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Inversion Layer Effective Mobility Model for
Pocket Implanted Nano Scale n-MOSFET
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Abstract—Carriers scattering in the inversion channel of n-
MOSFET dominates the drain current. This paper presents an ef-
fective electron mobility model for the pocket implanted nano scale
n-MOSFET. The model is developed by using two linear pocket
profiles at the source and drain edges. The channel is divided into
three regions at source, drain and central part of the channel region.
The total number of inversion layer charges is found for these three
regions by numerical integration from source to drain ends and the
number of depletion layer charges is found by using the effective
doping concentration including pocket doping effects. These two
charges are then used to find the effective normal electric field,
which is used to find the effective mobility model incorporating the
three scattering mechanisms, such as, Coulomb, phonon and surface
roughness scatterings as well as the ballistic phenomena for the
pocket implanted nano-scale n-MOSFET. The simulation results show
that the derived mobility model produces the same results as found
in the literatures.

Keywords—Linear Pocket Profile, Pocket Implanted n-MOSFET,
Effective Electric Field and Effective Mobility Model.

I. INTRODUCTION

AS the channel length of MOSFETs is scaled down to
deep-submicrometer or nano scale regime, we observe

the reduction of threshold voltage with the reduction of
channel length [1]. This effect is known as short-channel
effect (SCE). It can be reduced or can be even reversed
(then it is called reverse short channel effect or RSCE) by
locally raising the channel doping near source and drain
junctions. RSCE was originally observed in MOSFETs due to
oxidation-enhanced-diffusion [2] or implant-damage-enhanced
diffusion [3]. Lateral channel engineering utilizing halo or
pocket implant [4]-[8] surrounding drain and source regions
is effective in retarding SCE with the downscaling of the
channel length of the MOS devices. In fact, this pocket implant
technology is found to be very promising in the effort to
tailor the short-channel performances of deep-submicron as
well as nano scale MOSFETs [5]. It could be shown that with
an optimized pocket implant process the saturation current
is up to 10% higher compared to a conventional optimized
junction technology without increasing the leakage current of
the devices minimum channel length [9]. The inversion layer
mobility in Si MOSFET’s has been a very important physical
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quantity as a parameter to describe the drain current and a
probe to study the electric properties of a two-dimensional
carrier system. Therefore, much study [10] since the 1960’s
has revealed dominant scattering mechanisms determining the
mobility. On the other hand, it has already been reported that
the electron and hole mobilities in the inversion layer on a
(100) surface follow the universal curves at room temperature
independent of the substrate impurity concentration or the
substrate bias when plotted as a function of effective normal
fields, Eeff [11]. Since the use of pocket implants causes
a strong non-uniform lateral doping profile and with the
reduction of channel length or with the increase of pocket
profile parameters there is a pronounced increase of the
effective channel doping concentration, the effective mobility
is supposed to be degraded further due to Coulomb scattering
with the ionized dopants and charged interface traps at low
vertical electric fields i.e. at low gate bias voltage. This is
called roll-off region. As the effective vertical field increases,
the mobility becomes independent of the channel doping and
all the samples approach the so-called universal curve. In this
region, the main scattering processes are phonon and surface
roughness scattering that do not depend on channel doping. In
most circuit models [12]-[14], simple mobility models [15],
[16] are used to describe the effective surface mobility neither
accounting for the degradation by Coulomb scattering in
heavily doped MOSFET’s (only the so called ‘universal curve’
[17] is modeled) nor accounting for the lateral non-uniform
doping profile. This neglect can cause simulation errors in the
transconductance of short n-MOS pocket implanted devices
of up to 50% which can not be tolerated in today’s circuit
simulations [9]. In this paper, an analytical inversion layer
effective mobility model is developed taking into account the
pocket doping as well as temperature effects for the nano scale
pocket implanted n-MOSFET. The model is developed using
two linear pocket doping profiles at the surface of the device.
The total number of inversion layer and depletion charges
is calculated numerically using the threshold voltage and
the surface potential models of pocket implanted n-MOSFET
published in [18] and [19] respectively. Then these two charges
are used to find the effective normal electric field, which
is used to obtain effective mobility model incorporating the
Coulomb, phonon and surface roughness scatterings as well
as the ballistic phenomena. The pocket profile parameters
and device parameters as well as bias voltages are varied to
investigate the pocket implantation effect on effective mobility.
As a verification of the mobility model, a subthreshold drain
current model in [20] is simulated incorporating this mobility
model.
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Fig. 1. Pocket implanted n-MOSFET structure

