
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

679

Abstract—A procedural-animation-based approach which rapidly
synthesize the adaptive locomotion for quadruped characters that they
can walk or run in any directions on an uneven terrain within a
dynamic environment was proposed. We devise practical motion
models of the quadruped animals for adapting to a varied terrain in a
real-time manner. While synthesizing locomotion, we choose the
corresponding motion models by means of the footstep prediction of
the current state in the dynamic environment, adjust the key-frames of
the motion models relying on the terrain’s attributes, calculate the
collision-free legs’ trajectories, and interpolate the key-frames
according to the legs’ trajectories. Finally, we apply dynamic time
warping to each part of motion for seamlessly concatenating all desired
transition motions to complete the whole locomotion. We reduce the
time cost of producing the locomotion and takes virtual characters to
fit in with dynamic environments no matter when the environments are
changed by users.

Keywords—Dynamic environment, motion synthesis, procedural
animation, quadruped locomotion

I. INTRODUCTION

N the past few years, people have been familiar with high
diversities of 3D animated characters because of the

enormous strides of computer games and entertaining
animations. In particular, walking or running on an uneven 3D
terrain plays an important part in dynamic environments. In this
paper, we propose a procedural animation technology [1] that it
can generate locomotion of the virtual quadruped characters for
the purpose of adopting the locomotion of the characters to
adapt to the varied dynamic environments. Concerning a basic
walking motion, the proposed technology analyzes motions to
obtain the important parameters, such as the step length, motion
cycle, and stance time, for accomplishing the procedural
animation in a dynamic environment. When a user changes the
environment dynamically, the current state of the environment
will be sensed immediately, and the next footsteps of a character
will be predicted in advance. Once the footsteps have been
decided, the procedural animation generator selects the most
suitable motion model for the character to meet the confronted
terrain. After the motion model has been determined, the
modified motion parameters which based on the terrain are
being substituted for the original one, and the generator
calculates the legs’ trajectories by means of the Bezier curve.
Eventually, the generator makes use of the inverse kinematics to
adjust the undesirable motion to satisfy the physical constraints.

Z. Y. He, B. S. Tsai, C. H. Ko, and T. C. Lu are with the Department of

Computer Science and Information Engineering, National Chiayi University,
Chiayi, Taiwan, R.O.C. (phone: 886-5-271-7730; fax: 886-5-271-7741;
e-mail: tclu@mail.ncyu.edu.tw).

The proposed system will generate the smooth motion
adapting to the dynamic environments automatically even
though users alter the environments.

The development of the animation technology can be roughly
classified into two parts, real-time interactive animation and
realistic simulated animation. We focus on the interaction
between the virtual character and the environment. In this paper,
we construct the dynamic environment with the unit cubes. The
unit cubes can be placed arbitrarily in the dynamic environment.
Therefore, the most effective factor is the way of constructing
the dynamic environment. The unit cubes which we proposed
can be placed, aligned, and stacked in the dynamic environment
for constructing the desired terrain. However, we cannot expect
how the user places these unit cubes. We consider the possible
problem of suddenly events. The user may construct complex
terrain in front of the virtual character. We observe the reaction
of the natural animals when they are facing the suddenly events.
The natural animals will stop moving and try to understand what
they are facing. After figuring out the situation, the animals start
to handle the events. Hence, we let the virtual character stop
acting when the user placed unit cube closing to the virtual
character suddenly for reasonable reaction and calculating time
of motion synthesis.

II. RELATED WORK

In this section, we survey two major parts of related methods,
one is data-driven approaches, and the other is physics-based
simulating approaches. Most of data-driven methods utilize a
large amount of captured motion data to generate locomotion or
synthesize response motions in dynamic environment. Previous
data-driven approaches analyze lots of captured data with
objective functions for obtaining identity of motions [2]–[4],
such as posture similarity between motions; they classify those
motions through the similar identity into categories. Due to
above analysis, all captured motion data can be segmented into
several categories with specific tags, and these data become a
classified motion dataset to serve as reference motions.
Subsequently, the authors apply some appropriate physical
constraints or rules of dynamics to modify corresponding
reference motion as the modified motions, which can fit in with
the requirements of the specific situations. Ultimately, these
modified motions with other needed motions to accomplish the
whole desired simulation [5], [6]. Unlike the data-driven
approaches, the physics-based simulation approaches set up a
mass of parameters to fit in with the physical rules which stand
for a motion, and then the simulation can be accomplished by
adjusting the parameters well. Although physics-based
simulation approaches focus on physical rules and adjusting the
parameters, they also exploit captured motion data to analyze

