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2n almost periodic attractors for Cohen-Grossberg
neural networks with variable and distribute delays

Meng Hu and Lili Wang

Abstract—In this paper, we investigate dynamics of 2n almost
periodic attractors for Cohen-Grossberg neural networks (CGNNs)
with variable and distribute time delays. By imposing some new
assumptions on activation functions and system parameters, we split
invariant basin of CGNNs into 2n compact convex subsets. Then the
existence of 2n almost periodic solutions lying in compact convex
subsets is attained due to employment of the theory of exponential
dichotomy and Schauder’s fixed point theorem. Meanwhile, we derive
some new criteria for the networks to converge toward these 2n

almost periodic solutions and exponential attracting domains are also
given correspondingly.

Keywords—CGNNs; Almost periodic solution; Invariant basins;
Attracting domains.

I. INTRODUCTION

COHEN-Grossberg neural networks (CGNNs) were first
introduced by Cohen and Grossberg [1] in 1983, have

been successfully applied to pattern recognition, associative
memory, combinatorial optimization and so on. Hence, the
dynamics and applications of CGNNs have been of interest
to a wide range of authors in recent years. Many important
results on the existence of a unique equilibrium point and its
convergent dynamical behavior have been established so far
[2-10].

As we know well, the nonautonomous phenomenon in-
volved in periodic or almost periodic environment often occurs
in many realistic systems [11,12]. Hence, in many applications,
the property of periodic or almost periodic oscillatory solutions
of neural networks is of great interest. Recently, a lot of
sufficient conditions have been given for almost periodic
oscillation of CGNNs with constant time delays or time-
varying delays in the literature, see [13-15] and the references
cited therein.

In the applications of neural networks to pattern recogni-
tions, the existence of multiple stable equilibria or almost peri-
odic orbits is an important feature. It is worth to investigate the
convergence and coexistence of multiple equilibria or multiple
almost periodic solutions of neural networks. However, to the
best of our knowledge, most of the reported in the literature
focus on dynamical behavior of the unique almost periodic
solution. Few papers systematically deal with coexistence of
multiple almost periodic solutions of neural networks.

Motivated by the above, in this paper, we consider the
following almost periodic Cohen-Grossberg neural networks
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with variable and distribute time delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −ai(xi(t))

[
bi(xi(t))

−
n∑

j=1

dij(t)fj(xj(t − τij(t)))

−
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)gj(xj(s))ds

+Ii(t)
]
, i ∈ Λ,

xi(s) = ϕi(s), −ω ≤ s ≤ 0, i ∈ Λ,

(1)

where Λ = 1, . . . , n, n ≥ 2 is the number of neurons in the
network, xi(t) denotes the state of ith neuron at time t, ai(xi)
represents the amplification function, gi and fi are the activa-
tion functions which describe the manner in which the neurons
respond to each other, C = (cij)n×n is the feedback matrix
which represents the strengthen of the neuron inter connections
within the network, while D = (dij)n×n is the delayed
feedback matrix which represents the strengthen of the neuron
interconnections within the network with time-varying delay
parameter τij(t) which is continuous, τ = max

t∈[0,ω]
τij(t), the

scalar σ is the known distributed delay and ω = max{τ, σ},
kij denotes continuous kernel function.

Our purpose of this paper is by employing the theory of
exponential dichotomy, Schauder’s fixed point theorem and
inequality technique, we investigate complex dynamics of 2n

almost periodic attractors of CGNNs (1).
Throughout this paper, we assume that:

(H1) Each ai(u)(i ∈ Λ, u ∈ R) is positive, continuous
and bounded function. cij(t), dij(t), τij(t), Ii(t) are all
almost periodic functions defined on R, where dii ≥
inf
t∈R

dii(t) > 0 and derivative τ ′
ij(t) is uniformly con-

tinuous on R with inf
t∈R

{1 − τ ′
ij(t)} > 0.

(H2) Each bi(·) is continuous with bi(0) = 0 and there exists
a constant Θi such that

bi(x) − bi(y)
x − y

≥ Θi > 0, ∀ x, y ∈ R, x �= y, i = 1, 2, · · · , n.

(H3) Each kernel function kij(·) is positive, continuous and
satisfies ∫ σ

0

(kij(s))θΔs = kij(θ, σ),

where 0 < kij(θ, σ) < +∞ is a continuous function on
(0, θ̂], θ̂ > 0. Furthermore, when σ = +∞, kij(θ) =
kij(θ, +∞) and kij(1) = 1.
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(H4) The activation functions fj(·), gj(·) satisfy fj(·), gj(·) ∈
C2(R) and{ |fj(x)| ≤ γj , fj(0) = 0,

f ′
j(x) = f ′

j(−x) > 0, xf
′′
j (x) < 0,

where x ∈ R.

and

|gj(x)| ≤ χj , gj(0) = 0, where x ∈ R.

