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of Controlling Pest of Stored Grain: Lesser
Grain Borer (Rhyzopertha dominica)
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Abstract—There is a world-wide need for the development of Computer simulation models can provide a relatively fast,
sustainable management strategies to control pest infestation andsate and inexpensive way to weigh the merits of various
development of phosphine (PHresistance in lesser grain borermanagement options. But the usefulness of simulation models
(Rhyzopertha dominigaComputer simulation models can provide &elies on the accurate estimation of important model
relatively fast, safe and inexpensive way to weigh the merits gf.ameters.
various management options. However, the usefulness of simulat onn previously published modelling research “survivorship

models relies on the accurate estimation of important model s not explicitly included in the model because adequate data
parameters, such as mortality. Concentration and time of exposure\g plicitly a

both important in determining mortality in response to a toxic aget/€ré not available” [8], and thus a simple single gene model
Recent research indicated the existence of two resistance phenotya§ used. However, fumigant response analyses of PH
in R. dominicain Australia, weak and strong, and revealed that thegsistance irR. dominicain Australia have now indicated two
presence of resistance alleles at two loci confers strong resistan@sistance phenotypes, which are labelled Weak and Strong
thus motivating the construction of a two-locus model of resistancResistance [3]. The genetic linkage analysis undertaken by
Experimental data sets on purified pest strains, each correspondinghlipaliuset al [10, 11] indicated that two loci confer strong

a single genotype of our two-locus model, were also available. Henggsistance. Thus we constructed a two-locus model of
it became possible to explicitly include mortalities of the differenl’[

genotypes in the model. In this paper we described how we used t&L?SIStance having nine possible genotypes. The experiments in

Q- . .
generalized linear models (GLMpyrobit and logistic models, to fit 0"'”?’ et al. 4, 5_] then performed a series o_f_mortallty rate
the available experimental data sets. We used a direct algeb@Periments on insects that had been purified to produce
approach generalized inverse matrix techniqueather than the Strains; each corresponding to a single genotype of our two-
traditional maximum likelihood estimation, to estimate the moddpcus model. The results of these experiments were confirmed
parameters. The results show that both probit and logistic modelsifit field trials and are the basis for the current rates used to
the data sets well but the former is much better in terms of small legsintrol resistant insects in Australia. These experiments differ
squares (numerical) errors. Meanwhile, the generalized inverse mafym others (e.g. [9]) where insects are population samples
technique achieved similar accuracy results to those from th&ym the field that contain various mixtures of resistance
maximum |likelihood estimation, but is less time consuming anfones Hence it becomes possible now to explicitly estimate
computationally demanding. mortalities for the available strains (corresponding directly to

Keywords—mortality estimation, probit models, logistic model,SPECific genotypes). _ _

generalized inverse matrix approach, pest control simulation Phosphine concentration and time of exposure are both

important in determining the intensity of response to a toxic

agent. In practice, a fumigation treatment needs to fix the

) . initial concentration or dos€é (mg/l) and exposure time The

THE lesser grain boreiRRhyzopertha dominicas a very apjlity to estimate mortality or survival rate (1 — mortality) at a

des_tructlve primary pest of store_d grains. Fumigation W'tf‘ange of concentrations and exposure times based on

phosphine (P is a key component in the management of thgyherimental data is critical for the development of accurate

control of infestations of the pest world-wide. However heavyimlations and management recommendations.

reliance on PH has resulted in the development of strong | this paper we described how we used two mogetsit

resistance in several major pest species incluglingominica  and logistic models, to fit data sets from Collinset al
experiments (2002, 2005) [4, 5] for three strains QRD14,
QRD569 and their Combined F1 (QRD14xQRD569) which
corresponds to three genotygegwith both loci homozygous
susceptible)sr (with both loci homozygous resistant) ahd
(with both loci heterozygous) respectively [13]. We also
compared the least squares errors between observed mortalities
and predicted ones obtained using the two models.

. INTRODUCTION

II.  METHOD AND MATERIAL

M. Shi is with the University of Western Australia, Crawley, WA, 6009, In statistics, thgeneralized linear modéGLM) in the form
and CRC for National Plant Biosecurity, Australia (phone: +61 6488-199%f s a flexible generalization of ordinargast squares

fax: +61 6488-1108; e-mail: shi.mingren@gmail.com). - .
M. Renton is with the University of Western Australia, Crawley, WA,regreSSlonthat allows the linear model to be related to the

6009, CSIRO Ecosystem Sciences and CRC for National Plant Biosecurf#Sponse variable vialamk functionand the mggnitu@e of th?
Australia (e-mail: mrenton@cyllene.uwa.edu.au). variance of each measurement to be a function of its predicted
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value [6]. GLM includes ordinary linear regressi@oié@@’ NMHéréPlid the samé® shown in Eqg. (2). In this case the linear
regression|ogistic regressiorandprobit regressionWe used predictorz is not translated by 5. The two-parameter and-four

probit and logistic models to fit the experimerdata sets. parameter logistic models corresponding to Eqsa(#) (5) are
respectively,
Y = athxg+ boxot...+ b, (1) z =a+b(Ct) (7)
z = a+by ()+ b, (C) +bs(CY (8)