II. POCKET DOPING PROFILE

The pocket implanted n-MOSFET structure shown in Fig.
1 is considered in this work and assumed co-ordinate system
is shown at the right side of the structure. Localized extra
dopings are shown by circles near the source and drain side
regions. All the device dimensions are measured from the
oxide-silicon interface. In the structure, the junction depth
(rj) is 25 nm. The oxide thickness (tox) is 2.5 nm, and it is
SiO2 with fixed oxide charge density of 1011 cm−2. Uniformly
doped p-type Si substrate is used with doping concentration
(Nsub) of 4.2×1017 cm−3 with pocket implantation both at the
source and drain side with peak pocket doping concentration
of 1.75×1018 cm−3 and pocket lengths from 20 to 30 nm, and
source or drain doping concentration of 9.0×1020 cm−3.

The pocket implantation, which causes the Reverse Short
Channel Effect (RSCE), is done by adding impurity atoms
both from the source and drain edges. It is assumed that the
peak pocket doping concentration (Npm) gradually decreases
linearly towards the substrate level concentration (Nsub) with
a pocket length (Lp) from both the source and drain edges.
The basis of the model of the pocket is to assume two
laterally linear doping profiles from both the source and drain
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Fig. 2. Simulated pocket profiles at the surface for different pocket lengths,
Lp = 20, 25 and 30 nm; peak pocket concentration, Npm = 2.0×1018 cm−3

edges across the channel as shown in Figs. 2-3 for substrate
concentration of 4.2×1017 cm−3 and channel length of 100
nm. The pocket parameters, Npm and Lp, play important role
in determining the RSCE. At the source side, the pocket profile
is given as

Ns(x) = −Npm −Nsub

Lp
x+Npm

Ns(x) = Nsub
x

Lp
+Npm

(
1− 1

Lp
x

)
(1)

At the drain side, the pocket profile is given as

Nd(x) =
Npm −Nsub

Lp
[x− (L− Lp)] +Nsub

Nd(x) = Nsub

(
L

Lp
− 1

Lp

)
+Npm

(
1− L

Lp
+

1

Lp
x

)
(2)

,where x represents the distance across the channel. Since
these pile-up profiles are due to the direct pocket implantation
at the source and drain sides, the pocket profiles are assumed
symmetric at both sides.

Neff =
1

L

∫ L

0

[
Ns(x) +Nd(x) +Nsub

]
dx (3)

With these two conceptual pocket profiles of equations (1)
and (2), the profiles are integrated mathematically along the
channel length from the source side to the drain side and then
the integration result is divided by the channel length (L) to
derive an average effective doping concentration (Neff ) as
shown in equation (3).

Neff = Nsub

(
1− Lp

L

)
+
NpmLp

L
(4)

Putting the expressions of Ns(x) and Nd(x) from equations
(1) and (2) in equation (3) the effective doping concentration
is obtained in equation (4). This effective doping concentration
expression is then used in deriving the surface potential model
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by applying Gauss’s law [19]. This surface potential model is
used to find the inversion layer charges and other parameters
for determining the effective inversion layer mobility. When
Lp � L for long channel device then the pocket profile has
very little effect on uniform substrate concentration at the
surface, but when Lp is comparable with L then the pocket
profile parameters affects the substrate doping concentration
at the surface of the n-MOSFET. This causes the surface
potential, threshold voltage and hence effective mobility to
change due to RSCE.

