
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1123

An Investigation on the Variation of Software
Development Productivity

Zhizhong Jiang, Peter Naudé, and Craig Comstock

Abstract—The productivity of software development is one of the
major concerns for project managers. Given the increasing complexity
of the software being developed and the concomitant rise in the
typical project size, the productivity has not consistently improved.
By analyzing the latest release of ISBSG data repository with 4106
projects ever developed, we report on the factors found to
significantly influence productivity, and present an original model for
the estimation of productivity during project design. We further
illustrate that software development productivity has experienced
irregular variations between the years 1995 and 2005. Considering the
factors significant to productivity, we found its variations are
primarily caused by the variations of average team size for the
development and the unbalanced use of the less productive
development language 3GL.

Keywords—Development Platform, Function Point, Language,

Productivity, Software Engineering, Team Size.

I. INTRODUCTION
OFTWARE has become the key element in the evolution
of computer-based systems and products. Over the past 50

years, software has evolved from a specialized problem solving
and information analysis tool to an industry in itself [1]. The
two primary problems in software development that have yet to
be solved satisfactorily are making systems cost effective and
of higher quality. A major obstacle to solve the problem of cost
effective is the intrinsic complexity in developing software.
Improving the productivity is an essential part of making
system cost effective [2].

There have been two main directions on the study of
productivity in software engineering literature. First,
researches have been focused on the measure or estimation of
productivity [3], [4], [5], [6], [7]. Second, emphasis has been
laid on the discovery of methods or significant factors for
productivity improvement [8], [9], [10], [11], [12], [13], [14].

With the increasing complexities and costs of software
development, how to improve development productivity has

This research was supported by the ISBSG (International Software

Benchmarking Standards Group) for providing the data.
Zhizhong Jiang was with Department of Statistics, University of Oxford.

He is now with University of Manchester, Booth Street West, Manchester,
M15 6PB, UK (phone:+44(0)8708328157; fax: +44(0)1612756596; e-mail:
Zhizhong.Jiang@postgrad.mbs.ac.uk, zhizhong.jiang@bnc.oxon.org).

Peter Naudé was with University of Bath, UK. He is now a Professor in
Manchester Business School, University of Manchester, Booth Street West,
Manchester, M15 6PB, UK (e-mail: pete.naude@mbs.ac.uk).

Craig Comstock was with Harvard University. He is now with University of
Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD UK (e-mail:
craig.comstock@lmh.ox.ac.uk).

been an ongoing concern for project managers. Unfortunately,
despite the attention that has been given to it, the productivity
of software development has not improved consistently. This
needs to be seen in the light of the impressive improvements in
hardware speed and network capacity [15]. Gross measures
presented in the literature indicate that software productivity
has been declining more rapidly than any other industry [16].

Whereas there is still no consensus that whether productivity
has really declined [17], our analysis revealed that productivity
has experienced irregular variations of decline and rise in the
past decade, and there is no sign of imminent improvement.
Based on the factors significant to productivity in our model,
we found that its variations are primarily caused by the
variations of average team size for development and the
unbalanced use of the less productive development language
3GL.

Focusing on the analysis of the large database with 4106
projects developed worldwide, we organize this paper as
follows. Section II gives an overview of the database and
section III introduces the underlying factors significant to
productivity; section IV and V are detailed procedures for
model development; section VI presents full discussions on the
derived model; section VII examines the goodness-of-fit for
the model; sections VIII illustrates the variations in software
development productivity between 1995 and 2005; sections IX
and X display the variations of average team size and the
unbalanced use 3GL over the years; section XI explains the
factors leading to the productivity variation; and finally section
XII presents the conclusion to the study.

II. BACKGROUND
The common difficulty in the study of software metrics is

the lack of accessible and reliable large dataset [18]. For the 18
major databases that were studied with productivity factors,
Maxwell et al. [12] found 8 databases with sample size smaller
than 50. Besides, many contemporary metrics repositories have
limited use due to their obsolescence and ambiguity of
documentation [19].

The data repository maintained by the International
Software Benchmarking Standards Group (ISBSG) does not
have the above deficiencies and has been widely researched
[18], [20], [21], [22], [23]. The latest release of ISBSG data
repository (Release 10) contains information on 4106 projects,
and each project is recorded with up to 90 metrics or
descriptive pieces of information. The manual accompanied
with the data gives detailed descriptions of project attributes.
The data repository is regularly updated with substantial
projects added in every year. Our study will be focused on the
analysis of data Release 10.

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1124

III. DATA DESCRIPTION
Productivity is conceptualized as output produced per unit of

input, and normally defined as project size divided by effort for
the development. There have been diverse measures of
productivity, for instance, function points divided by effort[5],
[6], [24], [25], number of lines of code developed per unit of
effort [12], [13], [26], case points divided by effort [7], number
of models divided by effort [6], and number of tokens
produced per person-month [27]. While the measure of
function point has been criticized relating to its reliability [28]
and usefulness of the complexity adjustments [29], it has been
widely used to overcome the difficulties of traditional measure
of lines-of- code in project planning and control [30].

In the ISBSG data repository there are several different
counting techniques for function point (e.g., IFPUG, NESMA,
Mark II). To have consistent measure, the functional size is
adjusted by an adjustment factor and the resultant adjusted size
is reported in Adjusted Function Points. For development
effort it is recorded by two metrics: Summary Work Effort
(total effort in hours spent on the project) and Normalized
Work Effort 1 . Productivity is measured by the parameter
Normalized Productivity Delivery Rate (PDR) which is
calculated from Normalized Work Effort divided by Adjusted
Function Points. Clearly PDR is an inverse measure of
productivity in that the larger PDR, the smaller is the
productivity.

