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Optimal convolutive filters for real-time detection
and arrival time estimation of transient signals

Michal Natora, Felix Franke, and Klaus Obermayer

Abstract—Linear convolutive filters are fast in calculation and
in application, and thus, often used for real-time processing of
continuous data streams. In the case of transient signals, a filter
has not only to detect the presence of a specific waveform, but
to estimate its arrival time as well. In this study, a measure
is presented which indicates the performance of detectors in
achieving both of these tasks simultaneously. Furthermore, a
new sub-class of linear filters within the class of filters which
minimize the quadratic response is proposed. The proposed
filters are more flexible than the existing ones, like the adaptive
matched filter or the minimum power distortionless response
beamformer, and prove to be superior with respect to that
measure in certain settings. Simulations of a real-time scenario
confirm the advantage of these filters as well as the usefulness
of the performance measure.

Index Terms—Adaptive matched filter, minimum variance
distortionless response, beamforming, Capon beamformer, linear
filters, performance measure

I. INTRODUCTION

FOR detection of signals in single data samples corrupted

by Gaussian noise, linear filters, in particular the adaptive

matched filter (AMF), have been proven to be powerful. Their

performance is measured with respect to the probability of

detection and of false alarm; see [1] for a performance analysis

of the AMF and other filters. The AMF has been applied

amongst others in radar and antenna systems [2]. In other

applications, however, the incoming data stream does not

consist of a few data samples, but of a continuous data stream,

whereas the signal is present only in a few of the samples

(transient signals). In this case, the signal must not only be

detected, but also its arrival time must be estimated.

The research field of optimal simultaneous detection and

estimation has been mainly initiated by the work presented

in [3]. Based on this theory some detectors were developed

[4]–[6], and most of these approaches rely on order statistics.

In the work of [5], however, the authors mention, that in

the case of long signals, linear convolutive filters prove to

be superior to order statistics. Moreover, linear convolutive

filters are computationally much more efficient, and thus, more

suitable for real-time applications than order statistics.

This raises the question of which detectors should be used

for the mentioned task, and how their performance should be

compared. This study focuses in particular on the performance

of linear filters, since they are easy to implement and are
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optimal in the class of linear transformations [7]. Although

the performance of various detectors for transient signals

was compared (see [8]–[10]), these studies compared only

the detection performance and linear convolutive filters were

rarely used for comparison.

Linear convolutive filters, in the following abbreviated sim-

ply by the term linear filters, are a convenient approach for the

task of simultaneous detection and arrival time estimation of

transient signals, and, thanks to their computational efficiency,

suitable for real-time applications. For example, they are used

for extracting information from bio-medical data [11]–[13] or

in speech processing (see [14] for a survey).

However, to the knowledge of the authors, no work exists to

date which would propose a measure assigning a performance

to detectors with respect to their ability of simultaneously

detecting the presence as well as estimating the arrival time

of transient signals.

This work is organized as follows: In Sec. II-B the general

optimization problem is presented to which linear filters are the

solution. By modifying the optimization criteria, a new class of

linear filters is derived. In Sec. II-C a measure of performance

of detectors with respect to simultaneous detection and arrival

time estimation is presented. In Sec. III-A different linear

filters are compared with respect to this measure. The results

from simulations in Sec. III-B agree with the theoretical

findings and demonstrate the usefulness of these new filters

and of the performance measure. The work is summarized and

discussed in Sec. IV and a brief outlook on further research

directions is given.

II. METHOD

A. Notation

A notation is used in which symbols for scalar quantities

are represented by lower case letters, vectorial quantities

are represented by bold lower case letters, and matrices are

represented by bold upper case letters. A vector ξ usually

represents a set of sampled data points, the index set being

centered around zero, i.e. ξ = (ξ−b, . . . , ξb)
�

. Tξ denotes the

dimension of the vector ξ, i.e. Tξ = 2b + 1.

The symbol δy(x) denotes the usual Kronecker delta func-

tion, i.e. δy(x) = 1, if x = y, and δy(x) = 0 otherwise.

