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Abstract—The productivity of software development is one of the 
major concerns for project managers. Given the increasing complexity 
of the software being developed and the concomitant rise in the 
typical project size, the productivity has not consistently improved. 
By analyzing the latest release of ISBSG data repository with 4106 
projects ever developed, we report on the factors found to 
significantly influence productivity, and present an original model for 
the estimation of productivity during project design. We further 
illustrate that software development productivity has experienced 
irregular variations between the years 1995 and 2005. Considering the 
factors significant to productivity, we found its variations are 
primarily caused by the variations of average team size for the 
development and the unbalanced use of the less productive 
development language 3GL. 
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I. INTRODUCTION 
OFTWARE has become the key element in the evolution 
of computer-based systems and products. Over the past 50 

years, software has evolved from a specialized problem solving 
and information analysis tool to an industry in itself [1]. The 
two primary problems in software development that have yet to 
be solved satisfactorily are making systems cost effective and 
of higher quality. A major obstacle to solve the problem of cost 
effective is the intrinsic complexity in developing software. 
Improving the productivity is an essential part of making 
system cost effective [2].  

There have been two main directions on the study of 
productivity in software engineering literature. First, 
researches have been focused on the measure or estimation of 
productivity [3], [4], [5], [6], [7]. Second, emphasis has been 
laid on the discovery of methods or significant factors for 
productivity improvement [8], [9], [10], [11], [12], [13], [14].  

With the increasing complexities and costs of software 
development, how to improve development productivity has  
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been an ongoing concern for project managers. Unfortunately, 
despite the attention that has been given to it, the productivity 
of software development has not improved consistently. This 
needs to be seen in the light of the impressive improvements in 
hardware speed and network capacity [15]. Gross measures 
presented in the literature indicate that software productivity 
has been declining more rapidly than any other industry [16]. 

Whereas there is still no consensus that whether productivity 
has really declined [17], our analysis revealed that productivity 
has experienced irregular variations of decline and rise in the 
past decade, and there is no sign of imminent improvement. 
Based on the factors significant to productivity in our model, 
we found that its variations are primarily caused by the 
variations of average team size for development and the 
unbalanced use of the less productive development language 
3GL. 

Focusing on the analysis of the large database with 4106 
projects developed worldwide, we organize this paper as 
follows. Section II gives an overview of the database and 
section III introduces the underlying factors significant to 
productivity; section IV and V are detailed procedures for 
model development; section VI presents full discussions on the 
derived model; section VII examines the goodness-of-fit for 
the model; sections VIII illustrates the variations in software 
development productivity between 1995 and 2005; sections IX 
and X display the variations of average team size and the 
unbalanced use 3GL over the years; section XI explains the 
factors leading to the productivity variation; and finally section 
XII presents the conclusion to the study. 

II.  BACKGROUND 
The common difficulty in the study of software metrics is 

the lack of accessible and reliable large dataset [18]. For the 18 
major databases that were studied with productivity factors, 
Maxwell et al. [12] found 8 databases with sample size smaller 
than 50. Besides, many contemporary metrics repositories have 
limited use due to their obsolescence and ambiguity of 
documentation [19].  

The data repository maintained by the International 
Software Benchmarking Standards Group (ISBSG) does not 
have the above deficiencies and has been widely researched 
[18], [20], [21], [22], [23]. The latest release of ISBSG data 
repository (Release 10) contains information on 4106 projects, 
and each project is recorded with up to 90 metrics or 
descriptive pieces of information. The manual accompanied 
with the data gives detailed descriptions of project attributes. 
The data repository is regularly updated with substantial 
projects added in every year. Our study will be focused on the 
analysis of data Release 10.  

S 
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III.  DATA DESCRIPTION 
Productivity is conceptualized as output produced per unit of 

input, and normally defined as project size divided by effort for 
the development. There have been diverse measures of 
productivity, for instance, function points divided by effort[5], 
[6], [24], [25], number of lines of code developed per unit of 
effort [12], [13], [26], case points divided by effort [7], number 
of models divided by effort [6], and number of tokens 
produced per person-month [27]. While the measure of 
function point has been criticized relating to its reliability [28] 
and usefulness of the complexity adjustments [29], it has been 
widely used to overcome the difficulties of traditional measure 
of lines-of- code in project planning and control [30]. 

