
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1355

Abstract—Locality Sensitive Hashing (LSH) is one of the most

promising techniques for solving nearest neighbour search problem in

high dimensional space. Euclidean LSH is the most popular variation

of LSH that has been successfully applied in many multimedia

applications. However, the Euclidean LSH presents limitations that

affect structure and query performances. The main limitation of the

Euclidean LSH is the large memory consumption. In order to achieve

a good accuracy, a large number of hash tables is required. In this

paper, we propose a new hashing algorithm to overcome the storage

space problem and improve query time, while keeping a good

accuracy as similar to that achieved by the original Euclidean LSH.

The Experimental results on a real large-scale dataset show that the

proposed approach achieves good performances and consumes less

memory than the Euclidean LSH.

Keywords—Approximate Nearest Neighbor Search, Content

based image retrieval (CBIR), Curse of dimensionality, Locality

sensitive hashing, Multidimensional indexing, Scalability.

I. INTRODUCTION

S a consequence of the evolution of digital technology

and the proliferation of the Internet, multimedia data

invade today's world. In spite of the rapid growth of computer

performance, it is difficult to perform quick searches in the

huge multimedia databases. This problem poses a significant

challenge in terms of scalability to many computer vision

applications such as image and video database retrieval.

Recent research attentions have been shifted to developing

efficient and scalable indexing methods that perform

management and organization of the large multimedia

databases. These methods rely on indexing and structuring

tools known as multidimensional indexing. They have been

proposed to solve the nearest neighbors (NN) search problem,

which is consist in finding closest (or most similar) data points

to a given query in high dimensional space.

Multidimensional indexing methods are organized into two

main families: the family of conventional indexing methods

and the family of approximate indexing methods. The first one

is based on indexing data points according to their distribution

and location in the multidimensional space. A number of

efficient conventional algorithms (e.g. R-tree [1] and KD-tree

[2]) have been proposed for the NN search problem.

Sanaa Chafik, Imane Daoudi, and Hamid El Ouardi are with the Computer

Science, Systems and Renewable Energy Lab, Hassan II Ain Chock

University, National School of Electrical and Mechanical (ENSEM),
Casablanca, Morocco (phone: 212-673-619-257; e-mail: sanaa.chafik89@

gmail.com, {i.daoudi, h.elouardi}@ensem.ac.ma).

Mounim A. El Yacoubi is with Intermedia Lab, Telecom SudParis / Mines-
Telecom Institute, Paris - France (e-mail: mounim.el_yacoubi@telecom-

sudparis.eu).

Unfortunately, this family of methods suffers from scalability

issues, as query time is exponential in d . In fact, for large

enough d (16>d), the performances of this family get

significantly degraded and become worse than the full

sequential scan approach that compares a query to every point

from the dataset. This problem is known as "The

dimensionality curse"[3].

The second family has been proposed to overcome the

dimensionality curse problem by using the approximation

approach. This family is based on data compression allowing

for a sequential scan of a small approximation file instead of

reading the complete data file. Thus, it provides slightly less

accurate results, but offers in return a sharp reduction in

computation time. We find in this family VA-File [4] and its

variants [5], [6], the LSH methods [15], [17] and its variants

[7]-[13], [14], BitMatrix [10], KRA+-Block [11], multi-

dimensional inverted index [22], etc.

Unluckily, most of the indexing and search structures

available today have several limitations including scalability:

1) a relatively large computation time 2) limiting memory 3)

degradation of research quality.

We focus in this paper on one of the most popular methods

for performing approximate search in high dimensional space

based on the concept of locality-sensitive hashing (LSH). The

choice of this class of methods is justified by their quality and

effectiveness with respect to several multidimensional

indexing methods [12], [20]. Furthermore, it has been

successfully applied to various domains, including computer

vision, web clustering [21] and computational biology [23].

 Although LSH is a promising approach for solving the NN

search problem, it has limitations that affect structure and

query performance. The main limitation of the basic LSH is

memory consumption. In order to increase the probability to

map similar points to similar hash values, the LSH

concatenates several random independent hash functions,

which leads to a severe redundancy of the hash values as well

as a redundancy of the hash tables. Moreover, when using

large scale dataset, more hash tables are required leading to

high memory consumption.

