide physical information and help
us to understand the mechanism of related physical models.

In recent years, many kinds of powerful methods have
been proposed to find solutions of nonlinear partial differential
equations, numerically and/or analytically, e.g., the variational
iteration method [1], [2], [3], the Adomian decomposition
method [4], [5], the homotopy perturbation method [6], [7],
[8], [9], [10], parameter expansion method [11], [12], [13],
spectral collocation method [14], [15], [16], [17], [18], homo-
topy analysis method [19], [20], [21], [22], [23], [24], [25],
and the Exp-function method [26], [27], [28], [29], [30], [31].

In this paper, by means of the idea of the three-wave
method, we will obtain some exact solutions for the (2+1)-
dimensional breaking soliton equation in its bilinear form.
The paper is organized as follows: in the following section
we have a brief review on the three-wave method. In Section
III we obtain some exact solutions for the (2+1)-dimensional
breaking soliton equation. In Section IV we obtain some
soliton solutions for the (2+1)-dimensional Bogoyavlenskii’s
breaking soliton equation. Finally the paper is concluded in
Section V.

II. METHODOLOGY

Dai et al. [32], suggested the three-wave method for nonlin-
ear evolution equations. The basic idea of this method applies
the Painlevè analysis to make a transformation as

u = T (f) (1)
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for some new and unknown function f . Then we use this
transformation in a high dimensional nonlinear equation of
the general form

F (u, ut, ux, uy, uz, uxx, uyy, uzz, · · ·) = 0, (2)

where u = u(x, y, z, t) and F is a polynomial of u and its
derivatives. By substituting (1) in (2), the first one converts
into the Hirota’s bilinear form, which it will solve by taking
a special form for f and assuming that the obtained Hirota’s
bilinear form has three-wave solutions, then we can specify
the unknown function f , (for more details see [32], [33]).

III. (2+1)-DIMENSIONAL BREAKING SOLITON EQUATION

In this section, we investigate explicit soliton solutions
of the following (2+1)-dimensional breaking soliton equation
given in [34]

uxxxy − 2 uy uxx − 4 ux uxy + uxt = 0. (3)

Equation (3) is used to describe the (2+1)-dimensional inter-
action of a Riemann wave propagating along the y-axis with
a long wave along the x-axis, which was first described by
Calogero and Degasperis in 1977. To solve eq. (3) authors in
[34] used of N-soliton solution. In this paper, we use the idea
of three-wave method [32], [33], to solve equation (3). By this
idea we obtain some analytic solutions for the problem. The
process of the method is very easy and more simple than the
method of Zheng et al. [34]. To solve eq. (3), we introduce a
new dependent variable w by

w = −2(ln f)x (4)

where f(x, y, t) is an unknown real function which will be
determined. Substituting eq. (4) into eq. (3), we have

2(ln f)xxt + 2(ln f)xxxxy + 16(ln f)xx (ln f)xxy+
8(ln f)xxx (ln f)xy = 0,

(5)

which can be integrated once with respect to x to give

2(ln f)xt + 2(ln f)xxxy + 12(ln f)xx (ln f)xy

+4∂−1
x ((ln f)xx (ln f)xxy − (ln f)xxx (ln f)xy) = 0.

(6)

Thus, eq. (6) can be written as

(DxDt + DyD3
x)f · f + 4 f2 ∂−1

x (Dx(ln f)xx · (ln f)xy) = 0,
(7)

E can find many important phenomena and dy-
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where the D-operator, e.g. for two-variable functions is defined
by

Dm
x Dn

t f(x, t) · g(x, t) =

( ∂
∂x1

− ∂
∂x2

)m( ∂
∂t1

− ∂
∂t2

)n[f(x1, t1)g(x2, t2)]
∣∣

x1 = x2 = x
t1 = t2 = t

to reduce eq. (7) to

(DxDt + DyD3
x)f · f = 0, (8)

we follow the assumption of [34] by assuming

∂−1
x (Dx(ln f)xx · (ln f)xy) = 0,

where ∂−1
x ∂x = ∂x∂−1

x = 1. Now we suppose the solution of
eq. (8) as

f (x, y, t) = e−ξ1 + δ1 cos (ξ2) + δ2 cosh (ξ3) + δ3 eξ1 (9)

where
ξi = aix + biy + cit, i = 1, 2, 3 (10)

and ai, ci, δi are some constants to be determined later.
Substituting eq. (9) into eq. (8), and equating all co-
efficients of sin (a2 x + b2 y + c2 t), cos (a2 x + b2 y + c2 t),
sinh (a3 x + b3 y + c3 t) and cosh (a3 x + b3 y + c3 t) to zero,
we get the set of algebraic equation for ai,bi,ci, δi, (i =
1, 2, 3)