In the ISBSG data repository there are several different 
counting techniques for function point (e.g., IFPUG, NESMA, 
Mark II). To have consistent measure, the functional size is 
adjusted by an adjustment factor and the resultant adjusted size 
is reported in Adjusted Function Points. For development 
effort it is recorded by two metrics: Summary Work Effort 
(total effort in hours spent on the project) and Normalized 
Work Effort 1 . Productivity is measured by the parameter 
Normalized Productivity Delivery Rate (PDR) which is 
calculated from Normalized Work Effort divided by Adjusted 
Function Points. Clearly PDR is an inverse measure of 
productivity in that the larger PDR, the smaller is the 
productivity. 

Whereas data Release 10 contains many metrics recording 
each project developed, we only introduce those that likely 
have effects on productivity. Many of these metrics have been 
well studied before. 

1. Average Team Size  
It is the average number of people that worked on the project 

through the entire development process. ISBSG data also 
record another parameter Max Team Size, which is the 
maximum number of people that worked at any time on the 
project. We deem it more appropriate to use Average Team 
Size to assess the productivity level. Past studies suggest that 
productivity and team size are negatively associated 
[9],[12],[31],[32] [33]. 

2. Development Language 
It defines the development language used for the project, 

including second generation languages (2GL), third generation 
languages (3GL), fourth generation languages (4GL) and 
Application Generator (ApG). In practice all 4GL languages 
are designed to reduce programming efforts, and they are more 
productive than 3GL languages [34]. Thus development 
language would be another latent factor significant to 
productivity. 

3. Development Type 

                                                        

1 For projects covering less than a full development life-cycle, Normalized 
Work Effort is an estimate of the full development life-cycle effort. For 
projects covering the full development life-cycle, and projects where 
development life-cycle coverage is not known, this value is the same as 
Summary Work Effort. 
 

It describes whether the software development was a new 
development, enhancement or re-development. Development 
with enhancement may consume much of the total resources of 
programming groups and therefore does not necessary improve 
productivity [35]. 

4. Development Platform  
It defines the primary development platform. Each project is 

classified as Mid-range, Mainframe, Multi-platform, or PC. 
Subramanian et al. [36] found platform has a significant effect 
on software development effort. This may indicate this factor is 
likely to affect development productivity. 

5. Development Techniques 
These are techniques used during software development 

(e.g. Waterfall, Prototyping). Some development techniques 
have been designed to expedite development. For instance, 
Rapid Application Development (RAD) was reported to 
significantly accelerate development [37], and prototyping was 
reported to yield products with about equivalent performance 
but with 45% less effort [38]. 

6. CASE Tool Used 
It indicates whether the project used any CASE 

(Computer-Aided Software Engineering) tool. While Coupe 
and Onodu [39] regarded that CASE tool had a positive effect 
on productivity, a majority of organizations reported that 
CASE has not brought about a change in productivity[40]. 
Bruckhaus et al. [41] pointed out that the introduction of CASE 
tool does not necessarily improve productivity, and in certain 
situations it can actually decrease the productivity as it 
increases effort on specific activities. 

7. Development Methodology 
It describes how the development methodology was 

acquired. It can be Traditional, Purchased, Developed 
In-house, or a combination of Purchased and Developed. Liu 
and Mintram [18] found development methodology is not 
significant to effort, which is one of the determinants of 
productivity. 

There are still three points that need to be mentioned here: 

1) Since particular programming language (e.g. Java, C++) 
belongs to one of the generation languages (e.g. 3GL, 
4GL), we did not consider the factor Primary 
Programming Language. Otherwise redundancy is 
introduced into the model to be developed. 

2) Some scholar regarded project duration is significant to 
productivity, and productivity declines with increasing 
project duration [12]. However, we did not take this factor 
into account as our study is to explore the factors that 
intrinsically influence productivity. In fact, project 
duration is correlated with effort which is one of the two 
determining elements of productivity. 

3) It is conceivable that senior software developers are more 
skillful and productive than junior developers. For 
instance, Kitchenham [42] observed there is significant 
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improvement in productivity when developers have high 
virtual machine experience and programming experience. 
However, ISBSG data repository does not record this. 
Hence we just assume the developers are all well-qualified 
practitioners.  

After identification of the underlying factors significant to 
productivity, statistical analysis of the data will be conducted 
in the next three steps recommended by Maxwell [43]: 

1) Validate the data and transform the variables; 
2) Build the model; 
3) Generalize findings from the model, and test the residuals 
and goodness-of-fit. 

IV. DATA VALIDATION 
The ISBSG data repository contains one parameter—Data 

Quality Rating, which indicates the reliability of the data 
recorded. It has four grades A, B, C, and D. While the data with 
quality ratings A, B and C are assessed as being acceptable, 
little credibility can be given to any data with rating D. 
Therefore, we excluded 141 projects with quality rating D.  