We did not employ the statistical iterative apptoae c
maximum likelihood estimatiprbut instead, used a novel )
algebraic direct approach -generalized inverse matrix
technique to estimate the model parameters [12]. This nikth
has advantages over qther methods: it is simple unty one e>1gample, for the model (3), ti¢equations with 3 variableg,(
key command, provides a more accurate estimate 0 . . N
parameters, and even if the coefficient matrix loé over- P1 D2) corresponding to the data seti { t, G} ., are as
determined linear system is not numerically (colunfmll  follows:
ranked it will still work and yield a solution witminimum .

Y Y =1-a+ [log(t)]- bi+ [log (C)]- b, (1= 1.2,...N) . (9)

error in theL, norm sense [1].
A Probit models -tTR?amX form of the above equation®\is= b wherex = (a,
The probit (meaning “probability unit”) link functh ®(P)

(Y = O(P)+5) is the inverse cumulative distribution functio

Generalized inverse matrix approach

Algebraically, when any one of the above modefftisd to
& data set, we have an over-determined system nefrli
equationswith respect to the parametets be estimated. For

(CDF) associated with the standard normal distidgioui2, 7]: 1 logt, logC, Y,
_ 1 logt, logC, andb= | Y2|. (10
P:cb'l(v—s):LjYSexp{—uzlz}du @ A=, : oo
/277- —00 . . . .
1 logt, logC Y,
Note that “plus 5 tsD(P)” just makes sure al values are gty 109% N
positive in practice, otherwise the parametén the following
probit models differ by 5, with other parametershamged. The method of least squares is often used to genera
Using a three-parameter probit model [2], a prpkine estimators and other statistics in regression aig[jt4]. If a
solution minimizes
Y = (D(P)+5 =) a+bylog(t)+ b,log(C) 3) ) )
N ~ N
may be fitted to the data, wheteand C are respectively Z(Yi—Yi) => (a+blog(t) +b,logC)1-Y,) (1)
exposure time and concentration, afid the probit mortality. i=1 i=

o= H ith H
In the case that the available independent dataistopnly VN€'€ Y, = a+hylog(t) +b,log(C) is the ™" predicted value,
of the product<t (e.g. a range o but a fixed constant tim, then the solution is called lzzast Squaresolution. Normally,
rather than separate independent values Goand t, the the least squares method can be used to solveegiutarized

. _ . T — T . T .
parameterd; and b, can be merged into a single parameler, €quations ofAx = b i.e. A ‘Ax =A'b, provided thatA ‘A is
(two-parameter probit model): invertible. Actually, if we letA” be the generalized inverse of

matrix A, thenA"b is such a solutiofi]. Note that ifA is a non-

Y = a+blog(Ct) (4) singular square matrix theki = A™. If Ais column full-ranked,

then A'A is non-singular and\* = (A'A) *A". But while this

equation could theoretically be used to calculate it is of

limited practical use for calculating” numerically, because

using QR decomposition or singular value decomposition
An extra termbs log(t) log(C) can be added to describe the(SVQ to obtainA+ will1givel n;uch smaller numerical errors than

interaction of the variables and C, thus obtaining a four- direct calculation of4'A) “A" [1].

parameter probit model

Y = a+by log(t)+ b,log(C) +bslog(t) log(C) (5)

Whether common logarithms (base 10) or naturalritgas
(basee) are used in probit models is immaterial becatisaly
scales the estimated valuetof

D. Neatened raw data sets

Collins et al. in 2002 [4] observed mortalities under a range
B Logistic models of phosphine concentration€:(mg/l) at exposure timet)(48
: 9 hrs for susceptible (strain QRD14 — correspondingenotype
The most typical link function for logistic models the s9 and strong resistant (strain QRD569r} phenotypes and
canonicallogit link: (To distinguish the two models we use their combined F progeny ((569x14)+(14x569) kh). The
instead ofY in Eq. (1)) neatened raw data are listed in Table 1. Noteiftttae response
- - i = 2 (kill) rate is P = 1 or O then we should give them a small
Z=¥(P)=I[P/(1-P)] or P=¥"(2)=1/(1+€) ©) perturbation (e.g. from 1 t®.9999 or from O to 0.000).
Otherwise the corresponding probit or logit valsi@emndefined.
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TheLTgg ovalues (lethal time to achieve 99.9% mortaW§h&mIo:7. " Hr—=—r— P
as follows: -~ Probit
o0.|*_*_Observed

C 0.1, 0.15, 0.2, 0.3, 04, 0.9.75, 1.0
LTe0¢ 14.02,12.74,8.509,7.144,6.55,5.628,4.233,3.7()

These values are derived from the experiments #in€et al.

