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Abstract—The Partitioned Global Address Space (PGAS) pro-
gramming paradigm offers ease-of-use in expressing parallelism
through a global shared address space while emphasizing perfor-
mance by providing locality awareness through the partitioning of
this address space. Therefore, the interest in PGAS programming
languages is growing and many new languages have emerged and
are becoming ubiquitously available on nearly all modern parallel
architectures. Recently, new parallel machines with multiple cores
are designed for targeting high performance applications. Most of the
efforts have gone into benchmarking but there are a few examples of
real high performance applications running on multicore machines.
In this paper, we present and evaluate a parallelization technique
for implementing a local DNA sequence alignment algorithm using
a PGAS based language, UPC (Unified Parallel C) on a chip
multithreading architecture, the UltraSPARC T1.

Keywords—Partitioned Global Address Space, Unified Parallel C,
Multicore machines, Multi-threading Architecture, Sequence align-
ment.

I. INTRODUCTION

Sequence comparison and sequence database searching have
played a crucial role in biological research advancements. The
massive computational resources required for the search and
the comparison of sequence databases represents today a big
challenge for biologists [13]. To meet this requirement, many
parallel computation methods have been developed on high
performance computing systems. Most of these applications
are implemented for distributed memory architectures using
the message-passing paradigm [11].

Recently, new parallel machines and processor architectures
have been introduced for throughput computing. One of these
most successful introductions come in the form of chip multi-
threading architectures. For example, the Sun Fire T2000 [8]
contains a T1 processor with eight processing cores each with
four hardware threads. However, most of the efforts have gone
into benchmarking the real world performance of enterprise
I/O-bound applications [8],[17], but there are a few examples
of compute-centric application analysis for this architecture
[15],[14]. Despite the short-comings of this architecture in
computational through-put, problems with a fair share of both
communication and computational requirements may exploit
the high scalability the architecture provides. In addition, to
the best of our knowledge, there are no such applications
implemented using PGAS languages and optimized for these
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machines. Therefore, it is interesting to study a PGAS imple-
mentation of these applications for this novel architecture. We
have selected the local sequence alignment application, since
it represents one of high performance computings most de-
manding applications with a fair share of both communication
and computational requirements.

Recall that the PGAS model supports a programming model
in which programmers design and write high level descriptions
of their algorithms. UPC is one of partitioned global address
space programming language based on C and extended with
global pointers and data distribution declarations for shared
data [1] [18] [19]. A number of threads in UPC can work
independently in a Simple Program Multiple Data (SPMD)
model. Threads communicate through the shared memory and
can access shared data while a private object may be accessed
only by its own thread. The UPC memory model supports
three different kinds of pointers: private pointers pointing
to the shared address space, pointers living in shared space
that also point to shared data, and private pointers pointing
to data in the threads own private space [1]. UPC provides
also synchronization mechanisms that are barriers, split-phase
barriers and memory consistency control which may increase
delays incurred by waiting jobs. According to these UPC
features, the fine-grained UPC programming model is simple
and easy to use. In other words, the advantage of PGAS
programming model is that programmers need to only specify
the data to be distributed across processors, and reference them
through special global pointers during processing [5],[20].
However, UPC performance largely depends on the number
of threads and how they are accessing the shared space [20].

In this paper, we present an implementation of a PGAS al-
gorithm for local sequence alignment on chip multi-threading
architectures, in particular the Sun T1. More precisely, we
show how the proposed PGAS algorithm, a Smith-Waterman
derivative, for sequence alignment can benefit from this type
of multicore architecture.

The rest of the paper is organized as follows. In section 2,
we present the basic concepts of Smith-Waterman algorithm.
Section 3 presents a description of the PGAS-based algorithm
for local sequence alignment. Experimental results are given
in section 4. Conclusions and future work are presented in
section 5.