In this paper, we propose a new LSH-based approach called

Symmetries of a cube LSH (SC-LSH) for efficient high

dimensional NN search. The new LSH scheme allows the

concatenation of random dependent hash function, which

reduces the hash values redundancy and increases the collision

probability. Moreover, the SC-LSH saves much storage space

and speeds up the search process, while keeping a good

accuracy that is similar to the original Euclidean LSH one.

Sanaa Chafik, ImaneDaoudi, Mounim A. El Yacoubi, Hamid El Ouardi

SC-LSH: An Efficient Indexing Method for Approximate

Similarity Search in High Dimensional Space

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1356

The rest of this paper is organized as follows. We first

discuss preliminaries in Section II, and then introduce our

algorithm in Section III. Section IV gives the experimental

results that compare our algorithm with the Euclidean LSH.

Finally, conclusions and perspectives are presented in Section

V.

II. PRELIMINARIES

In this section, we give a brief overview of LSH and the

main LSH functions families discovered for different

similarity measures. Then, a Euclidean LSH method is

presented.

TABLE I

NOTATIONS

d Dimension

n Number of points of the dataset

(.,.)d Distance

jih , Hash function

NN Nearest Neighbor

K Number of Hash functions

L Number of Hash tables

),(rpB Ball of radius r centered at a data point p

.,. The Euclidean Distance

[.]rP Probability

pf Probability density function

ℜ Set of real numbers

U
Universe

Ζ Set of integers

(.)O Complexity

A. Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is one of the most

popular methods for solving the NN search problem in high

dimensional space. The LSH is based on the use of several

hash functions describing the distribution of data in

multidimensional space. The hash function assigns the same

hash value to the closest points with high probability. Then,

the NNs are performed by hashing the query point and

retrieving points stored in same buckets
1
of the hash table to

the query. The LSH approach relies on locality-sensitive hash

functions. A family F of hash functions is called a locality

Sensitive family if it satisfies the following definitions:

Definition.1 [15].An LSH family }{ UF d →ℜ= is called

),,,(2121 PPrr -sensitive, if for any ∈qp, dℜ , with
21 PP > and

21 rr < :

- 11)]()([then),(If PqhphPrqBp rF ≥=∈

- 22)]()([then),(If PqhphPrqBp rF ≤=∉

1Buckets: Data type that groups objects together, the term is used when

discussing hashing algorithms, where different items that have the same hash

code (hash value) go into the same "bucket".

Definition.2 [16].A locality sensitive hashing scheme is a

distribution on a family F of hash functions operating on a

collection of points, such that for two points qp,

),()]()([qpsimqhphPrF ==

Here),(qpsim is some similarity function defined on the

collection of points.

To increase the gap between high probability 1P and low

probability 2P , and to achieve high search accuracy, it is

necessary to use several hash functions defined as:
Kd

jg Ζ→ℜ: ,))(),...,(()(,,1 qhqhqg jKjj = , characterizing the

hash tables, where)1,1(, LjKih ji ≤≤≤≤ are selected

randomly and independently from F . Those functions hash all

data points and build the index structure, by placing each point

p in a bucket)(pg j . It is worth noting that the buckets store

only the references of points to facilitate access to data points.

The search algorithm for a query point q begins by

computing the hash values)(),...,(1 qgqg L , then the distance

between the query point and the points of the same bucket.

Finally, the nearest points to the query are selected; they

represent the results of the research.

B. LSH Families

In the last few years, the development of locality sensitive

hash functions has been well addressed in the literature. We

next briefly survey the main LSH functions families and their

properties.

Min-hash [19]: It is a family of hash functions allowing for

the estimation of the similarity between two sets. It consists of

selecting a random permutationπ from the spaceU . For a set

of data A, the hash function is defined as:

}|)(min{)(AaaAh ∈= π . The probability of collision

between two sets A and B is defined as:

),()]()([BAsBhAhPr == , where),(BAs is the Jaccard

coefficient defined as
||

||
),(

BA

BA
BAs

∪
∩

= .This technique is often

used by search engines to detect redundant web pages; it has

also been applied in large-scale clustering problems.