The noncyclic cross-correlation between two vectors x and

y is denoted as x � y = z, where zt =
∑

τ xτyτ+t. It is

Tz = Tx + Ty − 1.

The notion of variance is slightly abused by attributing the

variance to a probability density function (pdf) f(x) rather
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than to a random variable X , i.e.

Varf(x) := Varf(x)(X) =
∑

x

x2f(x)−
(∑

x

xf(x)

)2

. (1)

B. Linear convolutive filters

The measured data xt is a continuously sampled data stream

which is a linear mixture of a signal source and a noise source

ηt. The signal is assumed to be sparse, i.e. consisting only

of a short waveform ξ at specific times. Formally, the data

generating process is written as 1:

xt =
∑

τ

υt−τξτ + ηt (2)

The point process υt defines the times at which the waveform

ξ is present, and can be modeled for example by a Bernoulli

process. The noise ηt is assumed to be Gaussian, with zero

mean and covariance matrix C (not necessarily white). It is

assumed that the amplitude distribution of υt as well as of

ξ does not change in time, hence, only the presence of the

waveform and its arrival time has to be detected, but not

its amplitude scaling. Further, it is assumed that the signal

waveform ξ is known, and, due to its sparseness, the noise

covariance matrix C can be estimated reliably.

A perfect detector should retrieve the underlying point

process υt, as, in this case, all signals were detected and all

arrival times estimated correctly. In the following, the focus

will be on detectors in the class of linear filters which minimize

the quadratic response to the data, combined with a pointwise

thresholding of the filter output. This class of filters has the

advantage of having an analytical expression, which allows for

fast calculation (see [15] for other classes of linear filters).

The optimization problem for this kind of filters is stated

as follows:

f = argmin
f

{
|l|2 + αf�Cf

}
subject to f� · ξ = 1 (3)

where l is the filter response to the waveform ξ, i.e.

l := f � ξ. The optimization criteria can be understood intu-

itively: The first term demands response of the filter to the

signal to be minimal, except for the correct arrival time, in

which case the filter should respond with a well defined re-

sponse of 1 (which is ensured by the optimization constraint).

The response of the filter to noise segments should be minimal

as well. Since the noise was assumed to be Gaussian and zero

mean, one has to minimize Var (f � η). A short calculation

yields Var (f � η) = f�Cf . The α parameter varies the ratio

between minimization of the filter response to the signal and

to noise.

The solution to the problem in Eq. 3 is given by

f =
H−1ξ

ξ�H−1ξ
(4)

1For the sake of clarity and of simplicity, the analysis will be restricted
to the case of single channel data. The entire method can be extended to
multi-channel data in a straightforward manner.

where the matrix H is given by H := Ξ + αC, and

(Ξ)k,l := (ξ � ξ)k−l.

In the limit of α → ∞, the filter reduces to

f = C−1ξ/
(
ξ�C−1ξ

)
, which is the classical adaptive

matched filter (AMF), see [16]2, also called minimum

variance distortionless response (MVDR) beamformer, or

simply Capone beamformer [7], [17]. This detector will be

referred to as the “no suppression filter”.

On the other hand, for a particular choice of α propor-

tional to the occurrence frequency of the transient signal, the

minimum power distortionless response (MPDR) beamformer

is obtained [7]. This detector will be referred to as the “full

suppression filter”.

The original optimization problem in Eq. 3 will be gener-

alized in two ways:

1) Variable suppression matrix: Instead of either full sup-

pression of the signal or no suppression at all, one can demand

to suppress only specific shifts i of the waveform. In this case

l is replaced by M · l, where the suppression matrix M is a

diagonal matrix with mi,i = 1 if the shift (f � ξ)i should be

suppressed, and mi,i = 0 otherwise.

2) Variable target function: In the original optimization

problem the response of the filter to the template had to be

minimal, i.e. the least square distance to zero. Instead, one

can minimize the distance to an arbitrary function s, which is

expressed by the substitution of l with s − l.
Combining both variations 1) and 2) this leads to a modified

optimization problem stated as

f = argmin
f

{
|s − M · l|2 + αf�Cf

}
s.t. f� · ξ = 1

(5)

The solution to this modified optimization problem can still

be obtained analytically.

