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The localised wrinkling of a stretched
bi-annular thin plate

Xiang Liu, Ciprian Coman

Abstract—The wrinkling of a thin elastic bi-annular plate with
piecewise-constant mechanical properties, subjected to radial stretch-
ing, is considered. The critical wrinkling stretching loading and
the corresponding wrinkling patterns are extensively investigated,
together with the roles played by both the geometrical and mechanical
parameters.

Keywords—bi-annular plate, wrinkling pattern, critical stretching
loading.

I. INTRODUCTION

WRINKLING of thin structures such as thin plates and
shells is a common occurrence in solid mechanics.

Largely speaking, the wrinkling is attributed to their lack of
bending rigidity that makes them susceptible to buckle under
compression. However, this does not preclude the occurrence
of wrinkles in systems subjected to global tensile loads.
Indeed, geometrical discontinuities in an elastic solid are
known to redistribute the stresses applied on its boundary, thus
leading to unexpected regions of compressive stresses inside
the solid. An interesting example is the localised wrinkling of
an annular plate near its inner rim when it is subjected to radial
stretching along its boundaries, which have been explored both
experimentally [10] and analytically [4], [5].
The motivation of the present work originates partly from
the above localised wrinkling regime, and partly by the work
of Simitses and Frostig [8], [9], [14]. In [8], the authors
formulated the classical buckling problem of a multi-annular
plate subjected to axisymmetric radial compressive loading
on the boundaries or the common joints, which is followed
by the numerical study of a uniformly compressed bi-annular
plate using a power series method. Later, this strategy was
expanded for a ring-stiffened annular plate under compression,
to discuss the effect of boundary conditions and its rigidi-
ties on its buckling [9], [14]. In this paper, we discuss a
stretched bi-annular plate with piecewise-constant mechanical
properties. This bi-annular plate is composed of two fully
bounded annuli, which are made of different materials with
different Young’s moduli and Poisson ratios. Comparing with
the stretched single-annular plate by Coman et al. [4], [5], the
discontinuities between the materials of the two annuli raise a
couple of interesting questions:

A question with engineering practical concerns comes to us:
how is the mechanical properties of each annuli attribute to
the resistance of wrinkling? Since it is of practical importance
for the design with respect to the buckling failure.
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The question that follows is, the work in [5] shows that
the wrinkling mode is localised near the inner rim due to
the stress concentration and the small bending stiffness of the
plate, then how will the discontinuity of the bi-annular plate
affect the wrinkling mode? Is it possible that the wrinkling is
still triggered near the inner boundary or the interface, or that
we have two localised wrinkles on both annuli?

Moreover, the critical wrinkling load increases monotoni-
cally with the aspect ratio (ratio between the inner and outer
radii of the single annulus), so is the critical wrinkle number
for the simple annular plate. Whereas, for the stretched bi-
annular plate, we find that the relations are not continuous as
the former, or it might not be monotonic in some cases.

Also, in the compressed situations discussed by Simitses
and Frostig, the authors discussed mainly the buckling forces
of either when the mode number n = 0 (axisymmetric mode)
or n = 1 (asymmetric mode). However, the wrinkling mode
number in our problem is supposed to be n � 1, similar
with the localised wrinkling problem in [4], [5]. In this case,
the critical wrinkling mode number becomes a pivotal extra
parameter for the critical wrinkling loads; Moreover, their
models (compressive ones) are only subjected to uniformly
compressive stresses, therefore, the buckling is global, the
mechanical properties of both annuli all make contribution to
the global buckling. In other words, there is no dominant effect
introduced by the mechanical parameters of either sub-annular
region. While in the present problem, the buckling is expected
to be localised in the case of the stretched single annular plate,
it is interesting to see if only the mechanical properties of the
localised region plays the dominant role compared with the
flatter region.

To answer the above questions, we organise the paper as
follows. In Section II, we introduce the problem and record
the formulation for the wrinkling of a bi-annular plate. The For
thin plates, the analysis of the pre-buckling always can provide
fruitful indication for the wrinkling load, which is expanded in
Section III. With this in mind, we conduct extensive numerical
explorations. The critical wrinkling load and the corresponding
critical wrinkling modes are shown in Section IV. In these
sections, we fully answered the questions raised earlier. The
paper ends with a concluding section and some possible
extensions that will be taken up in future work.