II. SMITH-WATERMAN ALGORITHM

Local sequence alignment is one of the most important
problems in bioinformatics. Two known algorithms based
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Fig. 1. The score matrix of the sequences X and Y , where the highest score
is 14.

on dynamic programming techniques have been proposed to
determine the maximal alignment of two sequences: the global
alignment introduced by Needleman and Wunsch [3] and the
local alignment algorithm introduced by Smith and Waterman
[4]. These algorithms are used to determine a score that
represents the degree of similarity between two sequences.
The global alignment algorithm computes a similarity score
between two sequences as the sum of all individual elementary
similarities. The local alignment algorithm however, finds the
most similar subsequences of two sequences. This algorithm
is based on dynamic programming techniques on two phases.
The first phase computes the total score that indicates the
degree of the similarity by building a score matrix. The second
phase, called tracing back phase, identifies the corresponding
alignment using the score matrix built in the first phase. For-
mally, the local alignment algorithm takes two input sequences
X(1, ...,m − 1) and Y (1, ..., n − 1), which their elements
are in an alphabet that contains s symbols. For example,
proteins are sequences of 20 different letters (amino acids),
and DNA sequences can be represented by sequences of 4
letters (i.e., s=4) [6]. To facilitate the representation, X and
Y can be represented as one-dimensional table of size m and
n respectively, where X(0) = Y (0) = Nil. The similarity
matrix C is a two-dimensional table of size and each element
C(i, j) can be computed as follows [16],[2],[12].

C(i, j) = max {
C(i − 1, j − 1) + sbt(X(i), Y (j))
C(i, j − 1) + σ
C(i − 1, j) + σ
0

Where sbt(X(i), Y (j) is a substitution cost related to the
similarity of the character X(i) and Y (j). The building phase
starts with the C(1, 1) and the continuously searches stops
at C(m − 1, n − 1). During this phase, the elements of C
are calculated row by row, left to right on each row using
the formula described above. To illustrate this phase, an
example to compute the score matrix of the sequence X =
GACGGATTA and the sequence Y = GATCGGAATAG
is given in figure 1. In this example, we consider that σ = −1
and the substitution cost is equal +2 if the characters X(i) and
Y (j) are identical and -1 otherwise. The first row and the first
column are initialized to 0 before starting the computation.

This first process cannot tell us what the correspond-
ing alignment actually is, but only gives the highest score,
C(9,10)=14. The second phase starts from the cell that has the

highest score and traces back to generate the alignment of X
and Y . This process continues until a position in column 0
or row 0, or C(i, j) = 0 is reached. Two lists XL and Y L
of size m and n respectively are used to store the computed
corresponding alignment. The corresponding alignment, in this
example, is represented as the bold text in the figure 1, i.e.,
XL = GACGGATTA and Y L = GATCGGAATA.

III. PGAS PARALLEL LOCAL SEQUENCE ALIGNMENT

In this section, a parallel PGAS algorithm for computing
the similarity between two sequences X and Y is presented.
Two phases are considered in the algorithm: the score matrix
building phase that computes the score matrix C and the back-
tracing phase that finds the corresponding alignment. When the
first phase finishes building the matrix and determines the cell
C(i, j) having the highest score, the second phase starts from
this cell to determine an actual corresponding alignment by
examining the elements of this matrix.

In the first phase, to compute the value C(i, j), the value
of the upper cell C(i − 1, j), the left C(i, j − 1) and the
upper-left C(i − 1, j − 1) should be checked. This strong
dependency leads to a regular parallelism. The algorithm
largely used to paralyze the building phase is known as the
wave-front algorithm [10]. This algorithm uses the BSP/CGM
(Bulk Synchronous Parallel/Coarse Grained Multicomputer)
model. This algorithm has been proposed mainly for string
editing problem with the main goal to minimize the com-
munication complexity of parallel searches. An extension of
this algorithm for biological sequence comparison is proposed
in [11]. This extended algorithm, used mainly to build the
score matrix, is based on a compromise between the workload
of each processor and the number of communication rounds
required using a parameterized scheduling scheme. Recall
that the BSP/CGM computer model consists of a set of p
processors with n

p local memory per processor, where n
is the space needed by the sequential algorithm [9]. These
processors are connected through any interconnection network
and communicate by sending messages in a point-to-point
manner. BSP/CGM computational model can be also used to
predict the performance of the algorithms when implemented
on a distributed memory machine [7].

The algorithm proposed in this paper takes two inputs,
the sequence Y of size n − 1 and the sequence X of size
m − 1, and produces a score matrix C of size (n × m).
This matrix is considered as an input to the second phase
that produces the corresponding alignment of X and Y as an
output. Unlike the algorithm presented in [11] that builds a
score matrix of size (m × n), in the proposed algorithm we
use the transpose of this matrix by using one of size (n×m)
and we add another factor that allows the reduction of the load
imbalance between threads. Two mechanisms are used for data
and work distribution. In the data distribution, we consider that
the sequence X is local to each thread, i.e., each thread has
a copy of X . The sequence Y is distributed in round robin
manner to all threads. More precisely, this distribution assigns
αn
T elements of Y to each threads, where T is the number of

threads or processors and α is an adjustment factor that allows
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Fig. 2. A general distribution scheme of the workload between threads.

the load balancing between threads as described in [10]. The
matrix C is distributed, in round robin manner, by blocks of
rows. More precisely, this distribution assigns αnm

T elements
to each thread. We consider that each thread can be executed
in one processor with O(nm

p ) memory space, where p is the
number of processors.