Since our productivity is decided in part by functional size, 
the homogeneity of standardized methodologies for measuring 
functional size is essential. Among several different count 
approaches of function point, NESMA is considered to 
produce equivalent results with IFPUG [44]. In data Release 10, 
3281 out of 4106 projects applied IFPUG as size count 
approach, and there are further 152 projects using NESMA. 
Thus, to give more reliable results, projects using size count 
approaches other than IFPUG and NESMA were excluded 
from the analysis. 

Besides, projects with recording errors or unspecified 
information were removed. For instance, two projects were 
mistakenly recorded with Average Team Size 0.5 and 0.95 
respectively. One project was recorded with development 
platform ‘HH’, and one project was recorded with unknown 
development methodology ‘CICS’. Finally, the only one 
project that applied 5GL as development language was 
excluded.  

After data cleaning there are 3322 projects remained. These 
data will be used for model development in the next section. 

V. MODEL DEVELOPMENT 
For the metrics discussed in section III, PDR and Average 

Team Size are measured in ratio scale, and all the other six 
metrics are measured in nominal scale. We first examine the 
distributions of the two ratio variables PDR and Average Team 
Size. The two histograms in Fig. 1 (left half) indicate that the 
data are extremely skewed. We therefore take natural log 
transformation to redress the skewness for these two variables 
(right half of Fig. 1). 

 
Fig. 1 Histograms of the two ratio variables PDR and Average Team 

Size, and their log-transformations 

We then explore the potential relationship between PDR and 
Average Team Size after log transformation. Fig. 2 below is 
the simple scatterplot of log(PDR) against log of Average 
Team Size. Though they do not have a perfect positive linear 
relationship, the graph indicates that we can use linear model to 
approximate their relationship. Given that all other predictors 
are measured in ratio scale except Average Team Size, we can 
use multiple linear regression to fit a model with PDR as the 
dependent variable.  

 
Fig. 2 The scatterplot of log(PDR) against log(TeamSize) 

We first examine if there exists the problem of 
multicollinearity (strong correlations between predictor 
variables) in the data. That is, to see whether the use of some 
development method is likely to be associated with other 
techniques. The correlation tests indicated that there is no 
multicollinearity existent in the data. However, there are still 
two challenging difficulties to directly apply regression 
analysis to the data. First, for the metric Development 
Techniques there exist over 30 different techniques2 in the data 
                                                        
2 The ten primary techniques are Waterfall (643), Data Modelling (451), 
Process Modelling (294), JAD (Joint Application Development & 
Multifunctional Teams) (225), Prototyping (234), Regression Testing (164), 
Object Oriented Analysis & Design (143), Business Area Modelling (106), 
RAD (Rapid Application Development) (98), Event Modelling (85). 
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repository, and 766 projects even use various combinations of 
these techniques. Since the joint use of development 
techniques has the effect on productivity which is not simply 
additive of those effects when they are applied alone, we 
cannot ignore the effects of their interactions on the 
productivity. We managed to handle this difficulty by 
separating each of the ten main development techniques as one 
single binary variable with two levels indicating whether it is 
used or not (1 = used, 0 = not used), and taking into account all 
of the second-order interactions3 between them. For the ten 
primary development techniques, Waterfall is the only one that 
is not in combination with any other techniques. As a result, 36 
second-order interactions from the other nine development 
techniques are required for estimation. For all the uncommon 
development techniques, they are merged into one group 
labelled with ‘Others’. The interactions between ‘Others’ and 
the main development techniques are not taken into 
consideration. 

Second, substantial missing values are present in the 3322 
observations after data cleaning. The metrics with large 
amount of missing data are Average Team Size (2349), 
Development Methodology (2068), Development Techniques 
(1891), CASE Tool Used (1899), Development Platform (853), 
and Development Language (447). The rule of thumb suggests 
a minimum sample size of 50+8k (k is the number of 
predictors) for multiple regression analysis [45]. Given that the 
factor Development Techniques itself has 47 (11 main effects 
and 36 interaction terms) predictors to estimate, a minimum 
sample size of 500 is required for regression. Therefore, if we 
add all the predictor variables simultaneously into the full 
model, then it only has a valid sample size of 302 which is not 
sufficient. Therefore, to treat this problem of enormous 
missing values, we added one indicator variable Missing which 
indicates whether particular cells of Development Techniques 
have missing data (1 = missing, 0 = not missing). In this way, 
1891 projects with development techniques unrecorded are 
saved for regression testing.  With this treatment the valid 
sample size became 402 which is acceptable but still low. The 
next subsection illustrates the steps we employed to overcome 
the deficiency of small valid sample size for multiple 
regression analysis. The names of the metrics are abbreviated, 
and the variables for regression are generalized in Table I 
below. 