The rest of this paper is organized as follows. In Section 2,
we shall make some preparations by giving some definitions
and basic lemmas. Meanwhile, we attain an invariant basin Ω
of CGNNs (1) and split it into 2n compact convex subsets.
In Section 3, we discuss the existence of 2n almost periodic
solutions of CGNNs (1), some new criteria are derived for the
networks to converge exponentially toward to these 2n almost
periodic solutions and exponential attracting domains are also
given. Finally, an example is given to illustrate our results.

II. PRELIMINARIES

In this paper, we denote by C([−ω, 0], Rn) the set of all
continuous mappings from [−ω, 0] to Rn equipped with norm
‖ · ‖ω defined by

‖φ‖ω = max
i∈Λ

{‖φi‖ω}, Λ = {1, 2, · · · , n},

where ‖φi‖ω = sup
−ω≤t≤0

|φi| and φ = (φ1, φ2, · · · , φn)T ∈
C([−ω, 0], Rn). Let l > 0, for any x(·) ∈ C([−ω, 0], Rn)
and t ∈ [0, l], we define xt(s) = x(t + s), s ∈ [−ω, 0],
then we have xt(·) ∈ C([−ω, 0], Rn). For any given φ ∈
C([−ω, 0], Rn), we denote by u(t, φ) the solution of CGNNs
(1) with u0(s) = φ(s) for all s ∈ [−ω, 0].

Definition 2.1([11]) A continuous function f : R → R is
called an almost periodic on R, if the ε-translation set of f :

E
{
ε, f

}
=

{
τ : |f(t + τ) − f(t)| < ε

}
, ∀ t ∈ R,

for any given ε > 0, there exist a constant l(ε) > 0, such that
in any interval of length l(ε), there exist τ ∈ E{ε, f}, such
that the inequality |f(t + τ)− f(t)| < ε, ∀ t ∈ R. τ is called
the ε-translation number of f(t).

Let (AP, ‖·‖) be the Banach space of all real-valued almost
periodic functions with commonly used supremum norm ‖ · ‖.
By Definition 2.1, we know that all almost periodic functions
are bounded. For convenience, we denote f = sup

t∈R
|f(t)|, f =

inf
t∈R

|f(t)| for any f(t) ∈ AP .

From (H1), the antiderivative of 1
ai(xi)

exists. We may
choose an antiderivative Fi(xi) of 1

ai(xi)
with Fi(0) = 0.

Obviously, F ′
i (xi) = 1

ai(xi)
. Due to ai(xi) > 0, one can

imply that Fi(xi) is increasing about xi and the inverse
function F−1

i (xi) of Fi(xi) is existential, continuous and
derivative. The composition function bi(F−1

i (xi)) is differen-
tial. We denote by yi(t) = Fi(xi(t)). It is easy to see that
y′

i(t) = F ′
i (xi)x′

i(t) = x′
i(t)

ai(xi(t))
and xi(t) = F−1

i (yi(t)).

Substituting these equalities into CGNNs (1), we can get that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
i(t) = −bi(F−1

i (yi(t)))

+
n∑

j=1

dij(t)fj(F−1
j (yj(t − τij(t))))

+
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)gj(F−1

j (yj(s)))ds

+Ii(t), i ∈ Λ,
xi(s) = Fi(ϕi(s)) = φi(s), −ω ≤ s ≤ 0, i ∈ Λ,

(2)

In addition, by the mean value theorem, then

bi(F−1
i (yi(t))) = [bi(F−1

i (θ̂yi(t)))]′yi(t) = ei(yi(t))yi(t),

where ei(yi(t)) = [bi(F−1
i (θ̂yi(t)))]′, 0 < θ̂ < 1.

Then system (2) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
i(t) = −ei(yi(t))yi(t)

+
n∑

j=1

dij(t)fj(F−1
j (yj(t − τij(t))))

+
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)×

gj(F−1
j (yj(s)))ds + Ii(t), i ∈ Λ,

yi(s) = Fi(ϕi(s)) = φi(s),−ω ≤ s ≤ 0, i ∈ Λ.

(3)

It is easy to see that

|F−1
j (u) − F−1

j (v)| = |(F−1
j )′(v + θ̂(u − v))(u − v)|

= |aj(v + θ̂(u − v))||u − v|,

where 0 < θ̂ < 1.
By (H1) we have

aj |u − v| < |F−1
j (u) − F−1

j (v)| < āj |u − v|. (4)

From (H2), one can easily obtain that
(H2)′ : b′i(F

−1
i (·)) ≥ Θiai, where bi(·) is the derivative of

bi(·), i = 1, 2, · · · , n.
Definition 2.2 Let Ω̂ be a subset of C([−ω, 0], Rn), Ω̂ is

said to be an invariant basin of CGNNs (1) if and only if for
any φ ∈ Ω̂ , we have ut(·, φ) ∈ Ω̂ for all t ≥ 0, where ut(t, φ)
is the solution of CGNNs (1) with initial condition φ.