Whereas data Release 10 contains many metrics recording
each project developed, we only introduce those that likely
have effects on productivity. Many of these metrics have been
well studied before.

1. Average Team Size
It is the average number of people that worked on the project

through the entire development process. ISBSG data also
record another parameter Max Team Size, which is the
maximum number of people that worked at any time on the
project. We deem it more appropriate to use Average Team
Size to assess the productivity level. Past studies suggest that
productivity and team size are negatively associated
[9],[12],[31],[32] [33].

2. Development Language
It defines the development language used for the project,

including second generation languages (2GL), third generation
languages (3GL), fourth generation languages (4GL) and
Application Generator (ApG). In practice all 4GL languages
are designed to reduce programming efforts, and they are more
productive than 3GL languages [34]. Thus development
language would be another latent factor significant to
productivity.

3. Development Type

1 For projects covering less than a full development life-cycle, Normalized
Work Effort is an estimate of the full development life-cycle effort. For
projects covering the full development life-cycle, and projects where
development life-cycle coverage is not known, this value is the same as
Summary Work Effort.

It describes whether the software development was a new
development, enhancement or re-development. Development
with enhancement may consume much of the total resources of
programming groups and therefore does not necessary improve
productivity [35].

4. Development Platform
It defines the primary development platform. Each project is

classified as Mid-range, Mainframe, Multi-platform, or PC.
Subramanian et al. [36] found platform has a significant effect
on software development effort. This may indicate this factor is
likely to affect development productivity.

5. Development Techniques
These are techniques used during software development

(e.g. Waterfall, Prototyping). Some development techniques
have been designed to expedite development. For instance,
Rapid Application Development (RAD) was reported to
significantly accelerate development [37], and prototyping was
reported to yield products with about equivalent performance
but with 45% less effort [38].

6. CASE Tool Used
It indicates whether the project used any CASE

(Computer-Aided Software Engineering) tool. While Coupe
and Onodu [39] regarded that CASE tool had a positive effect
on productivity, a majority of organizations reported that
CASE has not brought about a change in productivity[40].
Bruckhaus et al. [41] pointed out that the introduction of CASE
tool does not necessarily improve productivity, and in certain
situations it can actually decrease the productivity as it
increases effort on specific activities.

7. Development Methodology
It describes how the development methodology was

acquired. It can be Traditional, Purchased, Developed
In-house, or a combination of Purchased and Developed. Liu
and Mintram [18] found development methodology is not
significant to effort, which is one of the determinants of
productivity.

There are still three points that need to be mentioned here:

1) Since particular programming language (e.g. Java, C++)
belongs to one of the generation languages (e.g. 3GL,
4GL), we did not consider the factor Primary
Programming Language. Otherwise redundancy is
introduced into the model to be developed.

2) Some scholar regarded project duration is significant to
productivity, and productivity declines with increasing
project duration [12]. However, we did not take this factor
into account as our study is to explore the factors that
intrinsically influence productivity. In fact, project
duration is correlated with effort which is one of the two
determining elements of productivity.

3) It is conceivable that senior software developers are more
skillful and productive than junior developers. For
instance, Kitchenham [42] observed there is significant

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1125

improvement in productivity when developers have high
virtual machine experience and programming experience.
However, ISBSG data repository does not record this.
Hence we just assume the developers are all well-qualified
practitioners.

After identification of the underlying factors significant to
productivity, statistical analysis of the data will be conducted
in the next three steps recommended by Maxwell [43]:

1) Validate the data and transform the variables;
2) Build the model;
3) Generalize findings from the model, and test the residuals
and goodness-of-fit.

IV. DATA VALIDATION
The ISBSG data repository contains one parameter—Data

Quality Rating, which indicates the reliability of the data
recorded. It has four grades A, B, C, and D. While the data with
quality ratings A, B and C are assessed as being acceptable,
little credibility can be given to any data with rating D.
Therefore, we excluded 141 projects with quality rating D.

Since our productivity is decided in part by functional size,
the homogeneity of standardized methodologies for measuring
functional size is essential. Among several different count
approaches of function point, NESMA is considered to
produce equivalent results with IFPUG [44]. In data Release 10,
3281 out of 4106 projects applied IFPUG as size count
approach, and there are further 152 projects using NESMA.
Thus, to give more reliable results, projects using size count
approaches other than IFPUG and NESMA were excluded
from the analysis.

Besides, projects with recording errors or unspecified
information were removed. For instance, two projects were
mistakenly recorded with Average Team Size 0.5 and 0.95
respectively. One project was recorded with development
platform ‘HH’, and one project was recorded with unknown
development methodology ‘CICS’. Finally, the only one
project that applied 5GL as development language was
excluded.

After data cleaning there are 3322 projects remained. These
data will be used for model development in the next section.

V. MODEL DEVELOPMENT
For the metrics discussed in section III, PDR and Average

Team Size are measured in ratio scale, and all the other six
metrics are measured in nominal scale. We first examine the
distributions of the two ratio variables PDR and Average Team
Size. The two histograms in Fig. 1 (left half) indicate that the
data are extremely skewed. We therefore take natural log
transformation to redress the skewness for these two variables
(right half of Fig. 1).

Fig. 1 Histograms of the two ratio variables PDR and Average Team

Size, and their log-transformations

We then explore the potential relationship between PDR and
Average Team Size after log transformation. Fig. 2 below is
the simple scatterplot of log(PDR) against log of Average
Team Size. Though they do not have a perfect positive linear
relationship, the graph indicates that we can use linear model to
approximate their relationship. Given that all other predictors
are measured in ratio scale except Average Team Size, we can
use multiple linear regression to fit a model with PDR as the
dependent variable.