Adopting Procedural Animation Technology to
Generate Locomotion of Quadruped Characters

in Dynamic Environments
Zongyou He, Bashu Tsai, Chinhung Ko, and Tainchi Lu*

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

680

motion cycles for obtaining motion attributes and keytimes
[7]–[10]. These extracted attributes and keytimes can be
regarded as a kind of motion, and they improve the motion
simulation because the physics-based simulation approaches
need to adjust parameters for the main characteristic of a
motion.

III. CHARACTER LOCOMOTION IN DYNAMIC ENVIRONMENTS

We combine the procedural animation with dynamic
environments to increase the interactivity of animation editing.

Fig. 1 The system flowchart of the proposed approach

As shown in Fig. 1, first, a user designates two terminal points

in a dynamic environment; subsequently, a virtual character will
travel from the starting point to the end point. Once the terminal
points have been set up, the user cannot modify them anymore.
When the virtual character travels in the dynamic environment,
the user can place any obstacles anytime and anywhere in the
dynamic environment. After the user placed an obstacle into the
dynamic environment, the route of the dynamic environment
and contact detection will be calculated as soon as possible. If
the obstacles that the user has been placed will not influence on
the progressing path of the virtual character, the current motion
model does not change. Suppose that the placed obstacles block
the walking path and form a contact area, we analyze the contact
area and make a decision whether the character changes the path
according to the new route. Therefore, the virtual character can
obtain the right situation of the next motion which fits in with
constrains of the dynamic environment. Moreover, the footstep
prediction will be carried out when the path is decided. The
footstep prediction decides to pick up either a new motion
model or the origin one. Finally, we exploit the pre-defined
motion model and leg trajectory to interpolate the required
motion that adapts to the dynamic environment.

A. Environment Construction

We exploit the unit cube to construct the dynamic
environment. The user can add the unit cube any time after
setting up the terminate points for the virtual character. Each
unit cube can be placed, aligned, and stacked in the dynamic

environment for constructing the desired terrain. Note that there
are three constrains when placing the unit cubes. The unit cube
is not allowed to overlap the virtual character. That is, the unit
cube cannot be placed on the current location of the virtual
character. We define that aligning the unit cube is placing in a
line with the unit cube on the x-z plane. Similarly, stacking the
unit cube is placing a line with the unit cube along the y-axis. As
shown in Fig. 2, no matter how the user places the unit cubes, a
pair of adjacent cubes is full connected with one surface.

Fig. 2 Unit cubes can be placed, aligned, stacked arbitrarily, but full

connected for a pair of adjacent cubes

B. Path Planning
At first, there is no unit cube placed in the dynamic

environment. The user can set up the starting point and ending
point as the two terminate points for the virtual character. Once
the terminate points are decided, we exploit the A* search
algorithm, as (1), to calculate the initial path p(n) from the
starting point to the ending point. The path p(n) is the sum of the
movement cost g(n) from the starting point to the current point
through the path, and the heuristic cost h(n), which is an
estimated cost from the current point to the end point.

() () ()p n g n h n= + (1)

As soon as the user adds the unit cube to the dynamic
environment, we vary the weight w of the position of the unit
cube, so that the cost c(n) changed with the weight, as (2).

() ' ()c n c n w= + (2)

Because of the dynamic environment, the user can add the
unit cube anywhere. It is necessary to detect whether the unit
cube is on the path. This is because the path is a series of nodes,
the user may add the unit cube to one or more nodes on the path.
If the unit cube is located at the n node of the path, we calculate
the cost distance between n and n-1. The cost distance means the
height difference of two nodes of the path. For reasonable
motion synthesis, the virtual character cannot get over dynamic
terrain with huge height difference. Therefore, we set up a
threshold to decide whether the modified path is passable or not.
If the cost distance is smaller than the pre-defined threshold, the
virtual character gets the corresponding motion model for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

681

motion synthesis. Otherwise, the virtual character re-plans the
path from current position to the ending points for the blocked
path.