−3 a1
2 b1 a3 − a1

3 b3 − 3 b3a3
2 a1−

a3
3 b1 − c3 a1 − c1 a3 = 0,

3 a1 b1 a3
2 + c1 a1 + a3 c3 + a1

3b1+
b3 a3

3 + 3 b3 a3 a1
2 = 0,

−a2 c2 + b2 a2
3 + a1

3 b1 + c1 a1−
3 b2 a2 a1

2 − 3 a1 b1a2
2 = 0,

a1
3 b2 + c2 a1 + 3 a1

2 b1 a2+
c1 a2 − a2

3 b1 − 3 b2 a2
2 a1 = 0,

−a2
3b3 + c2 a3 + c3 a2 + a3

3b2−
3 b2a2

2a3 + 3 b3a3
2a2 = 0,

a3 c3 + b3a3
3 − a2 c2 − 3 b3 a3a2

2+
b2 a2

3 − 3 b2 a2a3
2 = 0,

16 a1
3b1δ3 + 4 c1 a1δ3 − δ1

2c2 a2+
δ2

2c3 a3 + 4 δ1
2a2

3b2 + 4 δ2
2a3

3b3 = 0.

(11)

Solving the system of equations (11) with the aid of Maple,
we obtain the following cases:

A. Case 1:

a1 = a3, a2 = 0, b1 = −b3, b3 = − c3
a32 ,

c1 = −c3, c2 = −a3
2 b2, δ1 = 0, δ3 = δ2

2

4 ,

(12)

for some arbitrary real constants a3 ,c3 ,b2 and δ2. Substitute
eq. (12) into eq. (4) with eq. (9), we obtain the solution as

f (x, y, t) = e−ξ1 + δ2 cosh (ξ2) + δ3eξ1

and

u (x, y, t) =
−2(−a3e−ξ1 + δ2 sinh (ξ2) a3 + δ3a3eξ1)

e−ξ1 + δ2 cosh (ξ2) + δ3eξ1
(13)

for

ξ1 = a3x − b3y − c3t, ξ2 = a3x + b3y + c3t

b3 = − c3
a32 , δ3 = 1

4 δ2
2.

If δ3 > 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2 a3

(
2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ2)
)

2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ2)

for
θ =

1
2

ln(δ3) , δ3 =
1
4

δ2
2.

If δ3 < 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2a3

(
2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ2)

)
2
√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ2)

for
θ =

1
2

ln(−δ3) , δ3 =
1
4

δ2
2.

B. Case 2:

a1 = a3, b1 = b3, c1 = c3 = −4 b3a3
2, δ1 = 0

c2 = − 1
2

b3(a2
4+6 a3

2a2
2−3 a3

4)
a2a3

, b2 = − 1
2

b3(a2
2+3 a3

2)
a2a3

(14)
for some arbitrary real constants a3, a2, b3, δi, i = 1, 2.
Substitute eq. (14) into eq. (4) with eq. (9), we obtain the
solution as follows

f (x, y, t) = e−ξ1 + δ2 cosh (ξ1) + δ3eξ1

and

u (x, y, t) =
−2(−a3e−ξ1 + δ2 sinh (ξ1) a3 + δ3a3eξ1)

e−ξ1 + δ2 cosh (ξ1) + δ3eξ1
(15)

for
ξ1 = a3x + b3y − 4 b3a3

2t.

If δ3 > 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2 a3

(
2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ1)
)

2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ1)

for
θ =

1
2

ln(δ3).

If δ3 < 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2 a3

(
2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ1)

)
−2

√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ1)
.

for
θ =

1
2

ln(−δ3).
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IV. (2+1)-DIMENSIONAL BOGOYAVLENSKII’S BREAKING

SOLITON EQUATION

In this part, we obtain some explicit formula of solutions
of the following (2+1)-dimensional Bogoyavlenskii’s breaking
soliton equation given in [35]

uxxxy + 4 uy uxx + 4 ux uxy + uxt = 0. (16)

To solve eq. (16) author in [35] used the Bilinear Bäcklund
transformation and explicit solution. In this paper, we use the
idea of three-wave method [32], [33], to solve equation (16).
By this idea we obtain some analytic solutions for the problem.
To solve eq. (16), we introduce a new dependent variable w
by

u = ∂x w. (17)

After this, the breaking soliton equation can be written as

wxxxxy + 4 wxy wxxx + 4 wxx wxxy + wtxx = 0, (18)

which can be integrated once with respect to x to give the
potential form of breaking soliton equation

wxxxy + 4 wxx wxy + wtx = 0, (19)

by using the Hirota’s bilinear method [36] and D-operator, we
set

u =
3
2
(ln f)x (20)

where f(x, y, t) is an unknown real function which will be
determined. Substituting eq. (20) into eq. (16), we obtain the
following Hirota’s bilinear form