Fig. 2 The scatterplot of log(PDR) against log(TeamSize)

We first examine if there exists the problem of
multicollinearity (strong correlations between predictor
variables) in the data. That is, to see whether the use of some
development method is likely to be associated with other
techniques. The correlation tests indicated that there is no
multicollinearity existent in the data. However, there are still
two challenging difficulties to directly apply regression
analysis to the data. First, for the metric Development
Techniques there exist over 30 different techniques2 in the data

2 The ten primary techniques are Waterfall (643), Data Modelling (451),
Process Modelling (294), JAD (Joint Application Development &
Multifunctional Teams) (225), Prototyping (234), Regression Testing (164),
Object Oriented Analysis & Design (143), Business Area Modelling (106),
RAD (Rapid Application Development) (98), Event Modelling (85).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1126

repository, and 766 projects even use various combinations of
these techniques. Since the joint use of development
techniques has the effect on productivity which is not simply
additive of those effects when they are applied alone, we
cannot ignore the effects of their interactions on the
productivity. We managed to handle this difficulty by
separating each of the ten main development techniques as one
single binary variable with two levels indicating whether it is
used or not (1 = used, 0 = not used), and taking into account all
of the second-order interactions3 between them. For the ten
primary development techniques, Waterfall is the only one that
is not in combination with any other techniques. As a result, 36
second-order interactions from the other nine development
techniques are required for estimation. For all the uncommon
development techniques, they are merged into one group
labelled with ‘Others’. The interactions between ‘Others’ and
the main development techniques are not taken into
consideration.

Second, substantial missing values are present in the 3322
observations after data cleaning. The metrics with large
amount of missing data are Average Team Size (2349),
Development Methodology (2068), Development Techniques
(1891), CASE Tool Used (1899), Development Platform (853),
and Development Language (447). The rule of thumb suggests
a minimum sample size of 50+8k (k is the number of
predictors) for multiple regression analysis [45]. Given that the
factor Development Techniques itself has 47 (11 main effects
and 36 interaction terms) predictors to estimate, a minimum
sample size of 500 is required for regression. Therefore, if we
add all the predictor variables simultaneously into the full
model, then it only has a valid sample size of 302 which is not
sufficient. Therefore, to treat this problem of enormous
missing values, we added one indicator variable Missing which
indicates whether particular cells of Development Techniques
have missing data (1 = missing, 0 = not missing). In this way,
1891 projects with development techniques unrecorded are
saved for regression testing. With this treatment the valid
sample size became 402 which is acceptable but still low. The
next subsection illustrates the steps we employed to overcome
the deficiency of small valid sample size for multiple
regression analysis. The names of the metrics are abbreviated,
and the variables for regression are generalized in Table I
below.

With the above two problems treated, the model is then
developed in the following three steps.

Step 1): assess the significances of 48 variables concerning
development techniques.

All the 48 predictors derived from the metric Development
Techniques are kept in the regression model. These include 12
main effects (10 main development techniques, 2 additional
variables Others and Missing) and 36 interaction terms. One of
the 64 combinations of the six variables TeamSize, Language,
Platform, DevType, CASE, and Methodology is then added into
the model in turn, and the regression is performed. For

3 In regression analysis second-order interaction is the interaction between
two variables, where nth-order interaction is the interaction among n variables.
Since in data Release 10 a majority of the projects have missing values, it is
intractable to assess high order of interactions which requires substantially
large valid sample size. Therefore, we only considered second-order
interaction.

unbalanced missingness, ANOVA (Analysis of Variance)
based on Type I Sums of Squares depends on the orders that
the terms are specified the model [46]. Therefore, for our study
we used Type III Sums of Squares which does not depend on
the orders of the terms specified in the model for unbalanced
data. Repeating 26 = 64 times, we found 19 interaction terms
never showed significant based on their reported p-values
(p-value < 0.05 is regarded as statistical significant [47], [48]).
These 19 insignificant variables are excluded from the analysis,
and the other 29 variables are retained for the next step. The
removal of these 19 insignificant variables can reduce the
sample size required for regression by 8×19=152.

TABLE I

DESCRIPTIONS OF VARIABLES FOR REGRESSION

Variable Scale Descriptions
PDR Ratio Normalized Productivity Delivery Rate.

TeamSize Ratio Average Team Size.

Language Nominal Development Language

DevType Nominal Development Type

Platform Nominal Development Platform

CASE Nominal CASE Tool Used

Methodology Nominal Development Methodology

Waterfall Nominal 1= Waterfall, 0 = Not

Data Nominal 1 = Data Modelling, 0 = Not

Process Nominal 1 = Process Modelling, 0 = Not

JAD Nominal 1 = JAD & Multifunctional Teams
0 = Not

Regression Nominal 1 = Regression Testing, 0 = Not

Prototyping Nominal 1 = Prototyping, 0 = Not

Business Nominal 1 = Business Area Modelling, 0 = Not

RAD Nominal 1 = Rapid Application Development
0 = Not

OO Nominal 1 = Object Oriented Analysis & Design
0 = Not

Event Nominal 1 = Event Modelling, 0 = Not

Others Nominal
1 = uncommon development techniques
0 = Not

Missing Nominal 1 = Missing, 0 = Not

 Nominal 36 interaction terms

Step 2): assess the significances of the six variables
TeamSize, Language, Platform, DevType, CASE, and
Methodology.