C. Footstep Prediction

Footstep prediction is a necessary section for synthesizing
smooth walking motion faster in the dynamic environment. The
terrain of the dynamic environment is possibly changing by the
user. Therefore, the virtual character cannot know in advance
about what they are facing in the dynamic environment. We
exploit the footstep prediction to predict the probable footstep
position. The stance time is an important time reference for
making an effective footstep prediction. Before predicting the
footstep, the analysis of the reference motion is needed. We can
obtain the angle of rotation, step length and the duration time
through the analysis. Note that the duration time is a period time
from the foot lifting off the ground to touching on the ground.
Given an initial velocity, we can calculate the next footstep by
(3) for leg l, where the pn(l)is the next position and pc(l) is the
current position of leg l.

() ()n c ref durp l p l v t= + (3)

We do not consider the terrain when we are predicting the

foot step. That is, we predict the footstep without considering
the height of the environment. The footstep prediction only
concerns about where is the next footstep. When the quadruped
animal needs for turning, we do not apply the footstep
prediction. In general, the quadruped animals would not move
forward when they are making a turn. Hence, we select the
turning motion model to achieve the goal of turning, and then
we apply the footstep prediction after finishing the turning
phase.

D. Procedural Animation

A procedural animation is used to generate animations or
motions automatically in real-time. In general, the procedural
animation is created by the predefined motions and tuned to fit
the restrictions. Therefore, the predefined motions are the
kernel of the procedural animation. To get the suitable
predefined motions, we define serial motion models for
different motions. The motion model consists of the key-frames,
parameters and trajectories. When creating the procedural
animation, we choose the motion model corresponding to the
terrain. Afterwards we modify the parameters of the key-frame
for fitting the restrictions of the terrain. Finally, we synthesize
the motion by interpolation with trajectories which we
calculated for adapting the terrain. The footstep will be decided
according to the prediction if the path is not changed. Once the
footstep and motion model are decided, the leg trajectory should
be calculated for avoiding collision with the terrain and
interpolating. We exploit the Bezier curve, as (4), to calculate
the leg trajectory l(t).

() () ()
0

1 , [0,1]
n

n in i
i i

i

l t P t t t
−

=

= − ∈∑ (4)

When calculating the leg trajectories, we let the current foot
position p0 and the next predicted foot position p4 be the ending

point of the Bezier curve, as shown in Fig. 3. Besides, we
choose the first quartile point, midpoint, and third quartile point
to be the control points. If the l(t) collides with the terrain, we
revise the value t for avoiding the collision.

Fig. 3 We choose 5 control points to calculate the Bezier curve for the

leg trajectory

We adopt the spinal and quadruped skeleton in this research,
as shown in Fig. 4. Note that the spine consists of the bones
between the root and the reference point, which can form a
straight line or a curve. If the skeleton the user loaded contains
the other parts, like the tails, horns, wings, etc., it will not be
considered for the procedural animations. Motions of these
unique parts will be reserved and added to the procedural
animation after synthesized. For a quadruped animal, like the
bear, dog, or cat, there are four motions using in their daily life:
walking, climbing, turning right or left, and turning back.
According to the research of the Bionics, most of the quadruped
animals follow the two gaits, the symmetrical gaits and diagonal
gaits. Suppose that the quadruped animals start from the right
foreleg when waking, the sequence of the symmetrical gaits is
right foreleg, right rear leg, left foreleg, and left rear leg. As the
same situation, the sequence of the diagonal gaits is right
foreleg, left rear leg, left foreleg, right rear leg. In this work, we
adopt the symmetrical gaits as the basic gaits. To build up a
walking motion model, first we have to construct the motion
cycle. As shown in Fig. 5, the motion cycle consists of four
concentric cycles, each of cycle stands for one leg.