With the above two problems treated, the model is then 
developed in the following three steps. 

Step 1): assess the significances of 48 variables concerning 
development techniques. 

All the 48 predictors derived from the metric Development 
Techniques are kept in the regression model. These include 12 
main effects (10 main development techniques, 2 additional 
variables Others and Missing) and 36 interaction terms. One of 
the 64 combinations of the six variables TeamSize, Language, 
Platform, DevType, CASE, and Methodology is then added into 
the model in turn, and the regression is performed. For 
                                                        
3 In regression analysis second-order interaction is the interaction between 
two variables, where nth-order interaction is the interaction among n variables. 
Since in data Release 10 a majority of the projects have missing values, it is 
intractable to assess high order of interactions which requires substantially 
large valid sample size. Therefore, we only considered second-order 
interaction. 

unbalanced missingness, ANOVA (Analysis of Variance) 
based on Type I Sums of Squares depends on the orders that 
the terms are specified the model [46]. Therefore, for our study 
we used Type III Sums of Squares which does not depend on 
the orders of the terms specified in the model for unbalanced 
data. Repeating 26 = 64 times, we found 19 interaction terms 
never showed significant based on their reported p-values 
(p-value < 0.05 is regarded as statistical significant [47], [48]). 
These 19 insignificant variables are excluded from the analysis, 
and the other 29 variables are retained for the next step. The 
removal of these 19 insignificant variables can reduce the 
sample size required for regression by 8×19=152. 

 
TABLE I  

DESCRIPTIONS OF VARIABLES FOR REGRESSION 

Variable  Scale Descriptions 
PDR Ratio Normalized Productivity Delivery Rate. 

TeamSize Ratio Average Team Size.  

Language Nominal Development Language 

DevType Nominal Development Type 

Platform Nominal Development Platform 

CASE Nominal CASE Tool Used 

Methodology Nominal Development Methodology 

Waterfall Nominal 1= Waterfall, 0 = Not 

Data Nominal 1 = Data Modelling, 0 = Not 

Process Nominal 1 = Process Modelling, 0 = Not 

JAD Nominal 1 = JAD & Multifunctional Teams 
0 = Not 

Regression Nominal 1 = Regression Testing, 0 = Not 

Prototyping Nominal 1 = Prototyping, 0 = Not 

Business Nominal 1 = Business Area Modelling, 0 = Not 

RAD Nominal 1 = Rapid Application Development 
0 = Not 

OO Nominal 1 = Object Oriented Analysis & Design 
0 = Not 

Event Nominal 1 = Event Modelling, 0 = Not 

Others Nominal 
1 = uncommon development techniques 
0 = Not 

Missing Nominal 1 = Missing, 0 = Not 

 Nominal 36 interaction terms 

Step 2): assess the significances of the six variables 
TeamSize, Language, Platform, DevType, CASE, and 
Methodology. 

Keeping the 29 variables remained from step 1) in the model, 
we again add in one of the 64 combinations of TeamSize, 
Language, Platform, DevType, CASE, and Methodology by 
turns. We found variable CASE never exhibited significant 
among the 32 models that contain it. This indicates the use of 
CASE tool has no effect on productivity. Therefore, variable 
CASE is removed from the model. For the other five variables, 
TeamSize and Language frequently showed significant, 
whereas Platform moderately showed significant, and DevType 
and Methodology occasionally showed significant. These five 
variables are retained for further testing in step 3). 

Step 3): stepwise remove insignificant terms with backward 
elimination and obtain final model. 
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After the above two steps we now have a valid sample size 
of 414 to test 44 predictors—4 levels of Language, 4 levels of 
Platform, 3 levels of DevType, 4 levels of Methodology, and 29 
variables concerning Development Techniques retained from 
step 1). This sample size is just adequate for regression 
analysis based on the rule of minimum sample size 50+8k (k is 
the number of predictors). We add these 44 predictors all 
together into the model and perform multiple regression. We 
then exclude the predictor with the largest insignificant p-value 
reported, and fit the model with the predictors remained. 
Continuing this process we obtained the model with the final 
sets of significant terms. We will discuss the fitted model in 
detail in the next section. 