LSH based on Hamming distance [15]: It is a family of hash

functions adapted to the Hamming distance. For d -

dimensional vectors
d}1,0{ , the family F of hash functions is

the set of projections on one of the d coordinates:

},...,1,)(|}1,0{}1,0{:{ dixxhhF i
d ==→= ,where ix is thi

coordinate of x . The function h is randomly selected from F ,

and allows choosing a random bit vector.

LSH based on cosine distance [16]: is a LSH family

gathering the following hash function:







≥

<
=

0r. 1

0r. 0
)(

pif

pif
ph

r

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1357

These functions allow for partitioning the space into two

spaces by a randomly chosen hyperplane defined by the unit

normal vector r . The probability of collision between two

vectors p and q is calculated as follows:

π
θ),(

1)]()([
qp

qhphPr −==

LSH based on
pl -distance [17]: It is an interesting LSH

family gathering the following hash functions:






 +
=

w

bpa
ph ba

.
)(,

where a is a random d -dimensional vector of p-stable

distribution, b is a real number chosen uniformly from],0[w

and w is a user-specified constant.

The probability of collision between two points p and q is

defined as:

dt
w

t

c

t
f

c
qhphPcp p

w

r)1)((
1

)]()([)(

0

−=== ∫

This family is defined for the case where the distances are

measured according to the
pl metric, for any]2,1[∈p .

This LSH family provides an efficient solution to

randomize the NN search problem in high dimensional spaces

[17].

LSH based on 2χ -distance [7]: It is a new LSH family

fitted to the 2χ -distance, defined by the following hash

function:





















+
−+

= b
w

pa

ph ba
2

1)1
.

.8(

)(
2

,

where a is a random d -dimensional vector, b is a real

number chosen uniformly from [1,0[and w is a scalar for the

quantization width, calculated using 2χ -distance [7].

This LSH family was successfully applied in the context of

image and video retrieval when data are represented by

histograms.

In the following, we will describe one of the most famous

LSH technique for solving NN search problem, it based on
pl

-distance and it called Euclidean Exact LSH (E2LSH).

C. The E2LSH Method

The Euclidean Locality-Sensitive Hashing (E2LSH) method

was proposed in [18] as a solution for the high dimensional

)1,(δ−R -NN search problem in the Euclidean space 2l . For a

query point q , the E2LSH method reports all points
dp ℜ∈

satisfying Rqp ≤−
2

with a probability at least equal to

δ−1 (δ is the probability that a near neighbor p is not

reported).

The index structure of the E2LSH is performed by

calculating the hash value of each point of the dataset, using

the hash function Ζ→ℜd
ba ph :)(,

, defined as






 +
=

w

bpa
ph ba

.
)(,

where a is a random d -dimensional vector of p-stable

distribution [17] and b is a real number chosen uniformly

from],0[w , where w is a positive real number. Intuitively, the

hash function)(, ph ba
projects the point p on a line whose

direction is identified by the d -dimensional vector a . Then,

the projection of the point p is shifted by a constant. In such a

scheme, the line is segmented into intervals of length w .

 To improve the hashing discriminative power, a second

hash function jg is constructed using several functions jih ,

defined as:))(),...,(()(,,1 phphpg jKjj = , where)1(Lj ≤≤ . The

similar points of the data set (having the same)(pg j) are

stored in the same bucket of the hash tables. We note that the

E2LSH performances depend crucially on parameters K and

:L K refers to the number of hash functions and L represents

the number of hash tables. The value of L is determined by

requiring that the probability to find the true NNs is at least

δ−1 , which implies:













−
=

)1log(

log

1
K

P
L

δ

The K value is chosen as a function of the dataset to

minimize the query time.

Although the E2LSH is, a promising approach for solving

the NN search problem, but present limitation in memory

space storage. To insure good performances the E2LSH

requires the use of several hash tables, which requires too

much memory space. The next section presents a new LSH

scheme to overcome the E2LSH storage problem.

III. THE PROPOSED APPROACH

In this section, we present the index structure and the

nearest neighbor search algorithm of the new proposed

approach SC-LSH.

