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Abstract—Locality Sensitive Hashing (LSH) is one of the most 

promising techniques for solving nearest neighbour search problem in 

high dimensional space. Euclidean LSH is the most popular variation 

of LSH that has been successfully applied in many multimedia 

applications. However, the Euclidean LSH presents limitations that 

affect structure and query performances. The main limitation of the 

Euclidean LSH is the large memory consumption. In order to achieve 

a good accuracy, a large number of hash tables is required. In this 

paper, we propose a new hashing algorithm to overcome the storage 

space problem and improve query time, while keeping a good 

accuracy as similar to that achieved by the original Euclidean LSH. 

The Experimental results on a real large-scale dataset show that the 

proposed approach achieves good performances and consumes less 

memory than the Euclidean LSH. 

 

Keywords—Approximate Nearest Neighbor Search, Content 

based image retrieval (CBIR), Curse of dimensionality, Locality 

sensitive hashing, Multidimensional indexing, Scalability. 

I. INTRODUCTION 

S a consequence of the evolution of digital technology 

and the proliferation of the Internet, multimedia data 

invade today's world. In spite of the rapid growth of computer 

performance, it is difficult to perform quick searches in the 

huge multimedia databases. This problem poses a significant 

challenge in terms of scalability to many computer vision 

applications such as image and video database retrieval. 

Recent research attentions have been shifted to developing 

efficient and scalable indexing methods that perform 

management and organization of the large multimedia 

databases. These methods rely on indexing and structuring 

tools known as multidimensional indexing. They have been 

proposed to solve the nearest neighbors (NN) search problem, 

which is consist in finding closest (or most similar) data points 

to a given query in high dimensional space. 

Multidimensional indexing methods are organized into two 

main families: the family of conventional indexing methods 

and the family of approximate indexing methods. The first one 

is based on indexing data points according to their distribution 

and location in the multidimensional space. A number of 

efficient conventional algorithms (e.g. R-tree [1] and KD-tree 

[2]) have been proposed for the NN search problem. 
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Unfortunately, this family of methods suffers from scalability 

issues, as query time is exponential in d . In fact, for large 

enough d  ( 16>d ), the performances of this family get 

significantly degraded and become worse than the full 

sequential scan approach that compares a query to every point 

from the dataset. This problem is known as "The 

dimensionality curse"[3]. 

The second family has been proposed to overcome the 

dimensionality curse problem by using the approximation 

approach. This family is based on data compression allowing 

for a sequential scan of a small approximation file instead of 

reading the complete data file. Thus, it provides slightly less 

accurate results, but offers in return a sharp reduction in 

computation time. We find in this family VA-File [4] and its 

variants [5], [6], the LSH methods [15], [17] and its variants 

[7]-[13], [14], BitMatrix [10], KRA+-Block [11], multi-

dimensional inverted index [22], etc. 

Unluckily, most of the indexing and search structures 

available today have several limitations including scalability: 

1) a relatively large computation time 2) limiting memory 3) 

degradation of research quality. 

We focus in this paper on one of the most popular methods 

for performing approximate search in high dimensional space 

based on the concept of locality-sensitive hashing (LSH). The 

choice of this class of methods is justified by their quality and 

effectiveness with respect to several multidimensional 

indexing methods [12], [20]. Furthermore, it has been 

successfully applied to various domains, including computer 

vision, web clustering [21] and computational biology [23].  

 Although LSH is a promising approach for solving the NN 

search problem, it has limitations that affect structure and 

query performance. The main limitation of the basic LSH is 

memory consumption. In order to increase the probability to 

map similar points to similar hash values, the LSH 

concatenates several random independent hash functions, 

which leads to a severe redundancy of the hash values as well 

as a redundancy of the hash tables. Moreover, when using 

large scale dataset, more hash tables are required leading to 

high memory consumption.  