II. PROBLEM STATEMENT AND FORMULATION

Let us consider a simple plane-stress situation that generalises
the Lamé problem for an annular domain subjected to radial
stresses or displacements on its inner and outer boundaries.
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Rather than having uniform elastic properties the annulus,
Ω (say), is assumed to consists of two perfectly bonded
concentric annular regions,

ΩI :=
{
(r, θ) ∈ R

2 | R1 ≤ r ≤ Rm, 0 ≤ θ < 2π
}
,

ΩII :=
{
(r, θ) ∈ R

2 | Rm ≤ r ≤ R2, 0 ≤ θ < 2π
}
,

that have different mechanical properties, i.e. Ω = ΩI ∪ ΩII

(details of the geometry that we have in mind can be seen in
Figure 1). For the sake of simplicity it will be assumed that the
thicknesses of the two annuli is identical and equal to h > 0.
The inner and outer rims of Ω are given by the curves r = R1

and r = R2, respectively, while r = Rm indicates the location
of the interface between the two concentric regions. The inner
annulus (ΩI) consists of a linearly elastic isotropic material
characterised by the Young’s modulus E1 and Poisson’s ratio
ν1; the outer region (ΩII ) is similar, but its material is
described by the elastic constants E2 and ν2. In addition, the
inner and outer rims are assumed to subjected to displacement
field U1 (inward) and U2 (outward) respectively.

R1

R2
Rm

h

U1

U2

E1, ν1

E2, ν2

Fig. 1. A bi-annular plate stretched by applied uniform displacements
on both its inner and outer edges. The two constituent parts ΩI and
ΩII are assumed to be perfectly bonded together.

We take the vector x = y+x3e3 to describe the position of
points within the plate, where x3 ∈ [−h/2, h/2] stands for the
lateral coordinate (h is the thickness of the plate), and y =
xαeα ∈ Ω denotes the two-dimensional components in the
mid-plane surface, where α ∈ {r, θ} as polar coordinates are
applied. The in-plane displacement is defined as v := (u, v),
and the lateral displacement is described by w.

For the notational convenience, we use the labels j =
I or II to indicate the variables in two regions: ΩI and ΩII ,
and use “̊ ” to denote the variables in basic state. By using
principle of minimum energy [11], the equations governing
the basic state for both annuli of the plate can be obtained
[7], [13] as

∇ · N̊
(j)

≡ 0 in Ω(j) , j ∈ {I, II} , (1)

together with the natural interfacial conditions

N̊
I
≡ N̊

II
on r = Rm . (2)

In addition, the forced boundary conditions are prescribed as

v̊
I = (−U1, 0) on r = R1 , v̊

II = (U2, 0) on r = R2 . (3)

Here, we introduce the non-dimensional variables

ρ :=
r

R2

, η1 :=
R1

R2

, η2 :=
Rm

R2

, λ :=
U1

U2

,

γ :=
E1

E2

, σ̊kk →
1− ν2

(j)

E(j)

σ̊kk , k ∈ {r, θ}, j ∈ {I, II} .

If we assume axial symmetry, then (1) together with (2) and (3)
will lead to the classical Lamé solution in terms of the stress
components in both radial and azimuthal directions (under the
assumption that the thickness of the whole plate is unique)

⎡
⎢⎣σ̊

(j)
rr

σ̊
(j)

θθ

⎤
⎥⎦ →

⎡
⎢⎢⎣
1 + ν(j) −

1− ν(j)
ρ2

1 + ν(j)
1− ν(j)

ρ2

⎤
⎥⎥⎦
⎡
⎣b(j)
c(j)

⎤
⎦ , j ∈ {I, II} .

(4)
with the coefficients

b(j) =
1

Δ
(Γ

(j)

11 λ+ Γ
(j)

12 ) , c(j) =
1

Δ
(Γ

(j)

21 λ+ Γ
(j)

22 ) , (5)

and where

ΓI
11 :=

[
(κ3 + κ2)η

2
2 + (κ4 − κ2)

]
η1 ,

ΓI
12 := (κ3 + κ4)η

2
2 ,

ΓI
21 := −

[
(κ3 − κ1)η

2
2 + (κ1 + κ4)

]
η1η

2
2 ,

ΓI
22 := −(κ3 + κ4)η

2
1η

2
2 ,

ΓII
11 := (κ1 + κ2)η1η

2
2 ,

ΓII
12 := (κ1 + κ4)η

2
2 + (κ2 − κ4)η

2
1 ,

ΓII
21 := −(κ1 + κ2)η1η

2
2 ,

ΓII
22 := −

[
(κ2 + κ3)η

2
1 + (κ1 − κ3)η

2
2

]
.

with

κ1 :=
γ

1− ν1
, κ2 :=

γ

1 + ν1
, κ3 :=

1

1− ν2
, κ4 :=

1

1 + ν2
.