The following Definition and Lemmas, one can find in [11]
and [12].

Definition 2.3 Let y ∈ Rn and A(t, y) be an n × n
continuous matrix defined on R × Rn. For any continuous
function w(t) : R → Rn, the system y′(t) = A(t, w(t))y(t)
is said to be an exponential dichotomy on R, if there exist
constants α, β > 0, projection P and the fundamental matrix
Yw(t) satisfying

‖Yw(t)PY −1
w (s)‖ ≤ β exp(−α(t − s)), t ≥ s,

‖Yw(t)(I − P )Y −1
w (s)‖ ≤ β exp(−α(s − t)), s ≥ t.

Lemma 2.1 If M [ei] > 0, then the linear system y′(t) =
A(t, w(t))y(t) has an exponential dichotomy.

Lemma 2.2 If the linear system y′(t) = A(t, w(t))y(t) has
an exponential dichotomy, then the almost periodic system
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y′(t) = A(t, w(t))y(t) + f(t, w(t)) has an almost periodic
solution which can be expressed as follows:

y(t) =
∫ t

−∞
Yw(t)PY −1

w (s)f(t, w(t))ds

−
∫ +∞

t

Yw(t)(I − P )Y −1
w (s)f(t, w(t))ds.

Definition 2.4 The almost periodic solution z∗ =
(x∗

1, x
∗
2, · · · , x∗

n)T of CGNNs (1) is said to be exponentially
stable, if there exist constants γ > 0 and λ > 0 such that

‖z − z∗‖ ≤ γ‖ϕ − z∗‖e−λt

for all t ≥ 0.
CGNNs (1) has 2n almost periodic solutions which are

exponentially stable, if and only if, system (3) has 2n almost
periodic solutions which are exponentially stable. We only
consider the system (3) in the later.

III. 2n ALMOST PERIODIC ATTRACTORS FOR CGNNS

In this section, we should discuss the existence of 2n

almost periodic solutions of system (3) and give an exponential
attracting domain for each almost periodic attractor. Before we
derive some properties of solutions of system (3), we need to
introduce the following lemmas.

Lemma 3.1 Assume that the assumptions (H1) − (H4)
are satisfied. Any solution y(t, φ) of system (3) is uniformly
bounded with initial condition φ = (φ1, φ2, · · · , φn)T ∈ Ω
which be defined as follows:

Ω = {φ ∈ C([−ω, 0], Rn)||φi(s)|

≤ [Ii +
n∑

j=1

(dijγj + cijkij(1, σ)χj)]/ei,

s ∈ [−ω, 0], i ∈ Λ}.
Moreover, Ω is an invariant basin of system (3).

Proof: From system (3), we have

d+

dt
|yi(t)| ≤ −ei|yi(t)| + [Ii +

n∑
j=1

(dijγj + cijkij(1, σ)χj)],

where t ≥ 0 and d+

dt (·) denotes the upper right Dini derivative
operator. Hence it follows that for some t0 ≥ 0,

|yi(t)| ≤ exp(t0 − t)ei

{
|yi(t0)| − [Ii

+
n∑

j=1

(dijγj + cijkij(1, σ)χj)]/ei

}

+[Ii +
n∑

j=1

(dijγj + cijkij(1, σ)χj)]/ei, (5)

for t ≥ t0.
Therefore, given any initial condition φ ∈ Ω, we have for

all t ≥ 0,

‖yi(t, φ)‖ω ≤ [Ii +
n∑

j=1

(dijγj + cijkij(1, σ)χj)]/ei, i ∈ Λ.

i.e., yt(·, φ) ∈ Ω for all t ≥ 0 and y(t, φ) is uniformly
bounded. The proof is completed.

From equation (5), it is easy to see that all almost periodic
solutions of system (3) locate themselves in invariant basin Ω.
For convenience of investigating the existence of 2n almost
periodic solutions, we should split invariant basin Ω into 2n

compact convex subsets of Ap × · · · × Ap︸ ︷︷ ︸
n

. Hence we consider

the following auxiliary functions:

ξk(z) = −eiz + diifi(z), i ∈ Λ.

Lemma 3.2 Suppose that the following assumption holds:
(A1) dii inf

ξ∈R
f ′

i(ξ) < ei < dii sup
ξ∈R

f ′
i(ξ), where i ∈ Λ.

Then there only exist two points zi1 and zi2 with zi1 < 0 < zi2

such that ξ′i(zil) = 0 and

ξ′i(z) · sign{z − zi1

z − zi2
} < 0,

where z �= zil(l = 1, 2) and sign(·) denotes a symbolic
function.

Proof: We have ξ′i(z) = 0 if and only if f ′
i(z) = ēi

dii
.