A. The Index Structure

We propose a new LSH-based approach called Symmetries

of a cube Locality Sensitive Hashing (SC-LSH) for efficient

memory space management. The basic idea of the new

approach is structuring the high dimensional space into a set

of disjoints cubes. For this purpose, the SC-LSH propose to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1358

project dataset points on symmetry axes of a

using the hash function Ζ→ℜd
ba vh :)(,

, defined as






 +
=

w

bva
vh ba

.
)(,

where a is a d -dimensional vector representing the symmetry

axes of a cube, and b is a real number chosen uniformly from

],0[w , where w is a positive real number depending on the

length of the edge of a cube e . For the space diagonal,

value of w is equal to 3e and for the axes of rotation,

value of w is equal to e (Fig. 1).

Fig. 1 Symmetries of a cube hashing

After an experimental analysis on the approach

performances, we restricted the number of symmetry axes to

seven. The first one is drawn independently from Gaussian

distribution and the others are generated as described above,

respecting the mathematical properties of the symmetries of

the cube. Therefore, this process enables to hash similar points

to same cube of edge length

))(),...,(()(71 phphpg = , (Fig. 2). To ensure a good accuracy it

is necessary to use multiple hash tables, an experimental study

was proposed to choose the appropriate number of hash table.

Fig. 2 The index structure of the SC

project dataset points on symmetry axes of a cube, (Fig. 1),

, defined as

dimensional vector representing the symmetry

is a real number chosen uniformly from

is a positive real number depending on the

the space diagonal, the

he axes of rotation, the

Fig. 1 Symmetries of a cube hashing

After an experimental analysis on the approach

es, we restricted the number of symmetry axes to

seven. The first one is drawn independently from Gaussian

distribution and the others are generated as described above,

respecting the mathematical properties of the symmetries of

rocess enables to hash similar points

to same cube of edge length e defined as

. 2). To ensure a good accuracy it

is necessary to use multiple hash tables, an experimental study

ropriate number of hash table.

ndex structure of the SC-LSH

B. NN Search Algorithm

Like in the E2LSH approach, the similarity search process

begins in our new approach by computing the hash values of a

query point q ,),...,(()(,1 qhqg jj =

index the query point with the appropriate buckets. Then the

Euclidean distance between the query and the vectors of the

same or the nearest bucket is computed and the closest points

to the query are returned.

IV. EXPERIMENTAL

In this section, we evaluate the proposed approach on the

high dimensional NN search problem using real and synthetic

datasets. We compared the SC

E2LSH approach.

A. Datasets and Evaluations M

We perform the experiments with two large

SIFT1M [24]: it contains one million SIFT descriptors

extracted from random images; each descriptor is represented

by a 128-dimensions point.

SynGIST: synthetic datasets generated from

We randomly choose 100 data points to form a query set

and use the remaining ones to form the gallery database.

We use the same criterion as in [13] to evaluate the query

accuracy. For a given query q

retrieved points, sorted in ascending order of their distances to

q . Let
**

2
*
1 ,...,, mppp be the true

approximation ratio as:

qRi (

The overall ratio is defined as

∑m
1

 The more closely the overall ratio to one, the more accurate

the results are, and when it equals to one, the results are exact.

For a set of queries Q, the average overall ratio is defined,

reflecting the general quality of all

scrutinize the quality of neighbors at individual ranks the

average rank-i ratio is defined, which is the mean of the

i approximation ratio of all queries in

Q

1

In this paper, we use the average rank

average rank-i ratio (MARR)

to evaluate similarity search quality.

In addition, we also report the mean query time and the

space consumption (size of the index structure

Like in the E2LSH approach, the similarity search process

begins in our new approach by computing the hash values of a

))(),..., ,7 qh j with)1(Lj ≤≤ , which

index the query point with the appropriate buckets. Then the

Euclidean distance between the query and the vectors of the

same or the nearest bucket is computed and the closest points

XPERIMENTAL RESULT

In this section, we evaluate the proposed approach on the

search problem using real and synthetic

datasets. We compared the SC-LSH performances with the

Evaluations Metrics

m the experiments with two large-scale datasets:

: it contains one million SIFT descriptors

extracted from random images; each descriptor is represented

: synthetic datasets generated from GIST1M [24]

ly choose 100 data points to form a query set

and use the remaining ones to form the gallery database.