VI. THE FACTORS SIGNIFICANT TO PRODUCTIVITY 

The final model contains the predictors that are all 
significant (p-value < 0.05) to the dependent variable PDR. In 
other words, these predictors are factors essential to 
productivity. Table II displays the ANOVA table based on 
Type III Sums of Squares, and Table III presents the regression 
coefficients of the variables. The final model is fitted as 
follows:  

log(PDR) 
= 2.651 + 0.357×log(TeamSize) -0.463×I(3GL) -1.049×I(4GL)     

-1.021×I(ApG) -0.138×I(MR)-0.219×I(Multi)-0.269×I(PC)  
-0.403×I (OO)-0.447×I(Event) +0.821×I(OO:Event)-0.276× 
I(Business)-0.024×I(Regression)+1.015×I(Business:Regression)  

TABLE II  
ANOVA WITH TYPE III SUMS OF SQUARES FOR REGRESSION 

Regression Terms Df Sum of Sq F Value P-Value 

log(TeamSize) 1 54.6 98.26 < 10-15 

Language 3 43.2 25.92 1.68×10-12 

Platform 3 5.2 3.13 0.0253 

OO 1 0.0 0.00 0.9595 

Event 1 0.0 0.06 0.8133 

Business 1 1.1 2.04 0.1539 

Regression 1 4.8 8.65 0.0034 

OO : Event 4 1 4.2 7.62 0.0060 
Business: 
Regression 1 5.7 10.24 0.0015 

Residuals  559 310.7 

 
 
 
 
 

                                                        
4 After data cleaning 29 projects used the combination of OO and Event 
Modeling, and 32 projects used the combination of Business Area Modeling 
and Regression Testing.  The estimation for the interaction terms is reliable. 

TABLE III 
REGRESSION COEFFICIENTS 

Regression Terms Coefficients 

Intercept 2.651 
log(TeamSize) 0.357 
Language3GL -0.463 
Language4GL -1.049 
LanguageApG  -1.021 
PlatformMR  -0.138 
PlatformMulti -0.219 
PlatformPC -0.269 
OO -0.403 
Event -0.447 
Business -0.276 
Regression -0.024 
OO:Event 0.821 
Business:Regression 1.015 
Multiple R-Squared 0.36 

To understand the model some interpretations are given as 
follows. 

1) TeamSize denotes Average Team Size for the 
development. As one of the levels of the nominal variable 
Language, 3GL, 4GL, and ApG indicate which language is 
used for the development. The default language is 2GL. As 
one of the levels of the nominal variable Platform, MR 
(Mid Range), Multi (Multi-platform) and PC indicate 
which platform is used for the development. The default 
development platform is Mainframe. The remaining terms 
specify whether particular development technique is 
adopted for the development:  OO (Object Oriented 
Analysis & Design), Event (Event Modeling), Regression 
(Regression Testing), and Business (Business Area 
Modeling). 

2) log ( ) is the natural log transformation (with base e). The 
indicator function I(·) outputs only two values: value of 1 
means the relevant technique in the parentheses is used, 
where value of 0 indicates not (That is, I(a)=1 if a is 
present, otherwise I(·)=0). The operator : defines the 
second-order interaction between two variables. Hence 
there is no interaction if there is only one development 
technique used. That is, I(OO: Event) is 1 if and only if 
both OO and Event Modeling are used. 

3) If the project adopts default language 2GL and default 
development platform Mainframe, then the model is 
reduced to: 

log(PDR) 
= 2.651 + 0.357×log(TeamSize)-0.403×I (OO)-0.447×I(Event)  

+ 0.821×I(OO:Event)-0.276×I(Business)-0.024×I(Regression) 
+1.015×I(Business:Regression) 
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In section III we mentioned PDR is defined as Normalized 
Work Effort divided by Adjusted Function Points. PDR is an 
inverse measure of the productivity in that the smaller PDR, 
the higher is the productivity. Examining the fitted model and 
the reported p-values for the variables in Table II, we can 
generalize: 

1 Average Team Size, Development Language, Development 
Platform, and Development Techniques are significant 
factors for the productivity. Among these factors Average 
Team Size and Development Language are the two most 
essential ones with extremely significant p-values 
(<0.01%). In particular, we found Average Team Size 
explains 17.3% of the variance in log(PDR), and 
Development Language explains 7.8% of the variance in 
log(PDR). Therefore, Average Team Size is the most 
critical factor for productivity. On the other hand, the use of 
CASE Tool, Development Type, Development 
Methodology, and other unmentioned techniques have no 
considerable effects on the productivity.  

2 Average Team Size and productivity are negatively 
associated. The increase of Average Team Size will lead to 
lower productivity. 