In this paper, we propose a new LSH-based approach called 

Symmetries of a cube LSH (SC-LSH) for efficient high 

dimensional NN search. The new LSH scheme allows the 

concatenation of random dependent hash function, which 

reduces the hash values redundancy and increases the collision 

probability. Moreover, the SC-LSH saves much storage space 

and speeds up the search process, while keeping a good 

accuracy that is similar to the original Euclidean LSH one. 
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The rest of this paper is organized as follows. We first 

discuss preliminaries in Section II, and then introduce our 

algorithm in Section III. Section IV gives the experimental 

results that compare our algorithm with the Euclidean LSH. 

Finally, conclusions and perspectives are presented in Section 

V. 

II. PRELIMINARIES 

In this section, we give a brief overview of LSH and the 

main LSH functions families discovered for different 

similarity measures. Then, a Euclidean LSH method is 

presented. 
 

TABLE I 

NOTATIONS 

d  Dimension 

n  Number of points of the dataset 

(.,.)d  Distance 

jih ,  Hash function 

NN  Nearest Neighbor 

K  Number of Hash functions 

L  Number of Hash tables 

),( rpB  Ball of radius r centered at a data point p  

.,.  The Euclidean Distance 

[.]rP  Probability 

pf  Probability density function 

ℜ  Set of real numbers 

U  
Universe 

Ζ  Set of integers 

(.)O  Complexity 

A. Locality Sensitive Hashing  

Locality Sensitive Hashing (LSH) is one of the most 

popular methods for solving the NN search problem in high 

dimensional space. The LSH is based on the use of several 

hash functions describing the distribution of data in 

multidimensional space. The hash function assigns the same 

hash value to the closest points with high probability. Then, 

the NNs are performed by hashing the query point and 

retrieving points stored in same buckets
1
of the hash table to 

the query. The LSH approach relies on locality-sensitive hash 

functions. A family F of hash functions is called a locality 

Sensitive family if it satisfies the following definitions: 

Definition.1 [15].An LSH family }{ UF d →ℜ=  is called

),,,( 2121 PPrr -sensitive, if for any ∈qp, dℜ , with 
21 PP > and

21 rr < : 

 

- 11 )]()([then ),(If PqhphPrqBp rF ≥=∈  

- 22 )]()([then),( If PqhphPrqBp rF ≤=∉  

 

 
1Buckets: Data type that groups objects together, the term is used when 

discussing hashing algorithms, where different items that have the same hash 

code (hash value) go into the same "bucket".  

Definition.2 [16].A locality sensitive hashing scheme is a 

distribution on a family F of hash functions operating on a 

collection of points, such that for two points qp,  

 

),()]()([ qpsimqhphPrF ==
 

 

Here ),( qpsim is some similarity function defined on the 

collection of points. 

To increase the gap between high probability 1P  and low 

probability 2P , and to achieve high search accuracy, it is 

necessary to use several hash functions defined as:
Kd

jg Ζ→ℜ: , ))(),...,(()( ,,1 qhqhqg jKjj = , characterizing the 

hash tables, where )1,1( , LjKih ji ≤≤≤≤  are selected 

randomly and independently from F . Those functions hash all 

data points and build the index structure, by placing each point

p in a bucket )(pg j . It is worth noting that the buckets store 

only the references of points to facilitate access to data points. 

The search algorithm for a query point q  begins by 

computing the hash values )(),...,(1 qgqg L , then the distance 

between the query point and the points of the same bucket. 

Finally, the nearest points to the query are selected; they 

represent the results of the research. 

B. LSH Families 

In the last few years, the development of locality sensitive 

hash functions has been well addressed in the literature. We 

next briefly survey the main LSH functions families and their 

properties. 

Min-hash [19]: It is a family of hash functions allowing for 

the estimation of the similarity between two sets. It consists of 

selecting a random permutationπ  from the spaceU . For a set 

of data A, the hash function is defined as:

}|)(min{)( AaaAh ∈= π . The probability of collision 

between two sets A and B is defined as: 

),()]()([ BAsBhAhPr == , where ),( BAs  is the Jaccard 

coefficient defined as 
||

||
),(

BA

BA
BAs

∪
∩

= .This technique is often 

used by search engines to detect redundant web pages; it has 

also been applied in large-scale clustering problems. 