Δ :=
[
κ2 − κ4 − (κ3 + κ2) η

2
2

]
η21+

[
(κ3 − κ1) η

2
2 + κ1 + κ4

]
η22 .

According to the Trefftz criterion (see for example, [11]),
the perturbation equations for the wrinkling state is given [13]
by

D(j)∇
4w(j) − N̊

(j)
: (∇⊗∇w(j)) = 0 in Ω(j) , (6)

which is applicable to the inner and outer sub-annular regions
by taking j = I and II respectively. If we introduce the
following rescaling

w(j) →
w(j)

h
, D(j) →

h2

12U2R2

=: μ−2 , (7)

We can write the rescaled versions of (6) in the compact form

μ−2∇4w(j) − h
[
σ̊(j)
rr

∂2w(j)

∂ρ2
+ σ̊

(j)

θθ

1

ρ

(∂w(j)

∂ρ

+
1

ρ

∂2w(j)

∂θ2

)]
= 0 , (8)
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where μ−2 is usually a very small parameter (0 < μ−1 

1) for plates that are very thin or highly stretched (within
the limits of the theory employed in our investigations). By
looking for solutions with separable variables we are prompted
to consider

w(j)(ρ, θ) = W (j)(ρ) cos(nθ) , j ∈ {I, II} , (9)

where n ∈ N represents the mode number (equal to half the
number of regular wrinkles in the azimuthal direction), and
the unknown amplitudes W I,II will be found by solving the
following simpler ordinary differential equations

d4W (j)

dρ4
+ C

(j)

3 (ρ)
d3W (j)

dρ3
+ C

(j)

2 (ρ)
d2W (j)

dρ2

+ C
(j)
1 (ρ)

dW (j)

dρ
+ C

(j)
0 (ρ)W (j) = 0 , ρ ∈ Λ(j) (10)

in which

C
(j)

3 (ρ) :=
2

ρ
,

C
(j)
2 (ρ) := −

[
2n2 + 1

ρ2
+ μ2 σ̊(j)

ρρ (ρ)

]
,

C
(j)
1 (ρ) :=

1

ρ

[
2n2 + 1

ρ2
− μ2 σ̊

(j)

θθ (ρ)

]
,

C
(j)
0 (ρ) :=

n2

ρ2

[
n2 − 4

ρ2
+ μ2 σ̊

(j)

θθ (ρ)

]
.

and where j = I or II is adopted, respectively, to describe
the buckling equations of the inner and outer sub-regions. the
kinematic continuity on the interface requires that

wI = wII , ∇rw
I = ∇rw

II at r = Rm (11)

due to the axisymmetry of the problem. We have the continuity
constraint on r = Rm

−DI

[
∇r(∇

2wI) + (1− ν1)∇θ(∇rθw
I)
]

= −DII

[
∇r(∇

2wII) + (1− ν2)∇θ(∇rθw
II)

]
, (12)

which is the equilibrium of the vertical shear force resultants
on the interface written on the deformed configuration.

DI(∇rrw
I +ν1∇θθw

I) = DII(∇rrw
II+ν2∇θθw

II) , (13)

which states the equilibrium of the bending moments on
interface. These conditions can be rescaled easily by using
the previously introduced rescalings.

III. BASIC STATE

Next, we are going to study the existence of azimuthal
compressive stresses in Ω as in Eq. (4). Since for thin
(slender) structures, the analysis on the compressive stress
in the basic state can always provide fruitful predictions on
the buckling problem. However, for a stretched bi-annular
plate, the azimuthal stresses are complicated compared with
the single-annular case in [4], [5], therefore demand some
analysis. For the sake of notational convenience, we denote

the pre-buckling hoop stress on the boundaries and interface
by

Ia := σ
(0)I

θθ (η1) , Ib := σ
(0)I

θθ (η2) , (14a)

IIa := σ
(0)II

θθ (η2) , IIb := σ
(0)II

θθ (1) . (14b)

It is interesting to notice that Ia < Ib and IIa < IIb for
all the situations, which requires some standard numerical
exploring. The main task of prebuckling stresses analysis is
to identify the lower bound for the value of λ when Ia or IIa
firstly changes from positive to negative, which motivates the
analytical investigations included next.