According to the model, log(PDR) and log(TeamSize) have a 
positive linear relationship. Therefore, Average Team Size and 
productivity are negatively associated. This result is consistent 
with the findings by other researchers [12], [31], [32], [33]. 
Particularly, the double of Average Team Size will reduce 
productivity by 22% (1-exp(-0.357*ln2)). 

3 Different development methods have varied significances 
to the productivity.  

3.1 Languages 4GL and ApG are more productive than 
3GL and 2GL; 

3.2 Platform PC is slightly more productive than 
Multi-platform followed by Mid-range and 
Mainframe; 

3.3 The single use of Event Modeling or Object 
Oriented Analysis & Design can lead to higher 
productivity. However, their joint use can only 
neutralize this effect; 

3.4 The joint use of Business Area Modelling and 
Regression Testing is adverse to the improvement of 
productivity. 

 
We notice the more negative of the coefficients of the 

indicator function I( ), the smaller the value of log(PDR), and 
hence the more productive of their corresponding development 
methods. With the default language 2GL and default platform 
Mainframe acted as benchmarks, the productivities of different 
development methods are compared by their matching 
coefficients of I(·). 

For development languages the related coefficients of I(·) for 
2GL, 3GL, 4GL and ApG are 0, -0.463, -1.049, and -1.021 
respectively. So 4GL and ApG are more capable of reducing 
the value of log(PDR) than 2GL and 3GL. This means 4GL 
and ApG are more productive than 2GL and 3GL. This 

complies with the finding by Kitchenham [42] that significant 
productivity improvement is associated with the use of 4GL.  

As for development platforms, platform PC (-0.269) is 
slightly more productive than Multi-platform (-0.219) which is 
moderately better than Mid-range (-0.138) with Mainframe 
acted as the default platform (0).  

For development techniques, the single use of Event 
Modelling or Object Oriented Analysis & Design can reduce 
log(PDR) by -0.447 and -0.403 respectively. However, the 
result will be -0.029 (-0.447-0.403+0.821) if they are used 
together. This increases the value of log(PDR) and thus it loses 
the effect of improving productivity. On the other hand, the 
joint use of Business Area Modelling and Regression Testing 
will substantially enhance the value of log(PDR) to 0.715 
(-0.276-0.024+1.015). Therefore, project managers should 
avoid using them together for the purpose of higher 
productivity. 

VII.  MODEL VALIDATION 
The primary objective of this study is to find the factors 

significant to productivity. This means the model we fitted is 
parsimonious with minimum number of predictors. While the 
saturated model contains all the predictors and has the most 
perfect goodness-of-fit, our parsimonious model was reported 
with multiple R2 of 0.36. This indicates the fitted model is 
acceptable with 36% of the variance in the dependent variable 
explained by the minimum number of predictors.  

Furthermore, in linear model it is assumed that the residuals 
are normally distributed with zero mean and homogeneity of 
variance [49]. Equal scatter of residual points about the 
horizontal axis indicates the residuals have homogeneity of 
variance [50]. We plotted the residuals against the fitted values, 
and found the points evenly scatter along the horizontal axis 
without obvious patterns. Therefore, the assumption of 
homogenous variance is validated.  

Finally, we applied Kolmogorov-Smirnov test to test the 
assumption of normality of the residuals. The reported p-value 
is 0.5 which indicates the residuals do not deviate from normal 
distribution. 

VIII. VARIATIONS IN PRODUCTIVITY 
Whereas there is still no consensus whether productivity has 

really declined [17], our findings revealed that productivity has 
actually experienced irregular variations of decline and rise 
between 1995 and 2005. Our analysis will be focused on the 
parameter Normalized Productivity Delivery Rate (PDR) 
which is an inverse measure of the productivity. 

Since the yearly PDR data are highly skewed, natural log 
transformation is applied to rectify the skewness. The average 
PDR in each year is obtained by calculating the mean of 
log(PDR) and converting it back to PDR with exponential 
transformation. For some years the data deviate from normal 
even with log transformation. In these cases the median of the 
original PDR data is taken as the average PDR for that 
particular year. The stability of median justifies its use as a 
measure of centre when the data deviate from normal [51]. The 
annual averages of PDR between 1995 and 2005 are shown in 
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Table IV below. The column Number of Observations gives 
the number of projects recorded in the data repository for the 
related year. The sample sizes are all over 100 which are large 
to estimate the annual productivity. The trend of the average 
PDR is plotted in Fig. 3. 