Keeping the 29 variables remained from step 1) in the model,
we again add in one of the 64 combinations of TeamSize,
Language, Platform, DevType, CASE, and Methodology by
turns. We found variable CASE never exhibited significant
among the 32 models that contain it. This indicates the use of
CASE tool has no effect on productivity. Therefore, variable
CASE is removed from the model. For the other five variables,
TeamSize and Language frequently showed significant,
whereas Platform moderately showed significant, and DevType
and Methodology occasionally showed significant. These five
variables are retained for further testing in step 3).

Step 3): stepwise remove insignificant terms with backward
elimination and obtain final model.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1127

After the above two steps we now have a valid sample size
of 414 to test 44 predictors—4 levels of Language, 4 levels of
Platform, 3 levels of DevType, 4 levels of Methodology, and 29
variables concerning Development Techniques retained from
step 1). This sample size is just adequate for regression
analysis based on the rule of minimum sample size 50+8k (k is
the number of predictors). We add these 44 predictors all
together into the model and perform multiple regression. We
then exclude the predictor with the largest insignificant p-value
reported, and fit the model with the predictors remained.
Continuing this process we obtained the model with the final
sets of significant terms. We will discuss the fitted model in
detail in the next section.

VI. THE FACTORS SIGNIFICANT TO PRODUCTIVITY

The final model contains the predictors that are all
significant (p-value < 0.05) to the dependent variable PDR. In
other words, these predictors are factors essential to
productivity. Table II displays the ANOVA table based on
Type III Sums of Squares, and Table III presents the regression
coefficients of the variables. The final model is fitted as
follows:

log(PDR)
= 2.651 + 0.357×log(TeamSize) -0.463×I(3GL) -1.049×I(4GL)

-1.021×I(ApG) -0.138×I(MR)-0.219×I(Multi)-0.269×I(PC)
-0.403×I (OO)-0.447×I(Event) +0.821×I(OO:Event)-0.276×
I(Business)-0.024×I(Regression)+1.015×I(Business:Regression)

TABLE II
ANOVA WITH TYPE III SUMS OF SQUARES FOR REGRESSION

Regression Terms Df Sum of Sq F Value P-Value

log(TeamSize) 1 54.6 98.26 < 10-15

Language 3 43.2 25.92 1.68×10-12

Platform 3 5.2 3.13 0.0253

OO 1 0.0 0.00 0.9595

Event 1 0.0 0.06 0.8133

Business 1 1.1 2.04 0.1539

Regression 1 4.8 8.65 0.0034

OO : Event 4 1 4.2 7.62 0.0060
Business:
Regression 1 5.7 10.24 0.0015

Residuals 559 310.7

4 After data cleaning 29 projects used the combination of OO and Event
Modeling, and 32 projects used the combination of Business Area Modeling
and Regression Testing. The estimation for the interaction terms is reliable.

TABLE III
REGRESSION COEFFICIENTS

Regression Terms Coefficients

Intercept 2.651
log(TeamSize) 0.357
Language3GL -0.463
Language4GL -1.049
LanguageApG -1.021
PlatformMR -0.138
PlatformMulti -0.219
PlatformPC -0.269
OO -0.403
Event -0.447
Business -0.276
Regression -0.024
OO:Event 0.821
Business:Regression 1.015
Multiple R-Squared 0.36

To understand the model some interpretations are given as
follows.

1) TeamSize denotes Average Team Size for the
development. As one of the levels of the nominal variable
Language, 3GL, 4GL, and ApG indicate which language is
used for the development. The default language is 2GL. As
one of the levels of the nominal variable Platform, MR
(Mid Range), Multi (Multi-platform) and PC indicate
which platform is used for the development. The default
development platform is Mainframe. The remaining terms
specify whether particular development technique is
adopted for the development: OO (Object Oriented
Analysis & Design), Event (Event Modeling), Regression
(Regression Testing), and Business (Business Area
Modeling).

2) log () is the natural log transformation (with base e). The
indicator function I(·) outputs only two values: value of 1
means the relevant technique in the parentheses is used,
where value of 0 indicates not (That is, I(a)=1 if a is
present, otherwise I(·)=0). The operator : defines the
second-order interaction between two variables. Hence
there is no interaction if there is only one development
technique used. That is, I(OO: Event) is 1 if and only if
both OO and Event Modeling are used.

3) If the project adopts default language 2GL and default
development platform Mainframe, then the model is
reduced to:

log(PDR)
= 2.651 + 0.357×log(TeamSize)-0.403×I (OO)-0.447×I(Event)

+ 0.821×I(OO:Event)-0.276×I(Business)-0.024×I(Regression)
+1.015×I(Business:Regression)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1128

In section III we mentioned PDR is defined as Normalized
Work Effort divided by Adjusted Function Points. PDR is an
inverse measure of the productivity in that the smaller PDR,
the higher is the productivity. Examining the fitted model and
the reported p-values for the variables in Table II, we can
generalize:

1 Average Team Size, Development Language, Development
Platform, and Development Techniques are significant
factors for the productivity. Among these factors Average
Team Size and Development Language are the two most
essential ones with extremely significant p-values
(<0.01%). In particular, we found Average Team Size
explains 17.3% of the variance in log(PDR), and
Development Language explains 7.8% of the variance in
log(PDR). Therefore, Average Team Size is the most
critical factor for productivity. On the other hand, the use of
CASE Tool, Development Type, Development
Methodology, and other unmentioned techniques have no
considerable effects on the productivity.

2 Average Team Size and productivity are negatively
associated. The increase of Average Team Size will lead to
lower productivity.