If we let Ia(η1, η2;λ) = 0, then with fixed η2, it can be
shown that

λlow
1 =

l1η1
l2η21 + l3η22

, (15)

by introducing

l1 :=
4γν1η

2
2

(1− ν21)(1 − ν22)
, l2 := κ

[
κ2(1− η22)− (κ4 + κ3η

2
2)
]
,

l3 := κ2

[
κ1(1− η22) + (κ4 + κ3η

2
2)
]
.

Some fundamental analysis reveals that λlow
1 is zero when

η1 = 0, and it increases monotonically (always positive) before
the denominator of the above expression changes sign from
positive to negative. More specifically, λlow

1 → ∞ at

η1 = η2

√
(1 − ν2)l3 + (1 + ν2)l4η22
(1 − ν2)l5 + (1 + ν2)l6η22

,

where

l3 := 1− ν1 + γ(1 + ν2), l2 := 1− ν4 − γ(1− ν2) ,

l5 := 1 + ν1 − γ(1 + ν2), l6 := 1 + ν1 + γ(1− ν2) .

provided the coefficient of η2 above falls between 0 and 1,
namely

η2 >

√(
1− ν2
1 + ν2

)
·
γ(1 + ν2)− ν1
γ(1 + ν2) + ν1

:= η̄2 .

Similarly, if we let Ia(η1, η2;λ) = 0, we have

λlow
2 = l7

(
l8
η22
η1

− l9η1

)
, (16)

where

l7 :=

(
1− ν21
1− ν22

)
·

1

γ [1− ν2 − (1 + ν2)η22 ]
,

l8 := (1 + ν1)(1 − ν1 + γν2), l9 := (1− ν1)(1 + ν1 − γν2).

Actually, λlow
2 can be easily proved to be a monotonically

decreasing function of η1. It can be pointed out there are
two types of such lower bound for λlow: one is of monotonic
shape only presents to be λlow

1 ; the other is of kink shape
which is the conjunction of λlow

1 and λlow
1 . In the latter case,

the “kink” can be understood mathematically as the point
where Ia = IIa = 0 when η1 > 0 and λ > 0. Solving
λlow
1 (η1) = λlow

2 (η1) and dropping the invalid roots of η1, we
are left with the root

ηkink
1 = η2

√
1− ν1 + γν2
1 + ν1 − γν2

;



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:11, 2012

1599

thus, the possibility of the “kink” is guaranteed by forcing the
intersecting point ηkink

1 to be within (0, η2), which requires 0 <
γ < ν1/ν2. On the contrary, once γ > ν1/ν2, then ηkink

1 falls
outside (0, η2), therefore, λlow(η1) appears to be monotonic-
shape. In conclusion,

0 < γ < ν1/ν2 , kink shape λlow , (17a)

γ > ν1/ν2 , monotonic shape λlow . (17b)

IV. RESULTS FOR WRINKLING PROBLEM

A. Neutral stability curve

Now we are in position to investigate the role played
by the mechanical parameters γ, ν1 and ν2 on the neutral
stability (characterised by parameters λC , nC ) of the stretched
annular plate, where, λC(η1) = minn∈N λ(η1) is the critical
wrinkling load, and nC is the corresponding critical wrinkling
mode number. We fix the interface location η2 and the large
parameter μ (μ 
 1) and solve the eigenproblem numerically
[1]–[3], [12], [15] by using an optimal strategy.

Firstly, we found that higher elasticity modulus ratio γ :=
E1/E2 will reduce the resistance of the wrinkling of a
stretched bi-annular plate. Fig. 2 illustrates a range values of
γ = 0.5, 1 and 2 all with fixed Poisson ratio ν1 = ν2 = 0.3
and η2 = 0.5. It is easily seen that the three curves range in
sequence with different γ for all range of η1. It means that
with Poisson ratios fixed, the smaller γ is, the larger λC will
be, which is valid for the all range of η1 ∈ (0, η2); as η1 → η2,
whatever the value of γ is, all the curves of λC coincide at a
limit point (same for nC ). At this point, the inner annulus
disappears, the bi-annular shrinks to a single annulus with
inner radius η2 and Poisson ratio ν2, which is the same as
the single-annular case in [4], [5]. We have also conducted
systematical numerical simulations on various combinations
of Poisson ratio of this two annuli, which verify the above
conclusions.