 
 

TABLE IV   
THE AVERAGES OF PDR 1995-2005 

Year Average PDR Number of 
Observations 

1995 9.0 123 
1996 10.4 102 
1997 7.4 132 
1998 7.7 264 
1999 9.0 419 
2000 9.3 544 
2001 8.5 235 
2002 10.5 335 
2003 8.0 182 
2004 8.2 257 
2005 13.6 231 
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Fig. 3 The trend of annual average of PDR 1995-2005 
 
 
The averages drawn in Fig. 3 demonstrate that the annual 

average PDR is unstable going through a series of changes. 
PDR rises in 1996, and then it suddenly drops in 1997 where 
the lowest PDR (7.4) occurs. Thereafter it continues to increase 
until year 2000. After that it varies considerably, dropping in 
2001 but reaching its highest level to date in 2002. This is 
followed by two low years, before it reaches the peak (13.6) in 
2005. 

Recalling that PDR is an inverse measure of software 
development productivity, we can infer that productivity has 
experienced irregular variations of rise and decline over the 
past years. The year 1997 saw the highest productivity levels. 
However, and rather alarmingly, the lowest level of 
productivity arises in the latest year 2005 when, to deliver one 
function point, it actually needs 13.6 man hours. We therefore 
conclude that software development productivity has not been 
improving over time, and seek to explain this phenomenon. 

IX. VARIATION OF AVERAGE TEAM SIZE 
To explain the irregular variations in software development 

productivity, we can explore the factors which affect 
productivity. In section VI we identified that Average Team 
Size and Development Language are the two most significant 
factors influencing productivity. As a result, we turn to the 
study of these two factors. 

Since the variable Average Team Size has a much skewed 
distribution, log transformation is taken. The average value is 
obtained either from the mean or median of the data depending 
on the validity of normal assumption. The annual average is 
displayed in Table V. Given the scarcity of the data in 2004 
and 2005 (13 and 12 cases respectively), the data for these two 
years are merged with the new label 2004(5). 

 
 

TABLE V  
THE AVERAGE TEAM SIZE 1995-2005 

Year Average  
Team Size 

Number of 
Observations 

1995 3.0 63 
1996 3.4 26 
1997 3.0 61 
1998 4.0 119 
1999 5.0 219 
2000 6.0 174 
2001 6.3 61 
2002 7.0 38 
2003 4.6 38 

  2004(5) 6.2 25 
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Fig. 4 The variation of Average Team Size 1995-2005 

The data are further displayed in Fig. 4 which shows the 
extent to which Average Team Size has varied over time. It 
was very low in 1995 and 1997 (3.0). However, it constantly 
rises until the year 2002 where the maximum value to date 
emerges (7.0). After one remarkable drop in 2003, Average 
Team Size goes up again in 2004 and 2005. Clearly the overall 
trend is upwards. This confirms well with the view that due to 
the growing intricacy of software development, projects 
requires more and more developers to work together. 
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X. THE VARIABLE USES OF DEVELOPMENT LANGUAGES 

The second key factor essential to productivity is the 
development language. Most of the projects in the data Release 
10 have adopted 3GL or 4GL as the development language. 
However, although 4GL has proved to be much more 
productive than 3GL [34], it has not been extensively used. 
Table VI below gives the breakdown of the four development 
languages used across the years. 

TABLE VI  
THE BREAKDOWN OF THE USES OF FOUR LANGUAGE TYPES 1995-2005 

Year 2GL 3GL 4GL ApG Total 

1995 0 51 50 5 106 

1996 0 48 18 8    74 

1997 0 48 39 11 98 

1998 1 117 68 10 196 

1999 1 241 117 5 364 

2000 3 329 187 14 533 

2001 2 150 82 4 238 

2002 0 262 84 1 347 

2003 0 141 65 2 208 

2004 0 139 162 0 301 

2005 1 184 80 13 278 

Table VI displays that the two development languages 2GL 
and ApG have rarely been used. As we have found in section 
VI, 4GL and ApG are both equally more productive than 3GL.  
Therefore, to see the effect of development language on the 
productivity variation, we can just examine the frequency of 
use of 3GL over the years. Fig. 5 below represents the 
percentage of 3GL used as the development language between 
1995 and 2005. This indicates that there has been variable use 
of 3GL over the years. Year 2002 saw its most extensive use 
(75.5%). For most of the years over 60% the projects applied 
3GL as the development language. Even in 1995, 1997 and 
2004 there were still some 50% of the projects using 3GL 
(48.1%, 49.0% and 46.2% respectively). Therefore, we can 
conclude that 3GL has been the most prevalent development 
language in the past. Given its broad use in 2005 (66.2%) 3GL 
still remains popular today. 