(DxDt + DyD3
x)f · f = 0. (21)

Now we suppose the solution of eq. (21) as

f (x, y, t) = e−ξ1 + δ1 cos (ξ2) + δ2 cosh (ξ3) + δ3 eξ1 (22)

where

ξi = aix + biy + cit, i = 1, 2, 3 (23)

and ai, ci, δi are some constants to be determined later.
Substituting eq. (22) into eq. (21), and equating all co-
efficients of sin (a2 x + b2 y + c2 t), cos (a2 x + b2 y + c2 t),
sinh (a3 x + b3 y + c3 t) and cosh (a3 x + b3 y + c3 t) to zero,
we get the set of algebraic equation for ai,bi,ci, δi, (i =

1, 2, 3)

−3 a1
2 b1 a3 − a1

3 b3 − 3 b3a3
2 a1−

a3
3 b1 − c3 a1 − c1 a3 = 0,

3 a1 b1 a3
2 + c1 a1 + a3 c3 + a1

3b1+
b3 a3

3 + 3 b3 a3 a1
2 = 0,

−a2 c2 + b2 a2
3 + a1

3 b1 + c1 a1−
3 b2 a2 a1

2 − 3 a1 b1a2
2 = 0,

a1
3 b2 + c2 a1 + 3 a1

2 b1 a2 + c1 a2−
a2

3 b1 − 3 b2 a2
2 a1 = 0,

−a2
3b3 + c2 a3 + c3 a2 + a3

3b2−
3 b2a2

2a3 + 3 b3a3
2a2 = 0,

a3 c3 + b3a3
3 − a2 c2 − 3 b3 a3a2

2+
b2 a2

3 − 3 b2 a2a3
2 = 0,

16 a1
3b1δ3 + 4 c1 a1δ3 − δ1

2c2 a2 + δ2
2c3 a3+

4 δ1
2a2

3b2 + 4 δ2
2a3

3b3 = 0.

(24)

Solving the system of equations (24) with the aid of Maple,
we obtain the following cases:

A. Case 1:

a1 = a3, a2 = 0, b1 = −b3, b3 = − c3
a32 ,

c1 = −c3, c2 = −a3
2 b2, δ1 = 0, δ3 = δ2

2

4 ,

(25)

for some arbitrary real constants a3 ,c3 ,b2 and δ2. Substitute
eq. (25) into eq. (20) with eq. (22), we obtain the solution as

f (x, y, t) = e−ξ1 + δ2 cosh (ξ2) + δ3eξ1

and

u (x, y, t) =
3
2
−a3e−ξ1 + δ2 sinh (ξ2) a3 + δ3a3eξ1

e−ξ1 + δ2 cosh (ξ2) + δ3eξ1
(26)

for

ξ1 = a3x − b3y − c3t , ξ2 = a3x + b3y + c3t

b3 = − c3
a32 , δ3 = 1

4 δ2
2.

If δ3 > 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
3
2

a3

(
2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ2)
)

2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ2)
.

for
θ =

1
2

ln(δ3) , δ3 =
1
4

δ2
2.

If δ3 < 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
3
2

a3

(
2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ2)

)
2
√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ2)

for
θ =

1
2

ln(−δ3) , δ3 =
1
4

δ2
2.
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B. Case 2:

a1 = a3, b1 = b3, c1 = c3 = −4 b3a3
2, δ1 = 0

c2 = − 1
2

b3(a2
4+6 a3

2a2
2−3 a3

4)
a2a3

, b2 = − 1
2

b3(a2
2+3 a3

2)
a2a3

(27)
for some arbitrary real constants a3, a2, b3, δi, i = 1, 2.
Substitute eq. (27) into eq. (20) with eq. (22), we obtain the
solution as follows

f (x, y, t) = e−ξ1 + δ2 cosh (ξ1) + δ3eξ1

and

u (x, y, t) =
3
2
−a3e−ξ1 + δ2 sinh (ξ1) a3 + δ3a3eξ1

e−ξ1 + δ2 cosh (ξ1) + δ3eξ1
(28)

for
ξ1 = a3x + b3y − 4 b3a3

2t.

If δ3 > 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
3
2

a3

(
2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ1)
)

2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ1)

for
θ =

1
2

ln(δ3).

If δ3 < 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
3
2

a3

(
2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ1)

)
−2

√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ1)

for
θ =

1
2

ln(−δ3).

V. CONCLUSIONS

In this paper, using the idea of three-wave method we
obtained some explicit solutions for the (2+1)-dimensional
breaking soliton and the (2+1)-dimensional Bogoyavlenskii’s
breaking soliton equations. By comparison of three-wave
method and another analytic methods, like HAM, HTA and
EHTA methods, we can see that the new idea is very easy
and straightforward which can be applied on another nonlinear
partial differential equations.
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