For each activation function fi(·), we know that the graph
of positive function f ′

i(·) concaves down and has its maximal
value at zero. By (H1), there only exist two points zi1 and zi2

with zi1 < 0 < zi2 such that f ′
i(zil) = ēi

dii
; that is, ξ′k(zil) =

0(i = 1, 2). Since f ′
k(z) is strictly increasing on (−∞, zil]

and is strictly decreasing on [zi2,+∞), we get that

(−ēi + diif
′
i(z)) · sign{z − zi1

z − zi2
} < 0,

that is
ξ′i(z) · sign{z − zi1

z − zi2
} < 0,

where z �= zil(l = 1, 2). The proof is completed.
With the basic property of ξi(z) given in Lemma 3.2, we

consider the following additional assumption:

(A2) (−1)i ·{ξi(zil)+Ii(t)} >
n∑

j=1

(dijoγj +cijkij(1, σ)χj)

for all t ∈ R, l = 1, 2, and i ∈ Λ, where d̄ijo := d̄ij when
jo �= i, otherwise d̄ijo := 0.

Let l = 1 in (A2), it is easy for us to get that

ξi(zil) +
n∑

j=1

(dijoγj + cijkij(1, σ)χj) + sup
t∈R

Ii(t) < 0. (6)

From Lemma 3.2, we know that ξi(z) is strictly decreasing on
(−∞, zil]. Noting that ξi(z) → +∞ as z → −∞, we know
that there exists a unique ẑil with ẑil < zil < 0 such that

ξi(ẑil) +
n∑

j=1

(dijoγj + cijkij(1, σ)χj) + sup
t∈R

Ii(t) = 0. (7)

Let l = 2 in (A2), by the similar argument, we derive that
there exists a unique ẑi2 with 0 < zi2 < ẑi2 such that

ξi(ẑi2) +
n∑

j=1

(dijoγj + cijkij(1, σ)χj) + inf
t∈R

Ii(t) = 0. (8)
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Take the following notations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di1 := −
Īi+

n∑
j=1

(dijγj+cijkij(1,σ)χj)

ei
, ci1 := ẑi1,

di2 := ẑi2, ci2 :=
Īi+

n∑
j=1

(dijγj+cijkij(1,σ)χj)

ei
,

where i ∈ Λ. By equations (7) and (8), it is easy for us to
check that di1 < ci1 < 0 < di2 < ci2 for each i ∈ Λ. Then
we define the following sets:

Hi1 := {ψ ∈ C([−ω, 0], R)|ψ(s) ≤ ci1,∀ s ∈ [−ω, 0]},
Hi2 := {ψ ∈ C([−ω, 0], R)|ψ(s) ≥ di2,∀ s ∈ [−ω, 0]},
Ki1 := {z ∈ R|z ≤ ci1}, Ki2 := {z ∈ R|z ≥ di2},
Γil := {ψ ∈ AP |dil ≤ ψ(t) ≤ cil, ∀ t ∈ R},

where i ∈ Λ, l = 1, 2. Let

Hα := H1α1 × H2α2 · · · × Hnαn︸ ︷︷ ︸
n

⊂ C([−ω, 0]R, Rn),

Kα
i := Kiαi

, Kα := K1α1 × K2α2 · · · × Knαn︸ ︷︷ ︸
n

⊂ Rn,

Γα := Γ1α1 × Γ2α2 · · · × Γnαn︸ ︷︷ ︸
n

,

where α = (α1, α2, · · · , αn) with αi = 1, 2, i ∈ Λ. It
is obvious that Γil(i ∈ Λ, l = 1, 2) are compact convex
subsets of AP . With above notations, we split invariant basin
Ω into 2n compact convex subsets Γα of Ap × · · · × Ap︸ ︷︷ ︸

n

. In

this paper, without otherwise statement, we always designate
α ∈ {1, 2} × · · · × {1, 2}︸ ︷︷ ︸

n

.

Theorem 3.1 Under the basic assumptions (H1)-(H4) and
(A1)-(A2), for each α, there exists at least one almost periodic
solution uα(t) of system (3) in Γα.

Proof: Since M [ei] > 0, then by Lemma 2.1, the
following linear system

y′(t) = −diag(e1(y1(t)), e2(y2(t)), · · · , en(yn(t)))y(t)

admits an exponential dichotomy on R. For each α =
(α1, α2, · · · , αn) and any φ = (φ1, φ2, · · · , φn) ∈ Γα, from
Lemma 2.2, we know that the following almost periodic
system:

y′
i(t) = −ei(yi(t))yi(t)

+
n∑

j=1

dij(t)fj(F−1
j (φj(t − τij(t))))

+
n∑

j=1

cij(t)
∫ t

t−σ

kij(t − s)fj(F−1
j (φj(s)))ds

+Ii(t), i ∈ Λ (9)

has an almost periodic solution defined by Gαφ =

(Gα
1 φ,Gα

2 φ, · · · , Gα
nφ), where

(Gα
i φ)(t) =

∫ t

−∞
exp

(
−

∫ t

s

ei(yi(w))dw

)
×

[ n∑
j=1

dij(s)fj(F−1
j (φj(s − τij(s))))