LSH based on Hamming distance [15]: It is a family of hash 

functions adapted to the Hamming distance. For d -

dimensional vectors 
d}1,0{ , the family F of hash functions is 

the set of projections on one of the d  coordinates:

},...,1,)(|}1,0{}1,0{:{ dixxhhF i
d ==→= ,where ix is thi

coordinate of x . The function h is randomly selected from F , 

and allows choosing a random bit vector. 

LSH based on cosine distance [16]: is a LSH family 

gathering the following hash function:  
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
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These functions allow for partitioning the space into two 

spaces by a randomly chosen hyperplane defined by the unit 

normal vector r . The probability of collision between two 

vectors p and q is calculated as follows: 

 

π
θ ),(

1)]()([ 
qp

qhphPr −==  

 

LSH based on
pl -distance [17]: It is an interesting LSH 

family gathering the following hash functions: 

 






 +
=

w

bpa
ph ba

.
)( ,

 

 

where a  is a random d -dimensional vector of p-stable 

distribution, b  is a real number chosen uniformly from ],0[ w

and w is a user-specified constant.  

The probability of collision between two points p  and q is 

defined as: 

 

dt
w

t

c

t
f

c
qhphPcp p

w

r )1)((
1

)]()([)(

0

−=== ∫
 

 

This family is defined for the case where the distances are 

measured according to the
pl  metric, for any ]2,1[ ∈p . 

This LSH family provides an efficient solution to 

randomize the NN search problem in high dimensional spaces 

[17]. 

LSH based on 2χ -distance [7]: It is a new LSH family 

fitted to the 2χ -distance, defined by the following hash 

function: 

 





















+
−+

= b
w

pa

ph ba
2

1)1
.

.8(

)( 
2

,

 

 

where a  is a random d -dimensional vector, b is a real 

number chosen uniformly from [1,0[ and w is a scalar for the 

quantization width, calculated using 2χ -distance [7]. 

This LSH family was successfully applied in the context of 

image and video retrieval when data are represented by 

histograms. 

In the following, we will describe one of the most famous 

LSH technique for solving NN search problem, it based on 
pl 

-distance and it called Euclidean Exact LSH (E2LSH). 

C. The E2LSH Method 

The Euclidean Locality-Sensitive Hashing (E2LSH) method 

was proposed in [18] as a solution for the high dimensional

)1,( δ−R -NN search problem in the Euclidean space 2l . For a 

query point q , the E2LSH method reports all points
dp ℜ∈

satisfying Rqp ≤−
2

with a probability at least equal to 

δ−1  (δ is the probability that a near neighbor p is not 

reported). 

The index structure of the E2LSH is performed by 

calculating the hash value of each point of the dataset, using 

the hash function Ζ→ℜd
ba ph :)( ,

, defined as 

 






 +
=

w

bpa
ph ba

.
)( ,

 

 

where a  is a random d -dimensional vector of p-stable 

distribution [17] and b  is a real number chosen uniformly 

from ],0[ w , where w is a positive real number. Intuitively, the 

hash function )( , ph ba
projects the point p on a line whose 

direction is identified by the d -dimensional vector a . Then, 

the projection of the point p is shifted by a constant. In such a 

scheme, the line is segmented into intervals of length w . 

 To improve the hashing discriminative power, a second 

hash function jg is constructed using several functions jih ,

defined as: ))(),...,(()( ,,1 phphpg jKjj = , where )1( Lj ≤≤ . The 

similar points of the data set (having the same )(pg j ) are 

stored in the same bucket of the hash tables. We note that the 

E2LSH performances depend crucially on parameters K and

:L K refers to the number of hash functions and L  represents 

the number of hash tables. The value of L  is determined by 

requiring that the probability to find the true NNs is at least

δ−1 , which implies: 

 













−
=

)1log(

log

1
K

P
L

δ  

 

The K  value is chosen as a function of the dataset to 

minimize the query time. 

Although the E2LSH is, a promising approach for solving 

the NN search problem, but present limitation in memory 

space storage. To insure good performances the E2LSH 

requires the use of several hash tables, which requires too 

much memory space. The next section presents a new LSH 

scheme to overcome the E2LSH storage problem. 