According to the model, log(PDR) and log(TeamSize) have a
positive linear relationship. Therefore, Average Team Size and
productivity are negatively associated. This result is consistent
with the findings by other researchers [12], [31], [32], [33].
Particularly, the double of Average Team Size will reduce
productivity by 22% (1-exp(-0.357*ln2)).

3 Different development methods have varied significances
to the productivity.

3.1 Languages 4GL and ApG are more productive than
3GL and 2GL;

3.2 Platform PC is slightly more productive than
Multi-platform followed by Mid-range and
Mainframe;

3.3 The single use of Event Modeling or Object
Oriented Analysis & Design can lead to higher
productivity. However, their joint use can only
neutralize this effect;

3.4 The joint use of Business Area Modelling and
Regression Testing is adverse to the improvement of
productivity.

We notice the more negative of the coefficients of the

indicator function I(), the smaller the value of log(PDR), and
hence the more productive of their corresponding development
methods. With the default language 2GL and default platform
Mainframe acted as benchmarks, the productivities of different
development methods are compared by their matching
coefficients of I(·).

For development languages the related coefficients of I(·) for
2GL, 3GL, 4GL and ApG are 0, -0.463, -1.049, and -1.021
respectively. So 4GL and ApG are more capable of reducing
the value of log(PDR) than 2GL and 3GL. This means 4GL
and ApG are more productive than 2GL and 3GL. This

complies with the finding by Kitchenham [42] that significant
productivity improvement is associated with the use of 4GL.

As for development platforms, platform PC (-0.269) is
slightly more productive than Multi-platform (-0.219) which is
moderately better than Mid-range (-0.138) with Mainframe
acted as the default platform (0).

For development techniques, the single use of Event
Modelling or Object Oriented Analysis & Design can reduce
log(PDR) by -0.447 and -0.403 respectively. However, the
result will be -0.029 (-0.447-0.403+0.821) if they are used
together. This increases the value of log(PDR) and thus it loses
the effect of improving productivity. On the other hand, the
joint use of Business Area Modelling and Regression Testing
will substantially enhance the value of log(PDR) to 0.715
(-0.276-0.024+1.015). Therefore, project managers should
avoid using them together for the purpose of higher
productivity.

VII. MODEL VALIDATION
The primary objective of this study is to find the factors

significant to productivity. This means the model we fitted is
parsimonious with minimum number of predictors. While the
saturated model contains all the predictors and has the most
perfect goodness-of-fit, our parsimonious model was reported
with multiple R2 of 0.36. This indicates the fitted model is
acceptable with 36% of the variance in the dependent variable
explained by the minimum number of predictors.

Furthermore, in linear model it is assumed that the residuals
are normally distributed with zero mean and homogeneity of
variance [49]. Equal scatter of residual points about the
horizontal axis indicates the residuals have homogeneity of
variance [50]. We plotted the residuals against the fitted values,
and found the points evenly scatter along the horizontal axis
without obvious patterns. Therefore, the assumption of
homogenous variance is validated.

Finally, we applied Kolmogorov-Smirnov test to test the
assumption of normality of the residuals. The reported p-value
is 0.5 which indicates the residuals do not deviate from normal
distribution.

VIII. VARIATIONS IN PRODUCTIVITY
Whereas there is still no consensus whether productivity has

really declined [17], our findings revealed that productivity has
actually experienced irregular variations of decline and rise
between 1995 and 2005. Our analysis will be focused on the
parameter Normalized Productivity Delivery Rate (PDR)
which is an inverse measure of the productivity.

Since the yearly PDR data are highly skewed, natural log
transformation is applied to rectify the skewness. The average
PDR in each year is obtained by calculating the mean of
log(PDR) and converting it back to PDR with exponential
transformation. For some years the data deviate from normal
even with log transformation. In these cases the median of the
original PDR data is taken as the average PDR for that
particular year. The stability of median justifies its use as a
measure of centre when the data deviate from normal [51]. The
annual averages of PDR between 1995 and 2005 are shown in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1129

Table IV below. The column Number of Observations gives
the number of projects recorded in the data repository for the
related year. The sample sizes are all over 100 which are large
to estimate the annual productivity. The trend of the average
PDR is plotted in Fig. 3.

TABLE IV
THE AVERAGES OF PDR 1995-2005

Year Average PDR Number of
Observations

1995 9.0 123
1996 10.4 102
1997 7.4 132
1998 7.7 264
1999 9.0 419
2000 9.3 544
2001 8.5 235
2002 10.5 335
2003 8.0 182
2004 8.2 257
2005 13.6 231

0. 0

2. 0

4. 0

6. 0

8. 0

10. 0

12. 0

14. 0

16. 0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Year

Av
er

ag
e

PD
R

Fig. 3 The trend of annual average of PDR 1995-2005

The averages drawn in Fig. 3 demonstrate that the annual

average PDR is unstable going through a series of changes.
PDR rises in 1996, and then it suddenly drops in 1997 where
the lowest PDR (7.4) occurs. Thereafter it continues to increase
until year 2000. After that it varies considerably, dropping in
2001 but reaching its highest level to date in 2002. This is
followed by two low years, before it reaches the peak (13.6) in
2005.

Recalling that PDR is an inverse measure of software
development productivity, we can infer that productivity has
experienced irregular variations of rise and decline over the
past years. The year 1997 saw the highest productivity levels.
However, and rather alarmingly, the lowest level of
productivity arises in the latest year 2005 when, to deliver one
function point, it actually needs 13.6 man hours. We therefore
conclude that software development productivity has not been
improving over time, and seek to explain this phenomenon.