+
n∑

j=1

cij(s)
∫ s

s−σ

kij(s − v) ×

fj(F−1
j (φj(v)))dv + Ii(t)

]
ds, (10)

Next we need two steps to complete our proof.
Step 1: For each i ∈ Λ, we should prove that diαi

≤
(Gα

i φ)(t) ≤ ciαi
for all t ∈ R. Fix i ∈ Λ. From (H1)-(H3)

and equation (10), one obtain that

|(Gα
i φ)(t)| ≤

Īi +
n∑

j=1

(dijγj + cijkij(1, σ)χj)

ei

= ci2. (11)

If αi = 2, then φi(t) ≥ di2 for all t ∈ R. From equation
(10), (A2) and equation (8), we get

(Gα
i φ)(t)

=
∫ t

−∞
exp

(
−

∫ t

s

ei(yi(w))dw

)
×[

dii(s)fi(F−1
i (φj(s − τij(s))) + Ii(s)

]
ds

+
∫ t

−∞
exp

(
−

∫ t

s

ei(yi(w))dw

)
×

[ n∑
j=1,j �=i

dij(s)fj(F−1
j (φj(s − τij(s))))

+
n∑

j=1

cij(s)
∫ s

s−σ

kij(s − v)gj(F−1
j (φj(v)))dv

]
ds

≥
∫ t

−∞
exp

(
−

∫ t

s

ei(yi(w))dw

)
ds

[
d̄iifi(di2)

+ inf
t∈R

Ii(t)
]

−
∫ t

−∞
exp

(
−

∫ t

s

ei(yi(w))dw

)
ds

×
n∑

j=1

(dijγj + cijkij(1, σ)χj)

≥ 1
ēi

[
diifi(di2) + inf

t∈R
Ii(t)

−
n∑

j=1

(dijγj + cijkij(1, σ)χj)
]

= di2 (12)

for all t ∈ R. By equations (11) and (12), we have di2 ≤
(Gα

i φ)(t) ≤ ci2, if αi = 1, from similar argument, we can
prove that di1 ≤ (Gα

i φ)(t) ≤ ci1 for all t ∈ R. Hence, we
have diαi

≤ (Gα
i φ)(t) ≤ ciαi

for each i ∈ Λ and all t ∈ R.
Step 2: We should prove that Gα : Γα → Γα is contin-

uous. Take any two initial conditions φ, φ̃ ∈ Γα with φ =
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(φ1, φ2, · · · , φn) and φ̃ = (φ̃1, φ̃2, · · · , φ̃n). From equation
(10) and the mean value theorem, we have

|(Gα
i φ)(t) − (Gα

i φ̃)(t)|
≤

∫ t

−∞
exp

(
−

∫ t

s

ei(yi(w))dw

)
×

[ n∑
j=1

d̄ij × |fj(F−1
j (φj(s − τij(s))))

−fj(F−1
j (φ̃j(s − τij(s))))|

+
n∑

j=1

c̄ij(s)
∫ s

s−σ

kij(s − v)|gj(F−1
j (φj(v)))

−gj(F−1
j (φ̃j(v)))|dv

]
ds

≤

n∑
j=1

(d̄ij sup
ζ∈R

f ′
j(ζ) + c̄ijkij(1, σ) sup

ζ∈R
g′j(ζ))āj

ei

×‖φ − φ̃‖ω, (13)

which leads to

|(Gαφ)(t) − (Gαφ̃)(t)|

≤ max
i∈Λ

{ n∑
j=1

(d̄ij sup
ζ∈R

f ′
j(ζ) + c̄ijkij(1, σ) sup

ζ∈R
g′j(ζ))āj

ei

}
×‖φ − φ̃‖ω,

This implies that Gα(·) is continuous with respect to φ ∈ Gα.
Since each Gα is compact and Gα : Γα → Γα is continuous,

by Schauder fixed point theorem, there exists at least one
uα(t) ∈ Gα such that Gαuα = uα. Hence uα(t) is an almost
periodic solution of system (3) in Γα. The proof is completed.

From Theorem 3.1, there exist 2n almost periodic solutions
of system (3) in these Γα. Now we shall discuss their conver-
gent dynamics.

Theorem 3.2 Assume that (H1)-(H4) and (A1)-(A2) hold,
then each Hα is an invariant basin of system (3).