III. THE PROPOSED APPROACH 

In this section, we present the index structure and the 

nearest neighbor search algorithm of the new proposed 

approach SC-LSH. 

A. The Index Structure 

We propose a new LSH-based approach called Symmetries 

of a cube Locality Sensitive Hashing (SC-LSH) for efficient 

memory space management. The basic idea of the new 

approach is structuring the high dimensional space into a set 

of disjoints cubes. For this purpose, the SC-LSH propose to 
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project dataset points on symmetry axes of a

using the hash function Ζ→ℜd
ba vh :)( ,

, defined as 

 






 +
=

w

bva
vh ba

.
)( ,

 

where a is a d -dimensional vector representing the symmetry 

axes of a cube, and b  is a real number chosen uniformly from

],0[ w , where w is a positive real number depending on the 

length of the edge of a cube e . For the space diagonal, 

value of w is equal to 3e and for the axes of rotation, 

value of w is equal to e  (Fig. 1).  
 

Fig. 1 Symmetries of a cube hashing

 

After an experimental analysis on the approach 

performances, we restricted the number of symmetry axes to 

seven. The first one is drawn independently from Gaussian 

distribution and the others are generated as described above,

respecting the mathematical properties of the symmetries of 

the cube. Therefore, this process enables to hash similar points 

to same cube of edge length 

))(),...,(()( 71 phphpg = , (Fig. 2). To ensure a good accuracy it 

is necessary to use multiple hash tables, an experimental study 

was proposed to choose the appropriate number of hash table. 
  

Fig. 2 The index structure of the SC

 

project dataset points on symmetry axes of a cube, (Fig. 1), 

, defined as  

dimensional vector representing the symmetry 

is a real number chosen uniformly from

is a positive real number depending on the 

the space diagonal, the 

he axes of rotation, the 

 

Fig. 1 Symmetries of a cube hashing 

After an experimental analysis on the approach 

es, we restricted the number of symmetry axes to 

seven. The first one is drawn independently from Gaussian 

distribution and the others are generated as described above, 

respecting the mathematical properties of the symmetries of 

rocess enables to hash similar points 

to same cube of edge length e  defined as

. 2). To ensure a good accuracy it 

is necessary to use multiple hash tables, an experimental study 

ropriate number of hash table.  

 

ndex structure of the SC-LSH 

B. NN Search Algorithm 

Like in the E2LSH approach, the similarity search process 

begins in our new approach by computing the hash values of a 

query point q , ),...,(()( ,1 qhqg jj =

index the query point with the appropriate buckets. Then the 

Euclidean distance between the query and the vectors of the 

same or the nearest bucket is computed and the closest points 

to the query are returned. 

IV. EXPERIMENTAL 

In this section, we evaluate the proposed approach on the 

high dimensional NN search problem using real and synthetic 

datasets. We compared the SC

E2LSH approach. 

A. Datasets and Evaluations M

We perform the experiments with two large

SIFT1M [24]: it contains one million SIFT descriptors 

extracted from random images; each descriptor is represented 

by a 128-dimensions point.  

SynGIST: synthetic datasets generated from 

We randomly choose 100 data points to form a query set 

and use the remaining ones to form the gallery database.

We use the same criterion as in [13] to evaluate the query 

accuracy. For a given query q

retrieved points, sorted in ascending order of their distances to

q . Let 
**

2
*
1 ,...,, mppp  be the true

approximation ratio as: 

 

qRi (

 

The overall ratio is defined as

 

∑m
1

 

 The more closely the overall ratio to one, the more accurate 

the results are, and when it equals to one, the results are exact. 

For a set of queries Q, the average overall ratio is defined, 

reflecting the general quality of all

scrutinize the quality of neighbors at individual ranks the 

average rank-i ratio is defined, which is the mean of the 

i approximation ratio of all queries in 

Q

1

 

In this paper, we use the average rank

average rank-i ratio (MARR)

to evaluate similarity search quality.