Proposition 1. The solution to the optimization problem stated
in Eq. 5 is given by

f =
(

G−1 − G−1ξξ�G−1

ξ�G−1ξ

)
· (s � ξ)[−b,b] +

G−1ξ

ξ�G−1ξ
(6)

where G := Ξ̃ + αC, and
(
Ξ̃

)
k,l

:=
∑

τ m2
τ,τ ξk+τξl+τ

The proof is given in Appendix A. If s = 0 or si = δ0(i) the

first term in Eq. 6 disappears. Furthermore, if the suppression

matrix M is the identity matrix, M = 1, the original formula

in Eq. 4 is obtained, whereas for M being the zero matrix,

M = 0, the no suppression filter is obtained.

C. Performance measure

The processing flow of a detector consists of two consec-

utive steps: filtering, and an application of a threshold γ to

the filter output. Hence, it is desired that after these two steps,

the underlying point process υt in Eq. 2 is obtained. If one

2Note that in [16] the filters were obtained under the constraint f�Cf = 1
instead, however, in terms of detection performance the filters are equivalent.
Also, we will still refer to this filter as the adaptive matched filter, even if
the exact noise covariance matrix is known.
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achieves the correct estimation of this point process, the signal

has been detected and the arrival times retrieved successfully.

Since a signal consisting of a unique waveform without

amplitude variations was assumed, one can restrict itself to

the analysis of detection and arrival time estimation of the

waveform itself. Therefore, the output of a perfect detector

D must always be D(ξ + η) = δ0(x). As such, the perfect

detector reconstructs the original point process υt for all
possible thresholds. Hence, one would like to have a measure

which indicates the closeness of a detector output to the

δ0(x) function. In contrast, the classical performance measure,

which is the probability of detection PD (see e.g. [1]), only

indicates whether the waveform was detected at all, but does

not measure the closeness of the detection probability to the

correct arrival time.

Based on these observations, the following measure of

performance PDE (for a fixed, but arbitrary threshold γ) for

combined detection and arrival time estimation is proposed:

PDE :=
Var1/2(p̄(x)+δ0(x)) −Var1/2(p(x)+δ0(x))

Var1/2(p̄(x)+δ0(x))
(7)

where p̄(x) is a pdf for which Var1/2(p(x)+δ0(x)) is maximal,

i.e.

p̄(x) := argmax
p(x)

{
Var1/2(p(x)+δ0(x))

}
.

p(x) is a detector dependent pdf which is at each point x in

time proportional to the probability that the filter output is

above the threshold γ, i.e.

p(x) :=
PD(x)∑
x PD(x)

(8)

where PD(x) is the classical probability of

detection. In the case of linear filters, one has

PD(x) = Prob[(f � (ξ + η))x ≥ γ].
Two important properties of PDE are stated in the following

propositions.

Proposition 2. In the case of a discrete pdf defined on the
interval [−a, a], PDE is given by

PDE = 1 − 2
a2

Var1/2(p(x)+δ0(x)) . (9)

The proof is given in Appendix B. In contrast to Eq. 7, the

expression in Eq. 9 no longer depends on the unknown quan-

tity p̄(x), and thus, allows for calculation of the performance

measure in real applications.

Proposition 3. PDE takes values in the interval [0, 1]. The
maximal value of 1 is attained if and only if p(x) = δ0(x).

The proof is given in Appendix C. This last proposition

establishes bounds on the range in which the values of PDE

fall. A value close to 1 indicates a good performance, whereas

a value close to 0 indicates a poor performance of the detector.

Moreover, it states that only the perfect detector can achieve

the best possible performance.

As in the calculation of the quantity p(x) a normalization

is involved in order to obtain a pdf (see Eq. 8), even a single

small value exceeding the threshold will be normalized to a

pdf. If the threshold is increased towards infinity, the measure

will indicate a better and better performance, although the

real probability of detection will become arbitrarily small.