IX. VARIATION OF AVERAGE TEAM SIZE
To explain the irregular variations in software development

productivity, we can explore the factors which affect
productivity. In section VI we identified that Average Team
Size and Development Language are the two most significant
factors influencing productivity. As a result, we turn to the
study of these two factors.

Since the variable Average Team Size has a much skewed
distribution, log transformation is taken. The average value is
obtained either from the mean or median of the data depending
on the validity of normal assumption. The annual average is
displayed in Table V. Given the scarcity of the data in 2004
and 2005 (13 and 12 cases respectively), the data for these two
years are merged with the new label 2004(5).

TABLE V
THE AVERAGE TEAM SIZE 1995-2005

Year Average
Team Size

Number of
Observations

1995 3.0 63
1996 3.4 26
1997 3.0 61
1998 4.0 119
1999 5.0 219
2000 6.0 174
2001 6.3 61
2002 7.0 38
2003 4.6 38

 2004(5) 6.2 25

0. 0
1. 0
2. 0
3. 0
4. 0
5. 0
6. 0
7. 0
8. 0

1995 1996 1997 1998 1999 2000 2001 2002 2003
Year

Av
er

ag
e

Te
am

 S
iz

e

2004(5)

Fig. 4 The variation of Average Team Size 1995-2005

The data are further displayed in Fig. 4 which shows the
extent to which Average Team Size has varied over time. It
was very low in 1995 and 1997 (3.0). However, it constantly
rises until the year 2002 where the maximum value to date
emerges (7.0). After one remarkable drop in 2003, Average
Team Size goes up again in 2004 and 2005. Clearly the overall
trend is upwards. This confirms well with the view that due to
the growing intricacy of software development, projects
requires more and more developers to work together.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1130

X. THE VARIABLE USES OF DEVELOPMENT LANGUAGES

The second key factor essential to productivity is the
development language. Most of the projects in the data Release
10 have adopted 3GL or 4GL as the development language.
However, although 4GL has proved to be much more
productive than 3GL [34], it has not been extensively used.
Table VI below gives the breakdown of the four development
languages used across the years.

TABLE VI
THE BREAKDOWN OF THE USES OF FOUR LANGUAGE TYPES 1995-2005

Year 2GL 3GL 4GL ApG Total

1995 0 51 50 5 106

1996 0 48 18 8 74

1997 0 48 39 11 98

1998 1 117 68 10 196

1999 1 241 117 5 364

2000 3 329 187 14 533

2001 2 150 82 4 238

2002 0 262 84 1 347

2003 0 141 65 2 208

2004 0 139 162 0 301

2005 1 184 80 13 278

Table VI displays that the two development languages 2GL
and ApG have rarely been used. As we have found in section
VI, 4GL and ApG are both equally more productive than 3GL.
Therefore, to see the effect of development language on the
productivity variation, we can just examine the frequency of
use of 3GL over the years. Fig. 5 below represents the
percentage of 3GL used as the development language between
1995 and 2005. This indicates that there has been variable use
of 3GL over the years. Year 2002 saw its most extensive use
(75.5%). For most of the years over 60% the projects applied
3GL as the development language. Even in 1995, 1997 and
2004 there were still some 50% of the projects using 3GL
(48.1%, 49.0% and 46.2% respectively). Therefore, we can
conclude that 3GL has been the most prevalent development
language in the past. Given its broad use in 2005 (66.2%) 3GL
still remains popular today.

64. 9%
67. 8%

46. 2%

66. 2%
75. 5%

63. 0%61. 7%

66. 2%

59. 7%
49. 0%48. 1%

0. 0%
10. 0%
20. 0%
30. 0%
40. 0%
50. 0%
60. 0%
70. 0%
80. 0%

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

Pe
rc

en
ta

ge
 o

f
3G

L
us

ed

Fig. 5 The percentage of 3GL used 1995-2005

XI. THE EXPLANATION OF THE PRODUCTIVITY VARIATION

Given that Average Team Size and Development Language
have been identified as the two key factors that influence
productivity, the variations of productivity are most likely
influenced by these two factors. We examine this by
incorporating the preceding three figures into Fig. 6 below5. As
we have mentioned Average Team Size has very sparse data
for 2004 and 2005, and the resultant average is produced by
fusing the data in these two years. To give systematic
comparisons, we also acquired the average of PDR and 3GL
respectively for these two years.

0

2

4

6

8

10

12

1995 1996 1997 1998 1999 2000 2001 2002 2003
Year

0%
10%
20%
30%
40%
50%
60%
70%
80%

PDR Aver age Team Si ze Per cent age of 3GL used

2004(5)

Fig. 6 The trend of PDR, Average Team Size and Percentage of 3GL
used 1995-2005

Surprisingly the three curves in Fig. 6 demonstrate rather
similar patterns. For most of the years PDR, Average Team
Size and Use Percentage of 3GL have the same trends of rise or
decline. This is consistent with the findings we obtained from
the fitted model in section VI. The model shows that Average
Team Size and PDR have a positive relationship, and 3GL is
less productive than other development languages 4GL and
ApG. Therefore, the growth of Average Team Size will lead to
larger PDR (lower productivity), and the increasing use of 3GL
can only result in lower productivity (larger PDR). In other
words, the trend of productivity is decided by the congruous
trends of Average Team Size and Use Percentage of 3GL.