°
)
T

Mortality

[5] who observed data for strain QRD569 which wagosed L S B S e e ST
to aseries of fixed concentrations from 0.1 to 1.0 nigrl a 7
range of exposure periods. 02 et ]

The two-parameter probit model (4) and logistic elo@)
were used to fit the data sets feg and hh since only one F
exposure time was available. The four-parametebiproodel B800s o000 oo ongze” omems 0000 o003 00080
(5) and logistic model (8) were used to fit the tlata sets for ~ Fig. 1 Observed mortalities and predicted mortity probit and

rr genotype [4, 5] since different combinations @pa@sure logistic models for the strain QRD1dg(

time and concentration were available, allowing irthe L0 — P
. . . — Logistic -
interaction to be considered and more accurateltses -~ Probit N
obtained. Note that (hrs) values used to fit the two data sets 0gflr x Observed|, [ 7
are:t = 24x(2, 2, 2, 2, 2, 14.02, 12.74, 8.509, 7.14556 A
5.628, 4.233, 3.74) (Table 1 and [12]). ool S
TABLE | g g
THE DATA OF PHOSPHINE DOSE AND THE AGGREGATE RESPONEBRTALITY = 0.4 PRAR A
RATE FOR THE GENOTYPESS HH, AND RRAT A FIXED EXPOSURE TIMET =48 S
HRS[4] /!
QRD14 (s9 ] G —
Dose (mgll) 0.001 0.0015 0.002 0.003 0.004 /
Mortality 0.0201  0.32  0.7047  0.97331.0000
COmb Fl(hh) OO(.JOO; 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Dose (mg/l) ~ 0.0025 0.004 0.005 0.0075  0.01 002 _ . Dose(mal) o )
Mortality 0.0000 0.3445 0.3940 0.8047 08591 09868 Fig.2 Observed mortalities and predicted mortaithy probit and
QRD56E9 (IT) logistic models for the strain Comb Hihf
Dose (mg/l) 0.1 0.25 0.5 1.0 1.25
Mortality 0.0000 0.0200 0.2254 0.5203 0.5705 The mortality curves for thar insects show that the
. RESULTSAND CONCLUSION predicted values from the probit model are closerthe
' observed ones than those from logistic model.
TABLEII The least squares errors (Table 2) from the lagistbdels

THE FITTED TWO PARAMETERS FOR STRAIQRD14(Ss9 AND ComB F1 (HH) are all more than those from the probit modelsualotimes

AND FOUR PARAMETERS FOFQRD569(RR) AND THE LEAST SQUARES ERRORS ; -
BETWEEN OBSERVED AND PREDICTED MORTALITIES OBTAINED usinerosiT 10 thehhbeetles, 10 times for thve beetle and 54 times for the

AND LOGISTIC MODELS ssbeetles.
The two probit lines for QRD14 are close to eadien{Fig.

Model and fitted parameters

4). But it can be seen from comparing the leastsagierrors

Strain Probit Logistic
QRD14  Y=14.0963+ 8.4248[ lo@lt)] z = -6.4461+ 70.589Tx) that the generalized inverse matrix approach haallem
CombF1 Y= 7.6101+4.7740 log)] z =-3.0425+ 8.555€() numerical error (for the predicted probit values)ie sense of
QRDS69 Y= :éagggzlggg'%% ton( Zf4'g§777tg++06011$ﬁ@) formula (11): 0.2214 compared with 0.3850 (maximum
+ 3.6357 log] log(C) likelihood) for thessbeetles (also for the other two genotype
Least squares error beetles).
QRD14 0.00054 0.02924
CombF1 0.03368 0.14878 e =
QRD569 0.00325 0.03357 == probic
« = Observed
The fitted parameters and least squares errorsebkatw ] T S
observed and predicted mortalities (see Eq. (14fgioed from ol
the two models are listed in Table 2. Also moryaturves £
(against doses) for the three strains are plottédgs 1- 3. B e P A
It can be seen from Table 2 and Figs 1 and 2 tmat t . a0
sigmoid curves have the same shape fosfadhh genotype Rid
insects and the predicted mortalities at the erpamtal doses oAf / I S B
obtained using probit and logistic models are htise to the og =
obser\/ed Va|ues .0 0.2 0.4 Ol.jﬁose (mqﬁ.)g 1.0 1.2 1.4

Fig. 3 Observed mortalities and pfedicted mortgitoy probit and
logistic models for the strain QRD56@) at 48 hrs exposure time
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T T
Gnr Inv Matrix
Max Likelihood
Observed

Probit (already +5)

j j H ‘ H
BT 30 29 28 27 -25 -24

Log10(Dose)
Fig. 4 Probit lines obtained using probit modelhgeneralized

-2.6 -23

inverse matrix approach (Gnr Inv Matrix) and maximiikelihood

estimation

To sum up, both probit and logistic models fit theta sets

well but the former is much better in terms of dmahst
squares (numerical) errors. Meanwhile, the germdlinverse
matrix techniqgue and the maximum likelihood estiorat
achieved similar accuracy, but the former is adliedgebraic
approach and easy to use while the latter is arative
approach that is more time consuming and compuiatio
demanding.
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