Hence, in contrast to the classical measures, one has to restrict

the range of possible thresholds. A reasonable choice is to

set γmax = maxt {(f � ξ)t}, and γmin = E[f � η]. The upper

threshold is justified by the fact that in the noise-free case, a

threshold greater than the maximal value of the filter response

to the waveform would lead to zero detections. The lower

bound of the threshold is also justified, since a threshold

below the average response to a noise segment would always

lead to detection of the signal, except when the detector is

meaningless.

III. RESULTS

A. Numerical evaluation

The measure in Eq. 9 indicates performance of a filter for

one fixed (but arbitrary) threshold γ. In order to assign an

overall performance to a detector, however, a total measure is

needed. As such, slightly modified receiver operating charac-

teristics (ROC) and the area under these ROC curves (AUC)

were used [18]. The x-axis of the ROC curve corresponded

to the probability of false alarm PFA [1], i.e. the probability

that a data segment containing only noise will be incorrectly

detected as signal. Instead of PD, the y-axis corresponded to

the proposed PDE measure. According to the properties of

PDE in Sec. II-C, a larger value of the AUC indicates a better

performance of the corresponding filter.

In this evaluation setting, three different linear filters were

compared, namely the no suppression filter, the full suppres-

sion filter and a particular case of the proposed filter class. The

waveform of the signal had a length of Tξ = 7, whereas the

noise covariance matrix was set to C = 0.025 · 1, resulting in

a SNR of 14.0 db.

In the case of zero mean Gaussian noise the probability of

detection is given by the expression

PD(x) = 0.5 ·
(

1 − erf

(
γ−l(x)√
2·f�Cf

))
,

where erf(x) denotes the standard error function, and

l(x) = (f � ξ)x. PFA is obtained by PFA = PD(l(x) = 0).
PDE was then calculated according to Eq. 9 with

a = 0.5 · (Tf�ξ − 1) = 6.

For a linear filter, the average response to zero mean

noise is zero, i.e. E[f � η] = 0. It turned out that for this

particular evaluation setting one has maxt {(f � ξ)t} = 1 for

all considered filters. Hence, the threshold γ was varied in the

interval [0, 1] (in steps of 0.002).

Recall, that the linear filters depended on the trade-off

parameter α, see Eq. 4 and Eq. 6. The AUC was computed

for all α values starting from α = 0 in steps of 0.005 up to

a value for which the performance started to converge to the

performance of the no suppression filter; see Sec. II-B for

explanation. The results are shown in Fig. 1.

Although the filters attain their best performance at differ-

ent α values (see Fig. 1), the proposed filter, called partial

suppression filter, achieved the highest AUC.
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Fig. 1. AUC of various filters for different α values. The partial suppression
filter was calculated by Eq. 6 in which the target function was set to
si = δ0(i), ∀i ∈ [−6, 6] and the diagonal matrix entries of M were set such
that m−1,−1 = m0,0 = m1,1 = 0, and mi,i = 1 ∀i /∈ {−1, 0, 1}. This
proposed filter achieved the highest AUC score. The optimal performance
for the partial suppression filter was achieved at α = 20.220, for the full
suppression filter at α = 63.685, whereas, by construction, the no suppression
filters had constant performance for all α values.

B. Simulations

The results from the previous section indicate that partial

suppression filters are advantageous in comparison to the

full and no suppression filters. To verify this result in a

realistic setting, Monte Carlo simulations were performed.

In particular, a single simulation consisted of a data stream

containing 1000 signal segments and twice as many noise

segments. The identical waveform and also the same noise

statistics as the ones described in the previous section were

used. The implementation was realized in MATLAB�.

For performance comparison the previously calculated fil-

ters were used, with the α parameter set at specific values

for which the respective filter achieved best performance (see

Fig. 1).