In addition, we also report the mean query time and the 

space consumption (size of the index structure

Like in the E2LSH approach, the similarity search process 

begins in our new approach by computing the hash values of a 

))(),..., ,7 qh j  with )1( Lj ≤≤ , which 

index the query point with the appropriate buckets. Then the 

Euclidean distance between the query and the vectors of the 

same or the nearest bucket is computed and the closest points 

XPERIMENTAL RESULT 

In this section, we evaluate the proposed approach on the 

search problem using real and synthetic 

datasets. We compared the SC-LSH performances with the 

Evaluations Metrics 

m the experiments with two large-scale datasets: 

: it contains one million SIFT descriptors 

extracted from random images; each descriptor is represented 

: synthetic datasets generated from GIST1M [24] 

ly choose 100 data points to form a query set 

and use the remaining ones to form the gallery database. 

We use the same criterion as in [13] to evaluate the query 

q , let mppp ,...,, 21 be them -NNs 

retrieved points, sorted in ascending order of their distances to

be the truem -NNs, we define the rank-i 

qp

qp
q

i

i

,

,
)

*
=  

io is defined as 

∑ =

m

i
i qR

1
)(  

The more closely the overall ratio to one, the more accurate 

the results are, and when it equals to one, the results are exact.  

, the average overall ratio is defined, 

quality of all NNsm − . In order to 

scrutinize the quality of neighbors at individual ranks the 

is defined, which is the mean of the rank-

of all queries in Q, namely, defined as: 

 

∑
∈∀ Qq

i qR
Q

)(
 

average rank-i ratio and the mean 

(MARR) of all m -NNs retrieved points, 

to evaluate similarity search quality. 

In addition, we also report the mean query time and the 

on (size of the index structure )(nLO ). 
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Our tests were conducted on a Linux distribution: Ubuntu 

12.04 machine 1.86GHz with 6GB RAM and 146 GB of local 

disk. 

B. Parameter Settings 

The main goal of selecting optimal parameters is to enable 

high quality search with high speed, while using a small 

amount of memory. The proposed approach depends mainly 

on the number of hash tables L , which defines the accuracy: a 

large number of hash tables increases the collision probability. 

Therefore, it affects the memory space storage. 

The SC-LSH approach depends also on the length of the 

edge e , that defines the volume of the cube and the number 

ofpoints indexed inside. A large edge increases the probability 

of collision but increases the computation time.  

To choose properly the optimal edge size e  we perform 

several tests on different edge sizes. We noticed that the value 

4=e  provides good accuracy and fast query time. To find the 

optimal number of hash tables L , we perform several tests for  
different values of L on SIFT1M dataset. Table II summarizes 

the performances of the SC-LSH method for different values 

of L . 
 

TABLE II 

PERFORMANCE OF THE SC-LSH FOR DIFFERENT VALUE OF L ON SIFT1M 

DATABASE 

L 10 20 30 40 50 60 

MARR 0.725 0.741 0.747 0.749 0.750 0.750 

Query 

Time (s) 

0.1062 0.1536 0.1842 0.2086 0.2189 0.2358 

Memory 
Consump

tion (Gb) 

0.1117 0.2235 0.3352 0.4470 0.5587 0.6705 

 

In the following, we set manually the value of the edge of 

the cube at 4=e , and we chose 30=L as the appropriate 

number of hash table, for indexing the SIFT1M dataset.  

We performed the same performance tests on synthetic 

datasets SynGIST to define the suitable number of hash tables

L .  

C. Performances on Real Dataset 

In this section, we report the evaluation results of the 

proposed approach using SIFT1M, we compared the result 

obtained with the E2LSH method. 

 

 

Fig. 3 Average rank-i ration on SIFT1M dataset of 1000-NNs 

 

Fig. 3 shows the search quality test of the two approaches 

SC-LSH and E2LSH performed on SIFT1Mdataset. We note 

that both methods provide almost the same similarity search 

quality. The proposed approach outperforms slightly the 

E2LSH method. In fact, the mean average rank-i ratio of the 

SC-LSH is equal to 0,747, while the mean average rank-i 

ratio of the Euclidean LSH is equal to 0,744. Therefore, the 

proposed approach requires less computation time and 

memory space compared to the E2LSH approach (see Table 

III). 
 