We use the same criterion as in [13] to evaluate the query

q , let mppp ,...,, 21 be them -NNs

retrieved points, sorted in ascending order of their distances to

be the truem -NNs, we define the rank-i

qp

qp
q

i

i

,

,
)

*
=

io is defined as

∑ =

m

i
i qR

1
)(

The more closely the overall ratio to one, the more accurate

the results are, and when it equals to one, the results are exact.

, the average overall ratio is defined,

quality of all NNsm − . In order to

scrutinize the quality of neighbors at individual ranks the

is defined, which is the mean of the rank-

of all queries in Q, namely, defined as:

∑
∈∀ Qq

i qR
Q

)(

average rank-i ratio and the mean

(MARR) of all m -NNs retrieved points,

to evaluate similarity search quality.

In addition, we also report the mean query time and the

on (size of the index structure)(nLO).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1359

Our tests were conducted on a Linux distribution: Ubuntu

12.04 machine 1.86GHz with 6GB RAM and 146 GB of local

disk.

B. Parameter Settings

The main goal of selecting optimal parameters is to enable

high quality search with high speed, while using a small

amount of memory. The proposed approach depends mainly

on the number of hash tables L , which defines the accuracy: a

large number of hash tables increases the collision probability.

Therefore, it affects the memory space storage.

The SC-LSH approach depends also on the length of the

edge e , that defines the volume of the cube and the number

ofpoints indexed inside. A large edge increases the probability

of collision but increases the computation time.

To choose properly the optimal edge size e we perform

several tests on different edge sizes. We noticed that the value

4=e provides good accuracy and fast query time. To find the

optimal number of hash tables L , we perform several tests for
different values of L on SIFT1M dataset. Table II summarizes

the performances of the SC-LSH method for different values

of L .

TABLE II

PERFORMANCE OF THE SC-LSH FOR DIFFERENT VALUE OF L ON SIFT1M

DATABASE

L 10 20 30 40 50 60

MARR 0.725 0.741 0.747 0.749 0.750 0.750

Query

Time (s)

0.1062 0.1536 0.1842 0.2086 0.2189 0.2358

Memory
Consump

tion (Gb)

0.1117 0.2235 0.3352 0.4470 0.5587 0.6705

In the following, we set manually the value of the edge of

the cube at 4=e , and we chose 30=L as the appropriate

number of hash table, for indexing the SIFT1M dataset.

We performed the same performance tests on synthetic

datasets SynGIST to define the suitable number of hash tables

L .

C. Performances on Real Dataset

In this section, we report the evaluation results of the

proposed approach using SIFT1M, we compared the result

obtained with the E2LSH method.

Fig. 3 Average rank-i ration on SIFT1M dataset of 1000-NNs

Fig. 3 shows the search quality test of the two approaches

SC-LSH and E2LSH performed on SIFT1Mdataset. We note

that both methods provide almost the same similarity search

quality. The proposed approach outperforms slightly the

E2LSH method. In fact, the mean average rank-i ratio of the

SC-LSH is equal to 0,747, while the mean average rank-i

ratio of the Euclidean LSH is equal to 0,744. Therefore, the

proposed approach requires less computation time and

memory space compared to the E2LSH approach (see Table

III).

TABLE III
PERFORMANCE OF THE SC-LSH AND E2LSH ON SIFT1M DATABASE

SC-LSH Query Time (s) 0.1842

Memory Consumption (GB) 0.3352

E2LSH Query Time (s) 1.0343

Memory Consumption (GB) 4.2244

D. Performances on Synthetic Dataset

To evaluate the behavior of the SC-LSH in scaling, we

performed several tests on different synthetic databases of

different sizes and dimensionalities.

1. Search Quality Test

Tables IV and V show the search quality of the proposed

approach and the Euclidean LSH with respect to a dataset of

size n and dimensionality d . As the dimensionality d
increases, the search quality of the two approaches decreases.

We note that the SC-LSH and the E2LSH underperform in

terms of quality of search for large dimensions, but keep a

good accuracy for large dataset sizes.