Proof: For any initial condition φ ∈ Hα, we should prove
that the solution y(t, φ) of system (3) satisfies y(t, φ) ∈ Hα

for all t ≥ 0. For any given i ∈ Λ, we only consider the case
αi = 1, i.e., φi(s) ≤ ci1 for all s ∈ [−ω, 0]. We assert that,
for any sufficiently small ε > 0(ε � zi1 − ci1), the solution
yi(t, φ) < ck1 + ε holds for all t ≥ 0. If this is not true, there
exists a t∗ > 0 such that yi(t∗) = ck1 + ε, y′

i(t
∗) ≥ 0 and

yi(t) < ck1+ε for t ∈ [−ω, t∗]. Due to dii(t) > 0, ci1+ε < 0
and the monotonicity of fi(·), we derive from system (3) that

y′
i(t

∗) = −ei(yi(t∗))yi(t∗)

+
n∑

j=1

dij(t∗)fj(F−1
j (yj(t∗ − τij(t∗))))

+
n∑

j=1

cij(t∗)
∫ t∗

t∗−σ

kij(t∗ − s)gj(F−1
j (yj(s)))ds

+Ii(t∗)
≤ −ei(yi(t∗))yi(t∗)

+dii(t∗)fi(F−1
i (yi(t∗ − τii(t∗)))) + Ii(t∗)

+
n∑

j=1

(
d̄ijo

)
γj

+
n∑

j=1

c̄ij

( ∫ t∗

t∗−σ

kij(t∗ − s)ds

)
χj

≤ −ēi(ci1 + ε) + diifi(ci1 + ε) +
n∑

j=1

(dijoγj

+cijkij(1, σ)χj) + sup
t∈R

Ii(t)

≤ ξk(ci1 + ε) +
n∑

j=1

(dijoγj + cijkij(1, σ)χj)

+ sup
t∈R

Ii(t). (14)

From Lemma 3.2, we know that ξi(z) is strictly decreasing on
(−∞, zi1]. By using equations (7) and (14), we get u′

i(t
∗) <

0 which leads to a contradiction. Since the choice of ε is
arbitrary, for each i ∈ Λ, if φi(s) ≤ ci1 for all s ∈ [−ω, 0],
then ui(t, φ) ≤ ci1 for all t ≥ 0. When αi = 2, similar
argument can be performed to show that if φi(s) ≥ di2 for all
s ∈ [−ω, 0], then ui(t, φ) ≥ ci2 for all t ≥ 0. Hence, for any
φ ∈ Hα, we have that u(t, φ) ∈ Hα for all t ≥ 0. That is,
each Hα is an invariant basin of system (3).

Theorem 3.3 Assume that (H1) − (H4) and (A1) − (A2)
hold, suppose further that

(H5) The activation functions f = (f1, . . . , fn) and g =
(g1, . . . , gn) are Lipschitz functions, that is, there exist
positive numbers λi, ηi such that |fi(x) − fi(y)| ≤
λi|x − y|, |gi(x) − gi(y)| ≤ ηi|x − y|, i = 1, . . . , n.

(H6) there exist n positive constants ωi > 0, i = 1, 2, . . . , n,
such that

−Θiaiωi +
n∑

j=1

c̄ijηj āiωj +
n∑

j=1

d̄ij āiλjωjkij(1, σ) < 0,

for i = 1, 2, . . . , n.

Then the following affirmations are true.
(1) There exists a unique almost periodic solution uα(t) of
system (3) in each Γα.
(2) Hα is an exponential attracting domain of almost periodic
solution uα(t).

Proof: Considering the function

Υi(h) = Θiai − h − ω−1
i

n∑
j=1

c̄ijηj āiωje
hτ

−ω−1
i

n∑
j=1

d̄ij āiλjωj

∫ σ

0

kij(s)ehsds

From (H3) and (H6), we have

Υi(0) = Θiai − ω−1
i

n∑
j=1

c̄ijηj āiωj

−ω−1
i

n∑
j=1

d̄ij āiλjωjkij(1, σ) > 0
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and Υi(h) is continuous, Υi(h) → −∞ as h → +∞. So,
there exists a hi > 0 such that Υi(hi) = 0. Without loss of
generally, set γi = min{h > 0|Υi(h) = 0}, so Υi(β) > 0
when β ∈ (0, γi). Now, let γ = min{γi, i = 1, 2, · · · , n},
when μ ∈ (0, γ), we have Υi(μ) > 0, i = 1, 2, · · · , n, i.e.