As scope the area of realtime applications was chosen. In

such a setting, at time t0 only data xt from precedent times

t ≤ t0 are available. Nevertheless, the decision about signal

presence has to be made already at time t0. Consequently,

every threshold crossing is immediately accounted for a signal

presence, and every detection, which does not correspond to

the exact signal arrival time, is counted as a false positive

detection (FP). Accordingly, only successful detections at the

exact arrival time of a signal are counted as true positive

detections (TP). By varying the threshold (in steps of 0.0025)

the corresponding ROC curves were obtained, see Fig. 2.

For the assessment of the overall performance, the AUC was

computed and considered only up to the smallest (common

for all filters) relative FP value for which rel. TP = 1, in

order to avoid redundant computations. The AUCs of all filters

averaged over 10 independent simulations are shown in Tab. I,

and the variance across the simulations was of the order of

10−7.

The partial suppression filter achieved the best score, fol-

lowed by the full suppression filter and lastly the no suppres-

sion filter. This is the same ranking as predicted in Sec. III-A.

0 0.02 0.04 0.06 0.08 0.1

0.75

0.8
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0.95

1

rel. FP

re
l. 

T
P

Partial suppression
Full suppression
No suppression

Fig. 2. ROC curves for various filters based on a single simulation. The
number of true positive detections was normalized by the total number
of signal segments, whereas the number of false positive detections was
normalized by the total number of data segments. Clearly, the proposed partial
suppression filter outperforms the other filters.

TABLE I
AVERAGE AUC FOR VARIOUS FILTERS.

Partial Full No

av. AUC 0.396487 0.395009 0.392696

IV. DISCUSSION AND CONCLUSION

In contrast, the classical performance measure

PD/PFA would not have predicted the correct ranking:

PD = Prob[f� · (ξ + η) ≥ γ] is largest for the no suppression

filter and smallest for the full suppression filter (and vice-versa

for PFA).

To sum up, a measure was proposed which assigns a per-

formance to a detector with respect to simultaneous detection

and arrival time estimation of transient signals. Although the

proposed measure is general and suitable for most detectors,

the detector class of linear filters is of particular interest. In

the popular sub-class of minimal quadratic response filters, the

existing filters were modified by introducing a suppression

matrix and a target function. The proposed filters have the

advantage of still being analytically computable, but offer

more flexibility than the existing filters. The widely used

adaptive matched filter, the Capone filter and the minimum

power distortionless response beamformer are all particular

realizations within the proposed filter class.

In fact, the target function can be used in order to adjust

the smoothness of the filter response. This might be helpful in

cases when the post processing consists not just of a pointwise

thresholding, but of a more complex operation; e.g. when the

data contains more than one signal source and a simultaneous

detection and classification task has to be performed [19], [20].

On the other hand, the suppression matrix allows for the

selective suppression of specific filter responses. This can be

useful for incorporating prior knowledge about the signal into

the filter design, as for example a refractory period or dead

time.

Using the proposed measure, two existing filters

(AMF/MVDR and MPDR) were compared with a particular

filter of the just proposed filter class. The measure indicated
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a favorable performance of the proposed filter, which was

confirmed in simulations. In particular, the proposed filter was

superior in a real-time detection and arrival time estimation

task.

In the performed evaluation the target function and the sup-

pression matrix were set manually. As an outlook for further

investigations one might think of an online adaption scheme:

The filtering is started with the classical adaptive matched

filter, while in the background an optimization problem is

solved, which aims at finding an optimal target function and

suppression matrix. Once such a solution is found, the filter

is adapted accordingly.

APPENDIX

A. Proof of proposition 1

The objective function of the optimization problem in Eq. 5

is convex and since the optimization constraint is linear, one

can use the Lagrange multiplier method for solving it. The

corresponding Lagrangian L is given by

L = |s − M · l|2 + αf�Cf + λ
(
f�ξ − 1

)
where λ is the Lagrange multiplier. The derivatives in respect

to f and λ can be calculated as

δL

δfti

= 2

(∑
τ

mτ,τ ξti+τ

∑
t

mτ,τξt+τft − sτmτ,τ ξti+τ

)