TABLE IV

MEAN AVERAGE RANK-I RATIO OF 1000-NNS VS. DIMENSIONALITY FOR

250000=n

Dimension 100 300 500 700

SC-LSH 0.990713 0.514426 0.172545 0.06109

E2LSH 0.990120 0.514006 0.170722 0.06053

0

0.2

0.4

0.6

0.8

1

1.2

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7

9

4
4

2

5
0

5

5
6

8

6
3

1

6
9

4

7
5

7

8
2

0

8
8

3

9
4

6

A
v
e

ra
g

e
 r

a
n

k
-i

 r
a

ti
o

Rank

E2LSH SC-LSH

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1360

TABLE V

MEAN AVERAGE RANK-I RATIO OF 1000-NNS VS. DATASET SIZE FOR

100=d

Database size 250000 500000 1000000

SC-LSH 0.990713 0.980763 0.963412

E2LSH 0.990120 0.98 0.963245

2. Query Time Test

To evaluate the timing in large scale of the proposed

approach, we computed the query time of the latter for

different dimensionalities and database sizes.

Fig. 4 Query time vs. database size for 100=d

Fig. 5 Query time vs. dimensionality for 250000=n

Figs. 4 and 5 show the speedup of the SC-LSH and the

E2LSH with respect to database size and dimensionality. We

can observe that the proposed approach outperforms the

Euclidean LSH in timing: the SC-LSH is four times faster than

the E2LSH. This is due to the new structuring method that

hashes similar points in the same cube and thus speeds up the

search process. We note that the proposed approach allows

having the same search quality with a reduced query time.

3. Memory Consumption Test

The Locality Sensitive Hashing scheme is based on the use

of several hash tables storing the similar points in the

appropriate bucket, which requires a large amount of memory.

Table VI and VII show the space required for storing the hash

tables of the SC-LSH and the E2LSH approaches for different

database sizes and dimensions. We observe that the space

consumed by the proposed approach remains small and shows

a slight increase when the dataset size and dimension increase.

On the other side, the Euclidean LSH requires more memory

space, more than four times the space required by the

proposed approach. Moreover, the Euclidean LSH keeps the

same number of hash tables for different dimensions (for

250000=n we find 1485=L equivalent to 4.149 GB for

different dimensionalities).

TABLE VI

MEMORY CONSUMPTION VS. DIMENSIONALITY FOR 250000=n

Dimension 100 300 500 700

SC-LSH 0.0279 0.0838 0.1117 0.1396

TABLE VII

MEMORY CONSUMPTION VS. DATASET SIZE FOR 100=d

Database size 250000 500000 1000000

SC-LSH 0.0279 0.0558 0.1117

E2LSH 4.1490 3.3248 4.2244

V. CONCLUSION

In this paper, we presented a new approach based on the

projection on symmetries of the cube. This projection allows

structuring and gathering similar points in same cube.

 We performed several tests on different databases to

evaluate the behavior of the proposed approach on scaling. In

terms of computational time and memory cost, we compared

the result obtained with the Euclidean LSH. We notice that the

proposed approach outperforms the original Euclidean LSH in

computational time and memory cost for large dataset. In our

future work based on the proposed SC-LSH approach, we

intend to further improve the search accuracy especially in

high dimensional datasets.

ACKNOWLEDGMENT

We sincerely thank A. Andoni for providing us the E2LSH

package.

REFERENCES

[1] A. Guttman. “R-trees: A dynamic index structure for spatial searching”.

In SIGMOD, 1984, pp. 47-57.
[2] J. L. Bentley. “K-d trees for semidynamic point sets”. InSoCG, 1990,

pp. 187-197.

[3] Weber, H.J. Schek and S. Blott, “A quantitative analysis and
performance, study for similarity-search methods in high-dimensional

spaces”. In Proceedings of 24rd International Conference on Very Large

Data Bases, New York, USA, 1998, pp.194-205.
[4] S. Blott and R. Weber.“A Simple Vector-Approximation File for

Similarity Search in High-Dimensional Vector Spaces”. Technical

Report 19, ESPRIT project HERMES, March 1997.
[5] L. Ye and Y. Hua. “The CMVAI-File: An Efficient Approximation-

Based High-Dimensional Index Structure”,Multimedia Information

Networking and Security (MINES), 2010.
[6] H.Lu, B.C.Ooi, H.T.Shen and X.Xue. “Hierarchical Indexing Structure

for Efficient Similarity Search in Video Retrieval”. IEEE Transactions

on Knowledge and Data Engineering, November 2006.
[7] D. Gorisse, M. Cord and F. Precioso. “Locality-sensitive hashing for

chi2-Distance”, IEEE Transactions on Pattern Analysis and Machine

Intelligence 34, 2012, pp.402–409.
[8] H. Wang, J. Cao, L. Shu, and D. Rafiei.“Locality sensitive hashing

revisited: Filling the gap between theory and algorithm analysis”. In

Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management, 2013, pp. 1969-1978.