Υi(μ) = Θiai − μ − ω−1
i

n∑
j=1

c̄ijηj āiωje
μτ

−ω−1
i

n∑
j=1

d̄ij āiλjωj

∫ σ

0

kij(s)eμsds

> 0. (15)

According to Theorem 3.1, for each α, there exists at
least one almost periodic solution uα(t) of system (3) in Γα.
Suppose that x(t) = (x1(t), x2(t), . . . , xn(t))T is an arbitrary
solution of system (3) and x∗(t) = (x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))T

be an almost periodic solution of system (3). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
i(t) = −bi(F−1

i (yi(t)))

+
n∑

j=1

dij(t)fj(F−1
j (yj(t − τij(t))))

+
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)×

gj(F−1
j (yj(s)))ds + Ii(t), i ∈ Λ,

yi(s) = Fi(ϕi(s)) = φi(s),−ω ≤ s ≤ 0, i ∈ Λ,

(16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗
i
′(t) = −bi(F−1

i (y∗
i (t)))

+
n∑

j=1

dij(t)fj(F−1
j (y∗

j (t − τij(t))))

+
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)×

gj(F−1
j (y∗

j (s)))ds + Ii(t), i ∈ Λ,

y∗
i (s) = Fi(ϕ∗

i (s)) = φ∗
i (s),−ω ≤ s ≤ 0, i ∈ Λ,

(17)

Let z(t) = y(t)−y∗(t), then we can get the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′i(t) = −[bi(F−1
i (zi(t) + y∗

i (t)))
−bi(F−1

i (y∗
i (t)))]

+
n∑

j=1

dij(t)[fj(F−1
j (zj(t − τij(t))

+y∗
j (t − τij(t))))

−fj(F−1
j (y∗

j (t − τij(t))))]

+
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)[gj(F−1

j (zj(t)

+y∗
j (t))) − gj(F−1

j (y∗
j (s)))]ds, t > 0,

zi(s) = φi(s) − φ∗
i (s) = Φi(t), t ≤ 0.

(18)

Similarly, by the mean value theorem, then

bi(F−1
i (zi(t) + y∗

i (t))) − bi(F−1
i (y∗

i (t)))

= [bi(F−1
i (y∗

i (t) + θ̂zi(t)))]′zi(t) = êi(zi(t))zi(t),

where êi(zi(t)) = [bi(F−1
i (y∗

i (t) + θ̂zi(t)))]′, 0 < θ̂ < 1.
In the light of (H2)′ and (4), we have êi(F−1

i (·)) ≥ Θiai >
0.

Now, define a Lyapunov function

V = (V1, V2, . . . , Vn)T ,

where Vi = ω−1
i eμt|zi(t)|, μ ∈ (0, γ), i = 1, 2, . . . , n.

D+Vi(t)

= ω−1
i μeμt|zi(t)| + ω−1

i eμtsignzi

{
− êi(zi(t))zi(t)

+
n∑

j=1

dij(t)[fj(F−1
j (zj(t − τij(t))

+y∗
j (t − τij(t)))) − fj(F−1

j (y∗
j (t − τij(t))))]

+
n∑

j=1

cij(t)
∫ t

t−σ

kij(t − s)[gj(F−1
j (zj(t) + y∗

j (t)))

−gj(F−1
j (y∗

j (s)))]ds

}

≤ ω−1
i μeμt

{
μ|zi(t)| − Θiai|zi(t)|

+
n∑

j=1

dij(t)|fj(F−1
j (zj(t − τij(t))

+y∗
j (t − τij(t)))) − fj(F−1

j (y∗
j (t − τij(t))))|

+
n∑

j=1

cij(t)
∫ t

t−σ

kij(t − s)|gj(F−1
j (zj(t) + y∗

j (t)))

−gj(F−1
j (y∗

j (s)))|ds

}

≤ ω−1
i μeμt

{
μ|zi(t)| − Θiai|zi(t)|

+
n∑

j=1

c̄ijηj āi|zj(t − τij(t))|

+
n∑

j=1

d̄ij āiλj

∫ t

t−σ

kij(t − s)|zj(s)|ds

}

≤ −(Θiai − μ)Vi(t) + ω−1
i

n∑
j=1

c̄ijηj āie
μτVj(t − τij(t))

+ω−1
i

n∑
j=1

d̄ij āiλj

∫ t

t−σ

kij(t − s)eμ(t−s)Vj(s)ds

≤ −(Θiai − μ)Vi(t) + ω−1
i

n∑
j=1

c̄ijηj āie
μτ sup

t−τ≤s≤t
Vj(s)

+ω−1
i

n∑
j=1

d̄ij āiλj

∫ σ

0

kij(t − s)eμsds sup
s≤t

Vj(s).

Let M = sup
t≤0

max
i

{ω−1
i |zi(t)|} and ξ̃ > 1 is an arbitrary

real number. Then, we have

Vi(t) = ω−1
i eμt|zi(t)| ≤ ω−1

i |zi(t)| ≤ M < ξ̃M, t ≤ 0,

i = 1, 2, · · · , n. (19)

In the following, we shall show that

Vi(t) < ξ̃M, t > 0, i = 1, 2, · · · , n. (20)

if (20) is not true, without loss of generality, then there exist
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an k̂ and a first time t1 > 0 such that

Vi(t) < ξ̃M, i �= k̂, t ∈ (−∞, t1];

Vk̂(t) < ξ̃M, t ∈ (−∞, t1], Vk̂(t1) = ξ̃M,
dVk̂(t1)

dt
≥ 0.