In the workload distribution scheme between threads, in-
stead of using a block size of αnm

T 2 , used in wavefront
algorithm, we have worked with a variable block size of αβnm

T 2 ,
where T is the number of threads executed on p processors
( T = p), 0 < α, β ≤ 1 (see figure 2). In this distribution
scheme, we assume that (αβnm mod T 2) is equal to 0. We
can see for example that in the first steep only the thread T0

computes the sub-matrix, threads T0 and T1 in the second
steep. This phase continues until all matrix elements will be
computed.

To illustrate this algorithm, we use the same example
described above that computes the score matrix of the se-
quence Y = GATCGGAATAG and the sequence X =
GACGGATTA. Let us consider, for example, that the num-
ber of threads is equal to 2 (T = 2), α = 2 and β = 1.
The figure 3 shows that only the thread starts computing its
first block of size (3 × 5) elements. After that, T0 and T1

can compute in parallel next blocks. When the thread T0

finishes processing its last block of the first band, it can starts
computing the first block of the second band. This process
continues until all elements of C will be computed, i.e., the
last block that will be processed by the thread (T = 1). Note
that the elements of this matrix are note necessarily similar
to the elements of the matrix used usually in sequential and
parallel wavefront algorithms, but the obtained result is similar
(i.e., the highest score and the corresponding alignment are
similar).

According to this data and workload distribution scheme,
we can see that large values of α and β tend to increase
the idle time of the threads except for the thread T0 which
starts immediately. It is notable that small values of α will
incur huge communication requests in distributed systems.
However, this is not relevant on multicore architectures which
have negligible communication overhead when communicat-
ing over local memory. A major factor here in order to
optimize application performance especially on shared cache
multicore architectures is cache utilization. As such, α and β
are analyzed in order to deduct the best values for fair cache
utilization.

After building the score matrix, all threads can compute

Fig. 3. The score matrix of X and Y, the highest score is c(10,9)=14.

locally in round robin manner a part of the matrix of size
αnm

T , but in sequential manner as follows. The thread Tk−1

starts computing at the cell having the highest score and stops
when the next row to process is not local to it or the column
0 is reached. When one of these conditions is reached, Tk−1

activates the thread Tk−2 by giving it the next column to
be computed. The thread Tk−2 can start computing from its
last row, processed during the building phase, and the column
given by Tk−1. This process is repeated until at least one of the
following conditions is reached, a cell C(i, j) having the value
0, the row 0, or the column 0. For example, figure 3 shows the
corresponding path found (elements with bold font) between
the two sequences X and Y . The corresponding alignment
between X and Y are the subsequences XL = GACGGATT
and Y L = GATCGGAATA.

IV. EXPERIMENTAL RESULTS

The PGAS-based algorithm to perform the longest common
subsequence is implemented using the Berkeley UPC running
on the Sun Fire T2000 server. The figure 4 shows a general
architecture used by multicore machines. A number of pro-
cessing cores integrated on to a single chip. These cores have
their own private L1 cache and share a common L2 cache. The
bandwidth between the L2 cache and main memory is shared
by all the processing cores [15]. The Sun Fire T2000 server,
used in our experiments, has eight cores running at 1.2GHz,
each with four hardware threads. Each processing core has
its own private L1 cache and shares L2 cache with the other
cores. The bandwidth between L2 and the main memory is
shared by all processing cores [8].

In the experiments, two sequences X and Y are considered
(with sizes 1536 and 2304 respectively). The elements of
these sequences are generated randomly from the alphabet
Φ = {A, C,G, T}. Speedups achieved on the Sun Fire T2000
for computing the local alignment of X and Y , with 1, 2,
4, 8, 16, and 24 threads are shown in figure 5. We can
see that the algorithm is sensitive to the variation of α. For
example, the speedup increases up to 8 threads, plateaux
between 8 and 16 threads, but decrease between 16 and
24 threads. This is because decreasing the value leads to a
decrease of the synchronization time and an increase of the
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Fig. 4. A general architecture for multicore systems with p cores.

communication time. Since the memory is shared, the increase
of the communication time can be due to insufficient memory
bandwidth consumed by the large memory requests. This large
number of memory requests can be the result of cache misses,
since L1 cache is shared between all threads in the chip and
L2 is shared between four threads in one core.