Fig. 4 A spinal and quadruped skeleton must contain the root,

reference point, spine, four knees, and four ankles

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

682

Fig. 5 The motion cycle consist four leg cycles. There are four phases
of one single leg cycle: stance (blue), lift (orange), swing (green), and

strike (purple)

The quadruped animals would not move one leg at once when
they are walking. Actually, they start to move the next leg when
the current leg is going from swing phase to strike phase. Fig. 6
shows the key-frames of the walking. The walking motion
model starts from the left rear leg. We parameterize the step
length, step height, and the angle of swing for flexible motions.
Note that the quadruped animals walk differently with the
humans. Human’s spine will not bend for obtaining moving
space. The quadruped animals need to bend their spine for
enough moving space when they walking, turning, climbing, or
downing stairs. Hence, the spine should bend when the rear leg
is going to the strike phase, then lease the spine and move
forward when the rear leg is going to the stance phase. For
walking motion model, we fix the reference point first. We
move the root forward and bend the spine followed the y-axis
for creating the moving space. After that, we fix the root, move
the reference point forward, and gradual change the spine from
curve to straight line.

Fig. 6 Four key-frames of the walk motion model (a) The left rear leg
enter the lift phase, other legs stay in the stance phase (b) The left rear
leg enter the swing phase, and the left foreleg enter the lift phase (c)

The left rear leg enter the strike phase, the left foreleg enter the swing
phase, and the right rear leg enter the lift phase (d) The left rear leg

back to the stance phase, the left foreleg enter the strike phase, the right
rear leg enter the swing phase, and the right foreleg enter the lift phase

The quadruped animal is different from the human being
when they are passing through a unit cube. Fig. 7 shows the
key-frames of the climbing.

Fig. 7 The key-frames of the climbing motion model

For the beginning, the quadruped animals bend their spine for

creating moving space with the same method of walking motion
model (Fig. 7(a)). After obtaining enough moving space, we set
the root as a fixed point and rotate the spine with an angle Θ
along the y-axis. Since we rotate the spine, the two forelegs will
be lifted up deservedly. Then we gradual change the spine from
high- curvature curve to low-curvature curve and place the two
forelegs (including the knees of forelegs) onto the unit cube (Fig.
7(b)). After that, we move the rear legs forward for closing the
unit cube. At the same time, we fix the foot of forelegs, lift up
the knee of forelegs, and change the spine into a straight line
(Fig. 7(c)). So far, the quadruped animal is almost upping the
unit cube. At last, we modify the step height of the rear legs to fit
the height of unit cube (Fig. 7(d) and (e)), and let the quadruped
animal walk on the unit cube with the walking motion (Fig.
7(f)).When the quadruped animal turns right or left, they will
move the foot of the turning side first. That is, the quadruped
animal will move right foreleg first when they turning right. Fig.
8 shows the key-frames of turning right. First, the foreleg L1 of
the desired direction moves to the desired direction side (Fig.
8(a)). Second, we bend the spine along the opposite direction of
the desired direction, move the other foreleg L2 across the
foreleg L1 from the outer side, and rotate the ankle toward the
desired direction (Fig. 8(b)). After that, we move the foreleg L1
to the appropriate position and adjust to the nature pose of two
forelegs (Fig. 8(c)). Note that we change the spine from the
curve to the straight line when moving the foreleg L1 (Fig.
8(d)).At last, we rotate the root to the desired direction, move
the outer rear leg for reverting the original stance pose (Fig.
8(e)), and rotate ankle of the inner rear leg toward the desired
direction (Fig. 8(f)).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

683

Fig. 8 The key-frames of the turning motion model

IV. EXPERIMENT RESULTS

In this section, we experiment on the proposed method for
showing the implementation results of interacting with a meshed
leopard in a dynamic environment. We develop the proposed
method with C# language, and employ the Unity 3D Game
Development Tool for constructing the whole system. In our
system, we demonstrate the 3D model of a leopard in Fig. 9.
Users can change the terrain with the defined obstacles.
Furthermore, users can also verify the parameters for generating
different motions with the defined motion model. As shown in
fig. 10, once the parameters and two terminal points have
defined for the quadruped character, the proposed system will
calculate an appropriate path from one terminal point to another
one. No matter whether the quadruped character is moving
around in the dynamic environment or not, users can place on
the obstacles anywhere except on the quadruped character.