64. 9%
67. 8%

46. 2%

66. 2%
75. 5%

63. 0%61. 7%

66. 2%

59. 7%
49. 0%48. 1%

0. 0%
10. 0%
20. 0%
30. 0%
40. 0%
50. 0%
60. 0%
70. 0%
80. 0%

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

Pe
rc

en
ta

ge
 o

f 
3G

L 
us

ed

 

Fig. 5 The percentage of 3GL used 1995-2005 

XI. THE EXPLANATION OF THE PRODUCTIVITY VARIATION 

Given that Average Team Size and Development Language 
have been identified as the two key factors that influence 
productivity, the variations of productivity are most likely 
influenced by these two factors. We examine this by 
incorporating the preceding three figures into Fig. 6 below5. As 
we have mentioned Average Team Size has very sparse data 
for 2004 and 2005, and the resultant average is produced by 
fusing the data in these two years. To give systematic 
comparisons, we also acquired the average of PDR and 3GL 
respectively for these two years. 
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Fig. 6 The trend of PDR, Average Team Size and Percentage of 3GL 
used 1995-2005 

Surprisingly the three curves in Fig. 6 demonstrate rather 
similar patterns. For most of the years PDR, Average Team 
Size and Use Percentage of 3GL have the same trends of rise or 
decline. This is consistent with the findings we obtained from 
the fitted model in section VI. The model shows that Average 
Team Size and PDR have a positive relationship, and 3GL is 
less productive than other development languages 4GL and 
ApG. Therefore, the growth of Average Team Size will lead to 
larger PDR (lower productivity), and the increasing use of 3GL 
can only result in lower productivity (larger PDR). In other 
words, the trend of productivity is decided by the congruous 
trends of Average Team Size and Use Percentage of 3GL. 

5 In Fig. 6 Average Team Size and PDR share the left y-axis and 3GL is 
represented by the right y-axis. 
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There are two periods of time (1999-2000, 2003-2004(5)) 
when the three curves have inconsistent trends. For both 
periods, PDR and Average Team Size increase while the Use 
Percentage of 3GL declines. As we have found from the model, 
Average Team Size is more critical than Development 
Language for productivity. Therefore, when Average Team 
Size and Use Percentage of 3GL move in opposite directions, 
productivity is decided in greater part by the former. However, 
other factors may also contribute to the productivity 
differences for these two periods. 

Finally, we can identify one period (2000-2001) in which 
PDR declines while both Average Team Size and Use 
Percentage of 3GL slightly increase. This indicates that 
productivity has actually risen though it is expected to slightly 
go down. We contend this is caused by the accumulative 
effects of other moderately significant factors and insignificant 
factors for productivity. For instance, we can examine the 
moderately significant factor Development Platform for the 
two years 2000 and 2001. Table VII illustrates the usage of the 
four platforms for 2000 and 2001. In 2000 there are nearly two 
thirds (316/494) of the projects employed Mainframe and 
Mid-range, but in 2001 there were just 54% (134/246) of the 
projects using them. As indicated by the fitted model, 
Mid-range and Mainframe are least productive among the four 
platforms. Therefore, compared to 2001 the wide-scale uses of 
the less productive development platforms in 2000 restrained 
the improvement of the productivity. 

TABLE VII 
THE USES OF THE FOUR DEVELOPMENT PLATFORMS 2000-2001 

Year Mainframe Mid-range PC Multi Total 
2000 215 101 134 44 494 
2001 99 35 47 65 246 

We now conclude that the variations of software 
development productivity in the past decade are largely caused 
by the variations of Average Team Size and the unbalanced use 
of the less productive language 3GL across the years. 

XII. CONCLUSIONS 
This study worked on the latest release of ISBSG data 

repository which is a very large database recording over 4000 
software projects developed worldwide. Running multiple 
regression analysis this research found four factors significant 
to software development productivity. They are the two most 
essential factors Average Team Size and Development 
Language, and the other two moderately significant factors 
Development Platform and Development Techniques. A 
productivity evaluation model was presented for estimating 
productivity during project planning stage. The model revealed 
that the rise of Average Team Size for the development will 
decrease the productivity, and 3GL is less productive than other 
development languages 4GL and ApG. 

In parallel with the mounting intricacy of software 
development, we found productivity has not improved over 
time but experienced irregular variations between 1995 and 

2005, and there is no trace of its ongoing improvement. In view 
of the factors affecting productivity, we found Average Team 
Size and the uses of different development languages have also 
varied in the past. We identify that the variations in 
productivity are mainly caused by the variations of Average 
team size and the unbalanced use of the less productive 
language 3GL. 
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