It should be noted that, unlike traditional parallel systems,
the Sun T2000 has extremely low communication overhead.
As such, it was found that α and β values maximize perfor-
mance when both workload and data distribution maximize
cache utilization. In this specific case, as α is set to lower
values the spacial locality of the application improves allowing
for better L2 cache utilization. It is critical however that the
α value reflects fair cache line utilization in this shared cache
architecture. In addition, decreasing the value of α leads also to
a decrease of the synchronization time. From the experimental
results depicted in the figure 5, the best speedup for the
alignment of these two sequences were obtained when the
value of α is equal 1

16 and 1
24 and the number of threads is

equal 16.
To study the impact of the parameter β on the performance,

let us consider that the value of α is equal to 1 and varying
the value of β. Speedups achieved with 1, 2, 4, 8, 16, and 24
threads are illustrated in figure 6. We can see that the algorithm
is also sensitive to the variation of the value of β. Alike the
sensitivity to the variation of α, the speedup increases nearly
linearly up to 8 threads, plateaus between 8 and 16 threads,
and decreases between 16 and 24 threads. We can see that the
best speedup were obtained when the value of β is equal 1

8 or
1
24 using 16 threads, α here is considered equal 1. With a fixed
α it can be seen that smaller values of β improve performance
by reducing idle time.

According to these two figures, 5 and 6, the same behavior
is shown when varying independently α and β. Since varying
the value of α influences both cache utilization and thread idle
time. The selection of the best values of α must be done by
taking into consideration the possible values of β. To illustrate
this point, let us now fix the number of threads to 16. Figure

Fig. 5. The speedup with number of threads and varying the value of α.

Fig. 6. The speedup with number of threads and varying the value of β.

7 presents the variation of the speedup versus α and β. The
same behavior like in figures 5 and 6 is shown, but with a
higher speedup given when (α, β)= ( 1

2 , 1
16 ). The objective is

to select the couple (α, β) that results with good performance,
i.e, minimize idle time and maximize cache utilization.

The optimal values of β in a shared cache multicore must
reflect values that equally share cache line availability. It is
found that α and β should generally be set to values in order to
better utilize available cache lines (in other words, computation
should work horizontally on the matrix). However, it is also
important to note that decreasing α and β decreases idle time
of threads (excluding thread T0).

From figure 8 it can be concluded that spatial locality
of both compute workload and data distribution must both
optimize spacial locality. The values of α and β that yield the
best performance all have a workload distribution that have
cache line contention of 40% or less for data distribution.
Most importantly these values provide access patterns which
better utilize cache line availability (in the case of the T2000,
a cache line is at a 128-byte boundary). The values of β and α
which have shown poor performance all are due to extremely
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Fig. 7. Speedups for 16 threads by varying the values of α and β.

Fig. 8. Cycles Per L2 Cache Miss on Load for best and worst performing
combination of α and β.

bad cache utilization with to over 50% cache contention 1. In
the values for (α, β)=( 1

2 , 1
16 ) it can be seen there is a slightly

higher miss rate. However both data and workload distribution
are maximized here leading to better performance for these
values. It is worth noting that larger values of β and α also
increase idle time detrimentally towards performance. Hence,
to select the best over-all α and β, the user must minimize
idle time and maximize cache utilization.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated a PGAS parallel algorithm
for local sequence alignment on the T1 chip multi-threading
architecture. The performance of the algorithm is based on two
tuning parameters, α and β (which ensure the optimal data
and workload distributions). The programmer should be able
to empirically select the best values for these parameters to
simultaneously minimize the thread idle time while maximiz-
ing cache utilization. The results obtained show that the values
of these parameters have a great impact on the performance
of the application. Future work involves further optimization

1This data was collected from the T1 Instr Cnt and L2 Dmiss ld perfor-
mance counters extracted from the Solaris cputrack tool

of the algorithm to exploit the concurrency semantics of
hardware threading in order to maximize compute throughput
for this specific problem. Other optimization techniques, such
as message aggregation and privatizing local shared accesses,
should be added in order to increase the performance of
the algorithm by hiding the latencies associated with remote
shared accesses, since are not integrated yet in the version of
UPC used.
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