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Abstract—There is a world-wide need for the development of 
sustainable management strategies to control pest infestation and the 
development of phosphine (PH3) resistance in lesser grain borer 
(Rhyzopertha dominica). Computer simulation models can provide a 
relatively fast, safe and inexpensive way to weigh the merits of 
various management options. However, the usefulness of simulation 
models relies on the accurate estimation of important model 
parameters, such as mortality. Concentration and time of exposure are 
both important in determining mortality in response to a toxic agent. 
Recent research indicated the existence of two resistance phenotypes 
in R. dominica in Australia, weak and strong, and revealed that the 
presence of resistance alleles at two loci confers strong resistance, 
thus motivating the construction of a two-locus model of resistance. 
Experimental data sets on purified pest strains, each corresponding to 
a single genotype of our two-locus model, were also available. Hence 
it became possible to explicitly include mortalities of the different 
genotypes in the model. In this paper we described how we used two 
generalized linear models (GLM), probit and logistic models, to fit 
the available experimental data sets. We used a direct algebraic 
approach generalized inverse matrix technique, rather than the 
traditional maximum likelihood estimation, to estimate the model 
parameters. The results show that both probit and logistic models fit 
the data sets well but the former is much better in terms of small least 
squares (numerical) errors. Meanwhile, the generalized inverse matrix 
technique achieved similar accuracy results to those from the 
maximum likelihood estimation, but is less time consuming and 
computationally demanding. 
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generalized inverse matrix approach, pest control simulation  

I. INTRODUCTION 

HE lesser grain borer, Rhyzopertha dominica, is a very 
destructive primary pest of stored grains. Fumigation with 

phosphine (PH3) is a key component in the management of the 
control of infestations of the pest world-wide. However heavy 
reliance on PH3 has resulted in the development of strong 
resistance in several major pest species including R. dominica.  
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Computer simulation models can provide a relatively fast, 
safe and inexpensive way to weigh the merits of various 
management options. But the usefulness of simulation models 
relies on the accurate estimation of important model 
parameters.  

In previously published modelling research “survivorship 
was not explicitly included in the model because adequate data 
were not available” [8], and thus a simple single gene model 
was used. However, fumigant response analyses of PH3 
resistance in R. dominica in Australia have now indicated two 
resistance phenotypes, which are labelled Weak and Strong 
Resistance [3]. The genetic linkage analysis undertaken by 
Schlipalius et al. [10, 11] indicated that two loci confer strong 
resistance. Thus we constructed a two-locus model of 
resistance having nine possible genotypes. The experiments in 
Collins et al. [4, 5] then performed a series of mortality rate 
experiments on insects that had been purified to produce 
strains; each corresponding to a single genotype of our two-
locus model. The results of these experiments were confirmed 
in field trials and are the basis for the current rates used to 
control resistant insects in Australia. These experiments differ 
from others (e.g. [9]) where insects are population samples 
from the field that contain various mixtures of resistance 
genes. Hence it becomes possible now to explicitly estimate 
mortalities for the available strains (corresponding directly to 
specific genotypes).  

Phosphine concentration and time of exposure are both 
important in determining the intensity of response to a toxic 
agent. In practice, a fumigation treatment needs to fix the 
initial concentration or dose C (mg/l) and exposure time t. The 
ability to estimate mortality or survival rate (1 – mortality) at a 
range of concentrations and exposure times based on 
experimental data is critical for the development of accurate 
simulations and management recommendations.   

In this paper we described how we used two models, probit 
and logistic models, to fit data sets from Collins  et al 
experiments (2002, 2005) [4, 5] for three strains QRD14, 
QRD569 and their Combined F1 (QRD14×QRD569) which 
corresponds to three genotypes ss (with both loci homozygous 
susceptible), rr (with both loci homozygous resistant) and hh 
(with both loci heterozygous) respectively [13]. We also 
compared the least squares errors between observed mortalities 
and predicted ones obtained using the two models. 

II. METHOD AND MATERIAL  

In statistics, the generalized linear model (GLM) in the form 
of  is a flexible generalization of ordinary least squares 
regression that allows the linear model to be related to the 
response variable via a link function and the magnitude of the 
variance of each measurement to be a function of its predicted 
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value [6]. GLM includes ordinary linear regression, Poisson 
regression, logistic regression and probit regression. We used 
probit and logistic models to fit the experimental data sets.  

 

      Y = a+b1x1+ b2x2+…+ bkxk,                                        (1) 
 
We did not employ the statistical iterative approach – 

maximum likelihood estimation, but instead, used a novel 
algebraic direct approach – generalized inverse matrix 
technique, to estimate the model parameters [12]. This method 
has advantages over other methods: it is simple with only one 
key command, provides a more accurate estimate of 
parameters, and even if the coefficient matrix of the over-
determined linear system is not numerically (column) full 
ranked it will still work and yield a solution with minimum 
error in the L2 norm sense [1]. 