Fig. 9 We take a leopard with mesh as an example for quadrupeds in

our system

Fig. 10 The right part of this figure is the parameter setting interface,

and left part shows the whole view

We demonstrate the four types of locomotion proposed in this
paper. Fig. 11 shows the walking motion on an obstacle-free
terrain. Users can adjust step length and step height before
simulation starts.

Fig. 11 Walking motion displays in an obstacle-free envirionment.

In Fig. 12 and Fig. 13, we demonstrate the climbing up and

down motion with a single obstacle. In our system, the climbing
motion will be performed when the quadruped character meet
obstacles and movement cost is under the threshold.

Fig. 12 Climbing motion displays with an obstacle. In this figure, the

leopard climbs an obstacle

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

684

Fig. 13 Jumping down motion only occurs when the height of the next

step is lower the current one

In Fig. 14, we show the turning motion when the leopard
cannot cross over an obstacle. The turning motion will be taken
unless the movement cost greater than current threshold.

Fig. 14 Turning motion displays with a sets of stacking obstacles

V. CONCLUSION AND FUTURE WORKS

In this paper, we exploit the procedural animation technology
to generate the locomotion of the character in the dynamic
environment. We define the motion models on the basis of the
observations. By adjusting the parameter of the key-frames or
the unit cube, it can lead to another different result of the
synthesized motion. The terrain of the environment can be
constructed dynamically and arbitrarily with the unit cubes.

We plan to define more motion models to deal with complex
terrains. In this paper, we construct the dynamic environment
with the unit cubes. The variations of the dynamic environment
are limited with the unit cube. Besides, we choose the terrestrial
animals as the model for whole motion models. We will choose
the aquatic animals or the flying animals as the model for enrich
the motion models. In addition, we calculate the walking path
the Manhattan distance. That is, the virtual character walks in
the dynamic environment with only six directions: front, back,
left, right, up, and down. If we adopt the Euclid distance for
calculating the path, the virtual character can walk with ten
directions. However, the balance of the virtual character and the
footholds should be concern when it goes through the diagonal
path.

ACKNOWLEDGMENT

 This work is supported in part by the National Science
Council at Taiwan, R.O.C., under the project grant number
NSC100-2221-E-415-019.

REFERENCES

[1] Z.H. Liang and T. Y. Li “Simulating Human Low-Posture Motions with
Procedural Animation,” Proceedings of Computer Graphics Workshop,
Taiwan, 2007.

[2] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica Kate Hodgins, and
Nancy S. Pollard, “Interactive control of avatars animated with human
motion data,” Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pp. 491-500, 2002.

[3] Lucas Kovar and Michael Gleicher, “Automated extraction and
parameterization of motions in large data sets,” ACM Transactions on
Graphics (TOG), Vol. 23, Issue3, 2004.

[4] Rune Skovbo Johansen, “Automated Semi‐ Procedural Animation for

Character Locomotion,” Proceedings of Game Developers Conference,
2009.

[5] Eamonn Keogh and Chotirat Ann Ratanamahatana, “Exact indexing of
dynamic time warping,” Proceedings of the 28th International
Conference on Very Large Data Bases, pp. 406-417, 2002.

[6] Rachel Heck, Lucas Kovar, and Michael Gleicher, “Splicing Upper-Body
Actions with Locomotion,” ACM SIGGRAPH posters, 2007.

[7] Sang Il Park, Hyun Joon Shin, and Sung Yong Shin, “On-line locomotion
generation based on motion blending,” Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pp.
105-111, 2002.

[8] Min Gyu Choi, Jehee Lee and Sung Yong Shin, “Planning biped
locomotion using motion capture data and probabilistic roadmaps,” ACM
Transactions on Graphics (TOG), Vol. 22, Issue 2, pp. 182-203, 2003.

[9] Jaroslav Semancik, Josef Pelikan, and Jiff Zara, “Interactive synthesis of
constrained motion from example movements.” Proceedings of the 4th
IASTED International Conference on Visualization, Imaging, and Image,
pp. 878-883, 2004.

[10] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michael
van de Panne, “Locomotion skills for simulated Quadrupeds,” ACM
Transactions on Graphics (TOG), Vol. 30, Issue 4, 2011.