0

0.5

1

1.5

0 500000 1000000 1500000

Q
u

e
ry

 T
im

e
 (

s)

Database size

SC-LSH E2LSH

0

2

4

6

0 200 400 600 800 1000

Q
u

e
ry

 T
im

e
 (

s)

Dimension

SC-LSH E2LSH

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1361

[9] A. Andoni and P. Indyk. “Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions”. In 47th Annual

IEEE Symposium on foundations of Computer Science, 2006, pp. 459-
468.

[10] C. Calistru, C. Ribeiro and G.David. “High- Dimensional Indexing for

Video Retrieval”. Multimedia - A Multidisciplinary Approach to
Complex Issues, 2012.

[11] I. Daoudi, K. Idrissi and S.E.A Ouatik. “Kernel region approximation

blocks for indexing heterogonous databases”. Multimedia and Expo,
2008 IEEE International Conference, 2008, pp. 1237-1240.

[12] T. Liu, A. W. Moore, A. G. Gray and K. Yang. “An Investigation of

Practical Approximate Nearest Neighbor Algorithm”. In proceeding of:
Advances in Neural Information Processing Systems 17. Vancouver,

British Columbia, Canada, 2004.

[13] J. Gan, J. Feng, Q. Fang and W.Ng, “Locality-sensitive hashing scheme
based on dynamic collision counting”. In proceeding SIGMOD '12

Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data. New York, USA, 2012, pp. 541-552.
[14] Q. Lv, W. Josephson, Z. Wang, M. Charikar and K.Li. “Multi-probe

LSH: efficient indexing for high-dimensional similarity search”. In

VLDB, 2007, pp.950-96.
[15] P.Indyk, and R.Motwani, “Approximate nearest neighbor: Towards

removing the curse of dimensionality”. In Proceeding STOC '98

Proceedings of the thirtieth annual ACM symposium on Theory of
computing, 1998, pp.604-613.

[16] M.S. Charikar. “Similarity estimation techniques from rounding

algorithms”. In Proceedings of the Symposium on Theory of Computing,
2002.

[17] M. Datar, N. Immorlica, P. Indyk and V. Mirrokni. “Locality sensitive

hashing scheme based on p-stable distributions”. In Proceedings of the
ACM Symposium on Computational Geometry, 2004.

[18] A. Andoni and P. Indyk. E2LSH: Exact Euclidean locality-sensitive

hashing. Implementationavailableat:http://www.mit.edu/~andoni/LSH/.
[19] A. Z. Broder, M. Charikar, A. M. Frieze, andM. Mitzenmacher. “Min-

wise independent permutations”. In STOC, 1998, pp. 327–336.

[20] S. Chafik, I.Daoudi, M.A EL Yacoubi, H. El Ouardi and B. Dorizzi.
“Locality sensitive hashing for content-based image retrieval: A

comparative experimental study”. The Fifth International Conference on

Next Generation Networks and services (NGNs), 2014.(unpublished)
[21] Haveliwala, T., Gionis, A. and Indyk. “Scalable Techniques for

Clustering the Web” (Extended Abstract). In Third International
Workshop on the Web and Databases (WebDB 2000), Dallas, Texas,

2000.
[22] D. Feng and J. Yang, C. Liu. “An efficient indexing method for content-

based image retrieval”.Neurocomputing, April 2013, pp.103-114.

[23] J. Buhler and M. Tompa. “Finding motifs using randomprojections”. In

Proceedings of the Annual International Conference on Computational
Molecular Biology (RECOMB1), 2002, pp. 225-242.

[24] http://corpus-texmex.irisa.fr