5 In Fig. 6 Average Team Size and PDR share the left y-axis and 3GL is
represented by the right y-axis.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1131

There are two periods of time (1999-2000, 2003-2004(5))
when the three curves have inconsistent trends. For both
periods, PDR and Average Team Size increase while the Use
Percentage of 3GL declines. As we have found from the model,
Average Team Size is more critical than Development
Language for productivity. Therefore, when Average Team
Size and Use Percentage of 3GL move in opposite directions,
productivity is decided in greater part by the former. However,
other factors may also contribute to the productivity
differences for these two periods.

Finally, we can identify one period (2000-2001) in which
PDR declines while both Average Team Size and Use
Percentage of 3GL slightly increase. This indicates that
productivity has actually risen though it is expected to slightly
go down. We contend this is caused by the accumulative
effects of other moderately significant factors and insignificant
factors for productivity. For instance, we can examine the
moderately significant factor Development Platform for the
two years 2000 and 2001. Table VII illustrates the usage of the
four platforms for 2000 and 2001. In 2000 there are nearly two
thirds (316/494) of the projects employed Mainframe and
Mid-range, but in 2001 there were just 54% (134/246) of the
projects using them. As indicated by the fitted model,
Mid-range and Mainframe are least productive among the four
platforms. Therefore, compared to 2001 the wide-scale uses of
the less productive development platforms in 2000 restrained
the improvement of the productivity.

TABLE VII
THE USES OF THE FOUR DEVELOPMENT PLATFORMS 2000-2001

Year Mainframe Mid-range PC Multi Total
2000 215 101 134 44 494
2001 99 35 47 65 246

We now conclude that the variations of software
development productivity in the past decade are largely caused
by the variations of Average Team Size and the unbalanced use
of the less productive language 3GL across the years.

XII. CONCLUSIONS
This study worked on the latest release of ISBSG data

repository which is a very large database recording over 4000
software projects developed worldwide. Running multiple
regression analysis this research found four factors significant
to software development productivity. They are the two most
essential factors Average Team Size and Development
Language, and the other two moderately significant factors
Development Platform and Development Techniques. A
productivity evaluation model was presented for estimating
productivity during project planning stage. The model revealed
that the rise of Average Team Size for the development will
decrease the productivity, and 3GL is less productive than other
development languages 4GL and ApG.

In parallel with the mounting intricacy of software
development, we found productivity has not improved over
time but experienced irregular variations between 1995 and

2005, and there is no trace of its ongoing improvement. In view
of the factors affecting productivity, we found Average Team
Size and the uses of different development languages have also
varied in the past. We identify that the variations in
productivity are mainly caused by the variations of Average
team size and the unbalanced use of the less productive
language 3GL.

REFERENCES
[1] R. S. Pressman, Software Engineering: A Practitioner's Approach. London:

Mcgraw-Hill, 2001.
[2] S. T. Albin, The Art of Software Architecture: Design Methods and

Techniques. New York: Wiley, 2003.
[3] B. Kitchenham and E. Mendes, "Software productivity measurement

using multiple size measures," IEEE Transactions on Software
Engineering, vol. 30, pp. 1023-1035, 2004.

[4] W. S. Humphrey and N. D. Singpurwalla, "Predicting (individual)
software productivity," IEEE Transactions on Software Engineering, vol.
17, pp. 196-207, 1991.

[5] K. D. Maxwell and P. Forselius, "Benchmarking software development
productivity," IEEE Software, vol. 17, pp. 80-88, 2000.

[6] S. Morasca and G. Russo, "An empirical study of software productivity,"
presented at Proceedings of the 25th International Computer Software
and Applications Conference on Invigorating Software Development,
Chicago, 2001.

[7] M. Arnold and P. Pedross, "Software size measurement and productivity
rating in a large-scalesoftware development department," presented at
20th International Conference on Software Engineering, Kyoto, Japan,
1998.

[8] N. R. Howes, "Managing software development projects for maximum
productivity," IEEE Transactions on Software Engineering, vol. SE10, pp.
27-35, 1984.

[9] J. D. Blackburn, G. D. Scudder, and L. N. V. Wassenhove, "Improving
speed and productivity of software development: a global survey of
software developers," IEEE Transactions on Software Engineering, vol.
22, pp. 875-885, 1996.

[10] R. E. Loesh, "Improving productivity through standard design
templates," Data Processing, vol. 27, pp. 57-59, 1985.

[11] G. R. Finnie, G. E. Wittig, and D. Petkov, "Prioritizing software
development productivity factors using the analytic hierarchy process,"
Journal of Systems and Software, vol. 22, pp. 129-139, 1993.

[12] K. Maxwell, L. V. Wassenhove, and S. Dutta, "Software development
productivity of European space, military and industrial applications,"
IEEE Transactions on Software Engineering, vol. 22, pp. 706-718, 1996.

[13] D. N. Card, F. E. McGarry, and G. T. Page, "Evaluating software
engineering technologies," IEEE Transactions on Software Engineering,
vol. SE-13, pp. 845-851, 1987.

[14] B. W. Boehm and P. N. Papaccio, "Understanding and Controlling
Software Costs," IEEE Transactions on Software Engineering, vol. 14,
pp. 1462-1477, 1988.

[15] I. R. Chiang and V. S. Mookerjee, "Improving software team
productivity," Communications of the ACM, vol. 47, pp. 89-93, 2004.

[16] D. Anselmo and H. Ledgard, "Measuring productivity in the software
industry," Communications of the ACM, vol. 46, pp. 121-125, 2003.

[17] R. Groth, "Is the software industry's productivity declining?," IEEE
Software, vol. 21, pp. 92-94, 2004.