A. Probit models 

The probit (meaning “probability unit”) link function Φ(P) 
(Y = Φ(P)+5) is the inverse cumulative distribution function 
(CDF) associated with the standard normal distribution [2, 7]: 

∫
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Note that “plus 5 to Φ(P)” just makes sure all Y values are 
positive in practice, otherwise the parameter a in the following 
probit models differ by 5, with other parameters unchanged. 

Using a three-parameter probit model [2], a probit plane              

Y = (Φ(P)+5 =)  a+b1 log(t)+ b2 log(C)                            (3)                                                                        

may be fitted to the data, where t and C are respectively 
exposure time and concentration, and Y is the probit mortality.                                                  

In the case that the available independent data consist only 
of the products Ct (e.g. a range of C but a fixed constant time t), 
rather than separate independent values for C and t, the 
parameters b1 and b2 can be merged into a single parameter, b 
(two-parameter probit model): 

Y = a+b log(Ct)                                                           (4)                                                                                                                   

Whether common logarithms (base 10) or natural logarithms 
(base e) are used in probit models is immaterial because it only 
scales the estimated value of b.  

An extra term b3 log(t) log(C) can be added to describe the 
interaction of the variables t and C, thus obtaining a four-
parameter probit model                                                                                         

Y = a+b1 log(t)+ b2 log(C) +b3 log(t) log(C)                   (5)  

B. Logistic models   
The most typical link function for logistic models is the 

canonical logit link: (To distinguish the two models we use z 
instead of Y in Eq. (1)) 

z=Ψ(P)=ln[P/(1-P)] or P=Ψ-1(z)=1/(1+e-z)                      (6) 

where P is the same P shown in Eq. (2). In this case the linear 
predictor z is not translated by 5. The two-parameter and four-
parameter logistic models corresponding to Eqs (4) and (5) are 
respectively, 

z = a+b (Ct)                                                                (7) 
z = a+b1 (t)+ b2 (C) +b3 (Ct)                                             (8)   

C. Generalized inverse matrix approach  

Algebraically, when any one of the above models is fitted to 
a data set, we have an over-determined system of linear 
equations with respect to the parameters to be estimated. For 
example, for the model (3), the N equations with 3 variables (a, 

b1, b2) corresponding to the data set {Yi ; ti, Ci }
N
i 1=  are as 

follows: 

Yi =1· a+ [log(ti)]· b1+ [log (Ci)]· b2 (i =  1,2,…,N) .       (9) 

The matrix form of the above equations is Ax = b where x = (a, 
b1, b2)

T, 

 

and b =
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The method of least squares is often used to generate 
estimators and other statistics in regression analysis [14]. If a 
solution minimizes 
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where 
~

iY = )log()log( 21 ii Cbtba ++ is the i th predicted value, 

then the solution is called a Least Squares solution. Normally, 
the least squares method can be used to solve the regularized 
equations of Ax = b i.e. A TAx =ATb, provided that A TA is 
invertible. Actually, if we let A+ be the generalized inverse of 
matrix A, then A+b is such a solution [1]. Note that if A is a non-
singular square matrix then A+ = A–1. If A is column full-ranked, 
then ATA is non-singular and A+ = (ATA) –1AT. But while this 
equation could theoretically be used to calculate A+, it is of 
limited practical use for calculating A+ numerically, because 
using QR decomposition or singular value decomposition 
(SVC) to obtain A+ will give much smaller numerical errors than 
direct calculation of (ATA) –1AT [1]. 

D. Neatened raw data sets 

Collins et al. in 2002 [4] observed mortalities under a range 
of phosphine concentrations (C: mg/l) at exposure time (t) 48 
hrs for susceptible (strain QRD14 – corresponding to genotype 
ss) and strong resistant (strain QRD569 – rr ) phenotypes and 
their combined F1 progeny ((569×14)+(14×569) – hh). The 
neatened raw data are listed in Table 1. Note that if the response 
(kill) rate is P = 1 or 0 then we should give them a small 
perturbation (e.g. from 1 to 0.9999 or from 0 to 0.0001). 
Otherwise the corresponding probit or logit value is undefined.  
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The LT99.9 values (lethal time to achieve 99.9% mortality) are 
as follows: 

    C:        0.1,    0.15,  0.2,     0.3,   0.4,  0.5,    0.75,  1.0 

    LT99.9: 14.02,12.74,8.509,7.144,6.55,5.628,4.233,3.74    (12)                                    

These values are derived from the experiments of Collins et al. 
[5] who observed data for strain QRD569 which was exposed 
to a series of fixed concentrations from 0.1 to 1.0 mg/l for a 
range of exposure periods. 