Because of the pocket implantation, effective doping con-
centration increases with decreasing channel lengths as ob-
served in Fig. 4. This becomes stronger when both peak pocket
concentration and/or pocket length increases.

III. MODELING OF THE INVERSION LAYER EFFECTIVE
MOBILITY

According to the universal mobility model [16], the effective
normal electric field, Eeff is defined by equation (5).

Eeff =
1

εSi

(
Qdep + ηQinv

)
(5)

,where εSi is the permittivity of Si, Qdep is the surface
depletion charge per unit area, Qinv is the surface inversion
carrier charge per unit area. Here, η is a key parameter in
defining the shape of the effective normal electric field, Eeff

defined by the equation (5). In order to provide the universal
relationship (i.e. the substrate bias and substrate concentration
independence of effective mobility vs. effective normal electric
field curve), the value of η should taken to be 1/2 for the
electron mobility [16] and 1/3 for the hole mobility [21]. This
relationship has been often utilized as a precise mobility model
in device simulators [22], [23].

Eeff =
Cox

εSi

[
η(Vgs − Vth) + Vth − VFB − 2ψs,inv

]
(6)

The depletion charge in equation (5) can be determined by
the threshold voltage equation [18] and the inversion layer
change can be determined from Qinv = Cox(Vgs − Vth).
Thus equation (5) can be transformed in to equation (6),where
VGS is the gate voltage and Vth is the threshold voltage
of the pocket implanted n-MOSFET [18], VFB is the flat
band voltage and Cox is the oxide capacitance per unit area.
There has been much study on effective mobility [10] since
the 1960’s. This has revealed that the dominant scattering
mechanisms determine the mobility. The three most relevant
scattering processes in MOSFET devices are the (screened)
Coulomb scattering, the phonon scattering and the surface
roughness scattering through which the electrons exchange
momentum and kinetic energy with their environment. All
these tend to lower the mobility of electrons in the inversion
layer to values smaller than the bulk mobility. Based on these
scattering processes three mobility models are derived for the
pocket implanted MOSFET. Each of these three terms has been
modeled analytically as functions of the variables Neff (effec-
tive channel dopant density for the pocket implantation case),
Ninv (inversion layer electron density) and T (temperature).

A. Coulomb scattering mobility model

A formula for the Coulomb limited mobility model is given
by S. Villa et al [17]. This is modified for our pocket im-
planted n-MOSFET incorporating our effective pocket doping
concentration from equation (4) and is given in equation (7).

μcb = μ0
Ls

NeffLthLDH

(
1 +

Lth

Ls

)2

(7)

,where Ls =
√
L2
DH + L2

TF is the effective screening
length that has the dependence on the carrier density with
LTF = (πh̄2εSi)

(q2mn,eff )
being the Thomas-Fermi value in the fully

degenerate case where q is the electronic charge, mn,eff is
the effective mass for electron, Lth = h̄/

√
2kTmn,eff is

the thermal length of the carriers where k is the Boltzmann
constant and T being the temperature and LDH = (2kTεSi)

(qQinv)
is

the Debye-Huckle value.

B. Phonon scattering mobility model

Gamiz et al. [24] have shown that the phonon limited
mobility may be approximated by equation (8) taking the
temperature influence into account. We just modified this equa-
tion with our effective field expressions since this equation
was derived from a detailed Monte Carlo analysis of phonon
scattering in quantized inversion layers and thus it may be
regarded as the one reproducing the most recent theoretical
results.

μph = μphB

[( T
T0

)n
+
( T
T0

)r(Eeff

E0

)α(T )
]−1

(8)

,where μphB(300K) = 1470 cm2/V-sec is the phonon
limited bulk mobility, n = 2.109, r = 1.7, E0 = 7×104

V/cm and α(T ) = 0.2(T/T0)
−0.1 with T0 is another fitting

parameter or base temperature taken as 300 K.
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C. Surface roughness scattering mobility model

The Si-SiO2 interface is not ideally flat, but shows irregu-
larities with a typical amplitude of one or two atomic layers.
Scattering by this potential fluctuations degrades the carrier
mobility at high effective fields. A detailed TEM analysis of
the interface between Si and a thermally grown oxide was
performed by Goodnick and coworkers [25] and their results
have been taken as a reference in many following theoretical
and numerical works. In their study, the roughness of the
Si-SiO2 interface appeared to be characterized by an r.m.s.
displacement of about 0.2 nm and a correlation length of about
1.3 nm, that is, about half the electron thermal length at room
temperature. This means that on the spatial scale of the carrier
wavelength, the surface potential appears almost uncorrelated,
thus featuring an almost constant power spectrum.