+2α
∑

t

Cti,tft + λξti

δL

δλ
=

(∑
t

ξtft

)
− 1

The calculation of the second derivatives leads to

δL

δftiδftI

= 2
∑

τ

m2
τ,τ ξti+τ ξj

tI+τ + 2 · α · Cti,tI

δL

δλδλ
= 0

δL

δftiδλ
= ξti

The second derivatives of L are independent of f and of

λ. Therefore, the Taylor expansion of the first derivative of L
around zero consists only of two terms and the solution can

be obtained by solving

(
0
0

)
=

(
δL

δfti
δL
δλ

)
=

(
δL

δfti
δL
δλ

)
fti

=0,λ=0

+

⎛
⎝

∑
tI

δL
δfti

δftI fti
=0,λ=0

· ftI∑
tI

δL
δλδftI fti

=0,λ=0
· ftI

⎞
⎠ +

⎛
⎝ δL

δfti
δλ fti

=0,λ=0
· λ

δL
δλδλ fti

=0,λ=0
· λ

⎞
⎠

In matrix notation, the above equation becomes

0 =
(−2 (s � ξ)[−b,b]

−1

)
+ H̃ ·

(
f
λ

)
(10)

where one defined

(s � ξ)[−b,b] :=
(
(s � ξ)−b , . . . , (s � ξ)b

)�
and

H̃ :=

(
2

(
Ξ̃ + α · C

)
, ξ

ξ�, 0

)

and
(
Ξ̃

)
k,l

:=
∑

τ m2
τ,τ ξk+τξl+τ .

Define G := Ξ̃ + αC. The inverse of H̃ is then given by

[21]

H̃−1 =

⎛
⎝ 1

2

(
G−1 − G−1ξξ�G−1

ξ�G−1ξ

)
G−1ξ

ξ�G−1ξ

ξ�G−1

ξ�G−1ξ
− 2

ξ�G−1ξ

⎞
⎠
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The left multiplication of Eq. 10 with H̃−1 yields the

solution for f , which is given by

f =
(

G−1 − G−1ξξ�G−1

ξ�G−1ξ

)
(s � ξ)[−b,b] +

G−1ξ

ξ�G−1ξ

B. Proof of proposition 2

If one can show that Var1/2(p̄(x)+δ0(x)) = a2/2, the propo-

sition simply follows from Eq. 7. It is

Var1/2(p(x)+δ0(x)) = Var1/2p(x) +Var1/2δ0(x) = Var1/2p(x) .

Strictly speaking 1/2p(x) is not a pdf, but Var1/2p(x) is still

defined as in Eq. 1.

It is

Var1/2p(x) =
∑

x

x21/2p(x) −
(∑

x

x1/2p(x)

)2

≤ 1/2
∑

x

x2p(x) = 1/2 Varq(x),

where q is a pdf of a discrete random variable with zero mean.

The variance of any pdf q(x) on the interval [−a, a] is bounded

by a2 [22]. Hence, Var1/2p(x) ≤ a2/2.

Now, one can show that this upper bound is attained.

Define p̄(x) = 1/2(δ−a(x) + δa(x)). Then, a straightforward

calculation yields Var1/2(p̄(x)+δ0(x)) = a2/2.

C. Proof of proposition 3

It was already shown in the proof of proposition 2 that the

lower bound is attained. It remains to show that the upper

bound is attained, i.e. that Var1/2(p(x)+δ0(x)) = 0 ⇔ p(x) =
δ0(x).

“⇐”: Varδ0(x) = 02 · 1 − (0 · 1)2 = 0.

“⇒”: Let q(x) be an arbitrary pdf. Without loss of gen-

erality, one can assume that q(x) is zero mean. Hence, 0 =
Varq(x) =

∑
x x2q(x), so q(x) = 0 ∀x �= 0. Since it must be

that
∑

x q(x) = 1, it follows that q(0) = 1, i.e. q(x) = δ0(x).
By plugging in q(x) = 1/2(p(x) + δ0(x)) = δ0(x), it follows

that p(x) = δ0(x).
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