[18] Q. Liu and R. C. Mintram, "Preliminary data analysis methods in
software estimation," Software Quality Journal, vol. 13, pp. 91-115,
2005.

[19] W. Harrison, "A flexible method for maintaining software metrics data: a
universal metrics repository," Journal of Systems and Software, vol. 72,
pp. 225-234, 2004.

[20] C. J. Lokan, "An empirical analysis of function point adjustment factors,"
Information and Software Technology, vol. 42, pp. 649-660, 2000.

[21] R. Jeffery, M. Ruhe, and I. Wieczorek, "A comparative study of two
software development cost modeling techniques using
multi-organizational and company-specific data," Information and
Software Technology, vol. 42, pp. 1009-1016, 2000.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1132

[22] J. J. Cuadrado-Gallego, M. Sicilia, M. Garre, and D. Rodríguez, "An
empirical study of process-related attributes in segmented software
cost-estimation relationships," Journal of Systems and Software, vol. 79,
pp. 353-361, 2006.

[23] J. Moses, M. Farrow, N. Parrington, and P. Smith, "A productivity
benchmarking case study using Bayesian credible intervals," Software
Quality Journal, vol. 14, pp. 37-52, 2006.

[24] G. H. Subramanian and G. E. Zarnich, "An examination of some software
development effort and productivity determinants in ICASE tool
projects," Journal of Management Information Systems, vol. 12, pp.
143-160, 1996.

[25] C. A. Behrens, "Measuring the productivity of computer systems
development activities with function points," IEEE Transactions on
Software Engineering, vol. SE-9, pp. 648-652, 1983.

[26] A. MacCormack, C. F. Kemerer, M. Cusumano, and B. Crandall,
"Trade-offs between productivity and quality in selecting software
development practices," IEEE Software, vol. 20, pp. 78-85, 2003.

[27] M. H. Halstead, Elements of Software Science. New York: Elsevier, 1977.
[28] C. F. Kemerer, "Reliability of function points measurement: a field

experiment," Communications of the ACM, vol. 36, pp. 85-97, 1993.
[29] C. R. Symons, "Function point analysis: difficulties and improvements,"

IEEE Transactions on Software Engineering, vol. 14, pp. 2-11, 1988.
[30] C. F. Kemerer and B. S. Porter, "Improving the reliability of function

point measurement: an empirical study," IEEE Transactions on Software
Engineering, vol. 18, pp. 1011-1024, 1992.

[31] F. Louis, "Team size and productivity in systems development,"
Information Systems Management, vol. 8, pp. 27-35, 1991.

[32] S. D. Conte, H. E. Dunsmore, and Y. E. Shen, Software Engineering
Metrics and Models. Redwood City, CA: Benjamin-Cummings
Publishing, 1986.

[33] E. Mendes and B. Kitchenham, "Web Productivity Measurement and
Benchmarking," in Web Engineering, E. Mendes and N. Mosley, Eds.
Berlin: Springer, 2006, pp. 75-106.

[34] R. Klepper and D. Bock, "Third and fourth generation language
productivity differences," Communications of the ACM, vol. 38, pp.
69-79, 1995.

[35] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, "Characteristics of
application software maintenance," Communications of the ACM, vol. 21,
pp. 466-471, 1978.

[36] G. H. Subramanian, P. C. Pendharkar, and M. Wallace, "An empirical
study of the effect of complexity, platform, and program type on software
development effort of business applications," Empirical Software
Engineering, vol. 11, pp. 541-553, 2006.

[37] J. Martin, Rapid Application Development. New York: Macmillan, 1991.
[38] B. W. Boehm, T. E. Gray, and T. Seewaldt, "Prototyping vs. specifying: A

multi-project experiment," presented at 7th International Conference on
Software Engineering, Orlando, 1984.

[39] R. T. Coupe and N. M. Onodu, "An empirical evaluation of the impact of
CASE on developer productivity and software quality," Journal of
Information Technology, vol. 11, pp. 173-181, 1996.

[40] D. Flynn, J. Vagner, and O. D. Vecchio, "Is CASE technology improving
quality and productivity in software development?," Logistics
Information Management, vol. 8, pp. 8-23, 1995.

[41] T. Bruckhaus, N. H. Madhavii, I. Janssen, and J. Henshaw, "The impact
of tools on software productivity," IEEE Software, vol. 13, pp. 29-38,
1996.

[42] B. A. Kitchenham, "Empirical studies of assumptions that underlie
software cost-estimation models," Information and Software Technology,
vol. 34, pp. 211-218, 1992.

[43] K. Maxwell, Applied Statistics for Software Managers. New Jersey:
Prentice Hall, 2002.

[44] NESMA, NESMA FPA Counting Practices Manual 2.0: Nesma
Association, 1996.

[45] S. A. Green, "How many subjects does it take to do a multiple regression
analysis?," Multivariate Behavioral Research, vol. 26, pp. 499-510,
1991.

[46] SAS Institute Inc, SAS/Stat User's Guide: Version 6 4th edition ed. Cary,
NC: SAS Institute Inc, 1990.

[47] M. J. Crawley, An Introduction to Data Analysis using S-Plus. Chichester:
John Wiley & Sons, 2002.

[48] W. N. Venables and B. D. Ripley, Modern applied statistics with S. New
York: Springer, 2002.

[49] A. C. Rencher, Linear Models in Statistics. New York: John Wiley &
Sons, 2000.

[50] W. J. Krzanowski, An Introduction to Statistical Modelling. London:
Arnold, 1998.

[51] R. Peck, C. Olsen, and J. Devore, Introduction to Statistics and Data
Analysis. London: Duxbury, 2001.