μsr = δE −2
eff (9)

As long as this condition holds, the surface roughness
mobility is inversely proportional to the square of the effective
electric field as given in equation (9) [26], [27]. But this
formula neglects the effects of carrier scattering, which is
responsible for a weak temperature dependence of this term.
In fact, as the temperature increases, the screening of the
scattering potential weakens and the mobility decreases. We
have accounted for the effect by modifying the term, δ
according to the equation (10).

μsr = δe
−
(

T
T0

)2

E −γ
eff (10)

,where δ and γ are fitting parameters depending on the
quality of the Si-SiO2 interface. However, in this work, we
have used δ = 8.8×1014 V/sec and γ = 2.

The equivalent mobility (μeqv) is the total mobility that
considers the effects of all scattering mechanisms. These are
combined with the Mathiessen’s rule [1] as in equation (11).

1

μeqv
=

1

μcb
+

1

μph
+

1

μsr
(11)

The curve of equivalent mobility versus effective normal
electric field follows the universal relationship [11], [28].

D. Ballistic mobility model

The effective electron mobility in short channel (nano
scaled) MOSFETs must be much smaller than the electron
mobility in long channel devices. This reduction was predicted
for ballistic devices in [29]-[31]. Equivalent mobility (μeqv)
determined in this way is not applicable for nano scale
MOSFET. If the nano scale device physics is not considered
in the mobility curve, the mobility is termed as the ballistic
or apparent mobility [32]. The physical reasons for a drastic
mobility reduction are related to the ballistic motion first
predicted in 1979 [33], [34]. In ballistic field effect transistors,
electrons travel from the source to the drain ideally without any
collisions with impurities or phonons. Electrons propagate in
the device channel with a randomly oriented thermal velocity,
vth, (or with a Fermi velocity, vF , for a degenerate electron

gas) and, hence, have only a limited time to accelerate in
the electric field and acquire a drift velocity. Their transit
time is determined by L/vth, where L is the device length,
(or by L/vF in a degenerate case). As a result, in low
electric fields, the current is proportional to the electric field
and to the electron concentration, just like in the collision-
dominated case. Therefore, for MOSFETs with nano scale
channel lengths, the mobility thus obtained has to be modified.
It has been observed that the mobility extracted from electrical
characteristics decreases with the shrinking of the channel
length (L). The equivalent mobility determined by equation
(11) is said to be apparent mobility. The electron mobility has
to be substituted by a parameter that we call ballistic mobility
[29], [30], [35] which (for a non-degenerate electron gas) is
given by equation (12) [30].

μbal =
2qL

πmn,effvth
(12)

,where vth is the average thermal velocity of the electron
in the channel and is given by equation (13) [32].

vth =

√
8kT

πmn,eff
(13)

The equivalent mobility may be linked to the ballistic
mobility using Matthiessen’s rule and thus equivalent electron
mobility can be determined by equation (14).

1

μeff
=

1

μeqv
+

1

μbal
(14)

It should be noted that Matthiessen’s rule tacitly assumes
the momentum relaxation time due to the different scattering
mechanisms have the same energy dependence. In order to
correctly account for the various scattering sources a weighted
statistical averaging of the relaxation times should be per-
formed. Nevertheless Matthiessen’s rule should give a good
first-order approximation, especially when valley reproduction
is taken in to account [36].