Combining with (15), we have

D+Vi(t)

≤ −(Θiai − μ)Vi(t) + ω−1
i

n∑
j=1

c̄ijηj āie
μτ sup

t−τ≤s≤t
Vj(s)

+ω−1
i

n∑
j=1

d̄ij āiλj

∫ σ

0

kij(t − s)eμsds sup
s≤t

Vj(s)

≤
{
− (Θiai − μ) + ω−1

i

n∑
j=1

c̄ijηj āie
μτ

+ω−1
i

n∑
j=1

d̄ij āiλj

∫ σ

0

kij(t − s)eμsds

}
ξ̃M

= −
{

Θiai − μ − ω−1
i

n∑
j=1

c̄ijηj āie
μτ

−ω−1
i

n∑
j=1

d̄ij āiλj

∫ σ

0

kij(t − s)eμsds

}
ξ̃M

= −Υk̂(μ)ξ̃M < 0.

This is a contradiction, hence (20) holds. Let ξ̃ → 1, then

Vi(t) < M, t > 0, i = 1, 2, · · · , n. (21)

Together (19) with (21), we have

Vi(t) < M, t ∈ R, i = 1, 2, · · · , n.

that is ω−1
i eμt|zi(t)| ≤ sup

t≤0
max

i
{ω−1

i |zi(t)|.
So, we have

|zi(t)| = |yi(t)−y∗
i (t)| ≤ ωie

−μt sup
t≤0

max
i

{ω−1
i |yi(t)−y∗

i (t)|},

which implies that all other solutions converge exponentially
to its almost periodic solution. This completes the proof.

IV. AN EXAMPLE

Consider the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = −ai(xi(t))

(
bi(xi(t))

−
n∑

j=1

cij(t)
∫ t

t−σ
kij(t − s)gj(xj(s))ds

−
n∑

j=1

dij(t)fj(xj(t − τij(t))) + Ii(t)
)

,

t ∈ R, t > 0, i ∈ Λ,
xi(s) = ϕi(s),−ω ≤ s ≤ 0, i ∈ Λ,

(22)

where

ai(xi(t)) =
[

1 0
0 1

]
,

bi(xi(t)) =
[

1.5x1(t) 0
0 3x2(t)

]
,

cij(t) =
[ −1 + 0.1 sin 2t 0

0 −1 + 0.2 cos
√

5t

]
,

dij(t) =
[

8 + 2 sin
√

2t 0
0 9 + cos

√
3t

]
,

Ii(t) =
[

3 sin
√

5t 0
0 3 cos 2t

]
,

τij(t) =
[

1 − 0.5 sin t 0
0 1 + 0.5 cos t

]
,

kij(s) =
[

0 e−s

2se−s2
0

]
,

f(x) = fi(x) = tanhx, gi(x) = 10 tanhx,

σ = +∞, i, j = 1, 2.

Then we have the following equalities:

ξ1(z) = −1.5z + 6f1(z), τ12(1) =
∫ ∞

0

k12(s)ds = 1,

γ1 = 1, χ1 = 10, inf
t∈R

f ′(z) = 0,

ξ2(z) = −3z + 10f2(z), τ21(1) =
∫ ∞

0

k21(s)ds = 1,

γ2 = 1, χ2 = 10, sup
t∈R

f ′(z) = 1.

It is easy for us to check that (H1)−(H4), (A1) hold and any
solution of CGNNs (22) is uniformly bounded in Ω which be
defined as follows:

Ω = {φ ∈ C([−∞, 0], R2)||φ1(s)| ≤ 24.0667,

|φ2(s)| ≤ 18.1333, s ∈ [−∞, 0]}.
From some computations, we get that z11 =

−1.3169, z12 = 1.3169, z21 = −1.2099, z22 = 1.2099
such that ξ′i(zil) = 0, then ξ1(z1l) = (−1)l3.2207, ξ2(z1l) =
(−1)l1.9962, l = 1, 2. With these numerical results, we can
check (A2)

(−1)l · {ξ1(zil) + I1(t)}
= (−1)l[(−1)l3.2207 + 3 sin

√
5t] > −0.9 = c̄12,

(−1)l · {ξ2(zil) + I2(t)}
= (−1)l[(−1)l11.9962 + 0.3 cos 2t] > −0.8 = c̄21

hold. and

d11 = −24.0667, d21 = −18.1333, c12 = 24.0667,

c22 = 18.1333, c11 = −6.9999, c21 = −4.9997,

d12 = 6.2999, d22 = 4.9997.

Let λi = 1, ηi = 10, it is easy to check that (H5) − (H6)
hold. From Theorem 3.1 and Theorem 3.3, we know that there
exists only four exponentially stable almost periodic solutions
of CGNNs (22) in each Γα.
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Fig. 1. Convergence dynamics of four almost periodic solutions of
CGNNs (22).
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