TABLE III 
PERFORMANCE OF THE SC-LSH AND E2LSH ON SIFT1M DATABASE 

SC-LSH Query Time (s) 0.1842 

Memory Consumption (GB) 0.3352 

E2LSH Query Time (s) 1.0343 

Memory Consumption (GB) 4.2244 

D. Performances on Synthetic Dataset 

To evaluate the behavior of the SC-LSH in scaling, we 

performed several tests on different synthetic databases of 

different sizes and dimensionalities. 

1. Search Quality Test 

Tables IV and V show the search quality of the proposed 

approach and the Euclidean LSH with respect to a dataset of 

size n and dimensionality d . As the dimensionality d  
increases, the search quality of the two approaches decreases. 

We note that the SC-LSH and the E2LSH underperform in 

terms of quality of search for large dimensions, but keep a 

good accuracy for large dataset sizes. 
 

TABLE IV 

MEAN AVERAGE RANK-I RATIO OF 1000-NNS VS. DIMENSIONALITY FOR

250000=n  

Dimension 100 300 500 700 

SC-LSH 0.990713 0.514426 0.172545 0.06109 

E2LSH 0.990120 0.514006 0.170722 0.06053 
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TABLE V 

MEAN AVERAGE RANK-I RATIO OF 1000-NNS VS. DATASET SIZE FOR 

100=d  

Database size 250000 500000 1000000 

SC-LSH 0.990713 0.980763 0.963412 

E2LSH 0.990120 0.98 0.963245 

2. Query Time Test 

To evaluate the timing in large scale of the proposed 

approach, we computed the query time of the latter for 

different dimensionalities and database sizes. 
 

 

Fig. 4 Query time vs. database size for 100=d  
 

 

Fig. 5 Query time vs. dimensionality for 250000=n  

 

Figs. 4 and 5 show the speedup of the SC-LSH and the 

E2LSH with respect to database size and dimensionality. We 

can observe that the proposed approach outperforms the 

Euclidean LSH in timing: the SC-LSH is four times faster than 

the E2LSH. This is due to the new structuring method that 

hashes similar points in the same cube and thus speeds up the 

search process. We note that the proposed approach allows 

having the same search quality with a reduced query time.  

3. Memory Consumption Test 

The Locality Sensitive Hashing scheme is based on the use 

of several hash tables storing the similar points in the 

appropriate bucket, which requires a large amount of memory. 

Table VI and VII show the space required for storing the hash 

tables of the SC-LSH and the E2LSH approaches for different 

database sizes and dimensions. We observe that the space 

consumed by the proposed approach remains small and shows 

a slight increase when the dataset size and dimension increase. 

On the other side, the Euclidean LSH requires more memory 

space, more than four times the space required by the 

proposed approach. Moreover, the Euclidean LSH keeps the 

same number of hash tables for different dimensions (for

250000=n we find 1485=L equivalent to 4.149 GB for 

different dimensionalities). 
 

TABLE VI 

MEMORY CONSUMPTION VS. DIMENSIONALITY FOR 250000=n  

Dimension 100 300 500 700 

SC-LSH 0.0279 0.0838 0.1117 0.1396 

 

TABLE VII 

MEMORY CONSUMPTION VS. DATASET SIZE FOR 100=d  

Database size 250000 500000 1000000 

SC-LSH 0.0279 0.0558 0.1117 

E2LSH 4.1490 3.3248 4.2244 

V. CONCLUSION 

In this paper, we presented a new approach based on the 

projection on symmetries of the cube. This projection allows 

structuring and gathering similar points in same cube. 

 We performed several tests on different databases to 

evaluate the behavior of the proposed approach on scaling. In 

terms of computational time and memory cost, we compared 

the result obtained with the Euclidean LSH. We notice that the 

proposed approach outperforms the original Euclidean LSH in 

computational time and memory cost for large dataset. In our 

future work based on the proposed SC-LSH approach, we 

intend to further improve the search accuracy especially in 

high dimensional datasets. 
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