The two-parameter probit model (4) and logistic model (7) 
were used to fit the data sets for ss and hh since only one 
exposure time was available. The four-parameter probit model 
(5) and logistic model (8) were used to fit the two data sets for 
rr  genotype [4, 5] since different combinations  of exposure 
time and concentration were available, allowing their 
interaction  to be considered and more accurate results 
obtained. Note that t (hrs) values used to fit the two data sets 
are: t = 24×(2, 2, 2, 2, 2, 14.02, 12.74, 8.509, 7.144, 6.55, 
5.628, 4.233, 3.74) (Table 1 and [12]).   

 
TABLE I 

THE DATA OF PHOSPHINE DOSE AND THE AGGREGATE RESPONSE MORTALITY 

RATE FOR THE GENOTYPES SS, HH, AND RR AT A FIXED EXPOSURE TIME T = 48 

HRS [4]  
QRD14 (ss) 

Dose (mg/l) 0.001  0.0015 0.002  0.003  0.004   
Mortality  0.0201 0.32 0.7047 0.9733 1.0000  

Comb F1 (hh) 
Dose (mg/l) 0.0025 0.004 0.005 0.0075 0.01 0.02 
Mortality  0.0000 0.3445 0.3940 0.8047 0.8591 0.9868 

QRD569 (rr ) 
Dose (mg/l) 0.1 0.25 0.5 1.0 1.25  
Mortality  0.0000 0.0200 0.2254 0.5203 0.5705  

III.  RESULTS AND CONCLUSION                                                                       
TABLE II 

THE FITTED TWO PARAMETERS FOR STRAIN QRD14 (SS) AND COMB F1 (HH) 
AND FOUR PARAMETERS FOR QRD569 (RR) AND THE LEAST SQUARES ERRORS 

BETWEEN OBSERVED AND PREDICTED MORTALITIES OBTAINED USING PROBIT 

AND LOGISTIC MODELS 

 
The fitted parameters and least squares errors between 

observed and predicted mortalities (see Eq. (11)) obtained from 
the two models are listed in Table 2. Also mortality curves 
(against doses) for the three strains are plotted in Figs 1- 3.    

It can be seen from Table 2 and Figs 1 and 2 that the 
sigmoid curves have the same shape for the ss and hh genotype 
insects and the predicted mortalities at the experimental doses 
obtained using probit and logistic models are both close to the 
observed values. 

 
Fig. 1 Observed mortalities and predicted mortalities by probit and 

logistic models for the strain QRD14 (ss) 

 
Fig. 2 Observed mortalities and predicted mortalities by probit and 

logistic models for the strain Comb F1 (hh) 
 
The mortality curves for the rr insects show that the 

predicted values from the probit model are closer to the 
observed ones than those from logistic model.  

The least squares errors (Table 2) from the logistic models 
are all more than those from the probit models; about 4 times 
for the hh beetles, 10 times for the rr beetle and 54 times for the 
ss beetles.  

The two probit lines for QRD14 are close to each other (Fig. 
4). But it can be seen from comparing the least squares errors 
that the generalized inverse matrix approach has smaller 
numerical error (for the predicted probit values) in the sense of 
formula (11): 0.2214 compared with 0.3850 (maximum 
likelihood) for the ss beetles (also for the other two genotype 
beetles). 

 

 
Fig. 3 Observed mortalities and predicted mortalities by probit and 
logistic models for the strain QRD569 (rr )  at 48 hrs exposure time 

 Model and fitted parameters 
Strain  Probit Logistic 

QRD14 Y = 14.0963+ 8.4248[ log(Ct)] z = -6.4461+ 70.5897(Ct)   
CombF1  Y =   7.6101+ 4.7740[ log(Ct)]       z = -3.0425+ 8.5558(Ct)  
QRD569 Y = -11.8492+ 10.0363 log(t) 

      -3.4563 log(C)  
      + 3.6357 log(t) log(C) 

z = -4.9769+ 0.0193(t)  
   -4.6877(C) + 0.1741(Ct) 

 Least squares error 
QRD14 0.00054 0.02924 
CombF1  0.03368 0.14878 
QRD569 0.00325 0.03357 
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Fig. 4 Probit lines obtained using probit model with generalized 

inverse matrix approach (Gnr Inv Matrix) and maximum likelihood 
estimation 

 

To sum up, both probit and logistic models fit the data sets 
well but the former is much better in terms of small least 
squares (numerical) errors. Meanwhile, the generalized inverse 
matrix technique and the maximum likelihood estimation 
achieved similar accuracy, but the former is a direct algebraic 
approach and easy to use while the latter is an iterative 
approach that is more time consuming and computationally 
demanding.  
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