IV. RESULTS AND DISCUSSIONS

Figs. 5-6 show threshold voltage variation with gate lengths
for different pocket doses and pocket lengths respectively.
It has been observed that as the pocket dose or the pocket
length is increased the reverse short channel effect increases
and thus delays the threshold voltage roll off. Since mobility
is affected by the threshold voltage, therefore, variation of
pocket dose or pocket length will cause the variation of the
effective mobility. From the Eeff dependence curves of the
different types of mobility models as shown in Fig. 3 of [11],
it is observed that the phonon scattering and surface roughness
scattering mechanisms dominate at the higher value of electric
field since the carrier concentration is higher and the mobility
due to Coulomb scattering dominates at low value of effective
normal electric field due to the low value of inversion charge.
Fig. 7 shows the variation of the effective mobility with the
variation of effective electric field for the different channel
lengths. It is observed that as the channel length decreases the
effective mobility decreases because scattering increases in the
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device with lower channel length. But at lower values of the
electric fields mobility tends to degrade. This can be ascribed
to coulomb scattering term at the lower values of effective
normal electric fields. Fig. 8 shows that the effective mobility
is not changed much with the variation of the substrate doping
concentration. But at very low electric fields the effective
mobility degrades with the increase of the substrate doping
concentration, because then the Coulomb scattering rate dom-
inates over the surface roughness and phonon scattering rate as
observed in Fig. 3 of [11]. Because at higher substrate doping
more ionized ions are available at the surface.

Fig. 9 shows the variation of the effective mobility with
the variation of effective electric field for the different oxide
thicknesses. It is observed that as the oxide thickness decreases
the effective mobility increases at lower electric fields because
now the gate has more control over the channel. This can be
ascribed to coulomb scattering term at the lower values of
effective normal electric fields. But mobility does not change
appreciably when the electric field is very high. For Figs. 10-
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11, the same explanation may be given. That is, increased
pocket dose and pocked length cause the effective mobility to
degrade at low values of normal electric fields because of the
increased Coulomb scattering rate due to the incorporation of
the more ions in the channel by the pocket implantation. But at
the higher value of the effective normal electric field, there is
no deviation in the effective mobility curve due to the change
of pocket profile parameters. This holds the universality of the
effective mobility curve.

Figs. 12-13 show the variation of effective mobility with
the effective electric field for different temperatures and two
different channel lengths of 100 nm and 50 nm. It is observed
that as the temperature goes down the effective mobility
increases because with the decrease of temperature, carriers
scattering is less at the surface. But when the electric field is
low then the mobility goes down for a particular temperature
because of the increase of the coulomb scattering. Due to
pocket implantation, threshold voltage has not decreased until
100 nm, but at 50 nm channel length threshold voltage has
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already decreased due to SCE as shown in Figs. 5-6. Hence
at very low values of the effective normal electric field, the
mobility curve becomes flat at lower temperature for the
shorter channel length device.

In order for the further verification of the proposed model,
subthreshold drain current model is simulated incorporating
the proposed effective mobility model. The model is simulated
for three different pocket doses as shown in Fig. 14. It is
observed that the subthreshold drain current behavior with
the gate voltage variation is same as observed in [20]. As
the pocket dose is increased the subthreshold drain current is
decreased for a particular gate bias due to the increase of the
pocket dose and hence the increase of the Coulomb scattering
rate and consequent mobility degradation.

V. CONCLUSION

This paper has proposed an inversion layer effective mobil-
ity model for ultra thin oxide and nano scale pocket implanted
n-MOSFET based on the linear pocket profiles at the source
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and drain sides of the pocket implanted n-MOSFET along the
channel region. The effective normal electric field has been
derived from the bulk charge and the inversion layer charge.
The effects of changing the pocket profiles parameters as well
as device parameters on the effective mobility of the pocket
implanted n-MOSFET have been studied using the proposed
model. Then the subthreshold drain current has been simulated
incorporating the proposed mobility model. The simulated
results show that the proposed model predicts the effective
mobility and the subthreshold drain current accurately for the
pocket implanted n-MOSFET having channel lengths in the
nano scale regime.
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