Secondly, as γ fixed it is found that ν1 plays a dominant
role on the the neutral stability (λC , nC) when η1 is away from
η2, while as η1 → η2, ν2 appears to be of controlling effect.
Fig. 3 shows the effect of Poisson ratios of the two annuli
on the tensile instability of bi-annular plate with fixed γ = 1.
It is interesting to notice that in Fig. 3(a), the yellow dots
(ν1 = 0.3, ν2 = 0.1) follows immediately the red continuous
line (ν1 = ν2 = 0.3) when η1 < 0.4 or so. Also, the curves
of black circles (ν1 = 0.1, ν2 = 0.3) and its counterpart blue
continuous line (ν1 = ν2 = 0.1) approaches each other when
η1 < 0.4. This feature also applies for the corresponding
curves in Fig. 3(b) for the nC . Moreover, we found that with
fixed γ, both the curves of λC and nC approach its limit
points when η1 → η2 as ν2 is the same (the red continuous
line and black circles, the blue continuous line and the yellow
dots), which matches closely with the earlier conclusions.

Interestingly enough, our extensive numerical simulations
suggest two representative types of neutral stability curves
for λC , namely, the “kink” type (yellow dots in Fig. 2 and
3) and the “monotonic” type (black circles therein), which
are both different from the curves of stretched single-annular
plate(continuous lines). For the “kink” type neutral stability
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Fig. 2. Dependence of the critical eigenvalues λC and the
corresponding critical mode number on the ratio of Young’s
modulus of two annuli γ := E1/E2, other parameters are:
ν = 400, ν1 = ν2 = 0.3, η2 = 0.5.
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Fig. 3. Dependence of the critical eigenvalues λC and the
corresponding critical mode number on the Poisson ratio of
two annuli ν1, ν2; the other parameters are taken as ν =

400, γ := E1/E2 = 1, η2 = 0.5.

curves, with the increasing η1, λC increases first up to the
“kink”, then descends monotonically until η1 approaches η2.
While, in the “monotonic” type curves, λC increases with η1
monotonically.

B. Critical wrinkling modes and morphological changes

Both the “monotonic” and “kink” features can be traced
back to the pre-buckling hoop stress analysis in Section III,
which is the case for μ → ∞. For the plate scenario (0 <
μ < ∞) that information is not immediately relevant, although

W
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ρ
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localised
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the inner rim

localised
in ΩII near
the interface
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on (a) → (b)

localised at
ΩI ,ΩII

transition II
on (a) → (b)

localised at
the interface

Fig. 4. Four types of wrinkling patterns.
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for very large values of μ, we expect the latter situation to
mirror closely the former. Therefore, we will try to understand
by means of the pre-buckling analysis and the corresponding
critical eigenmodes.

(1) “kink” type neutral stability curves are incident to the
stretched bi-annular plate with flexible inner annulus (as indi-
cated in basic state analysis, 0 < γ < ν1/ν2), which follows
the features of the lower bound λlow as discussed in Section III.
When η1 is on the left but not close to the “kink”, the critical
eigenmodes are within region ΩI and localised to its inner rim
ρ = η1 (Fig. 4(a)). Also, on the right side of the “kink”, when
η1 → η2, the critical eigenmodes are localised to the interface
within region ΩII (Fig. 4(b)), which approaches the limiting
case of the stretched single-annular plate with η2 as its inner
rim. However, there is an interesting transition between the
aforementioned two types of eigenmodes, coinciding with the
vicinity of the “kink” of kink shape λC curve. With the largest
amplitude normalisation to 1, the localised part in ΩI shrink
gradually as η1 approaches the “kink”, meanwhile, there is
a bump increase in ΩII near the interface. When η1 nearly
approaches the “kink”, the amplitudes of the wrinkles in both
regions are not neglectalbe (Fig. 4(c)). Note that this is also
when nC shifts from its maximum, which means that at this
stage, the wrinkled bi-annular plate displays the maximum
number of wrinkles and these are localised in both regions
near the interface. On passing this point, the bump in ΩII

enlarges with the decrease of that in ΩI , at the same time, λC

decreases and nC shifts from its maximum to a smaller value
where discontinuity occurs.

(2) As indicated from the pre-buckling hoop stress analysis
in Section III, a stretched bi-annular plate with flexible inner
annulus tend to have“monotonic” type neutral stability curves.
However, it must be noticed that this type is different from the
monotonic ones of stretched single-annular plate in two points:
On the one hand, λC is very small when η1 is not near η2,
then increases sharply as η1 approaches η2, displaying a blow-
up like trend before arrives to it limit as η1 superposes with
η2. On the other hand, the plots of nC are not monotonic
increasing with respect to η1, but start at a small value then
jump to its maximum when η1 is near η2, then return to a
limit value at η1 = η2.

These significant features can be understood further by
looking at the critical eigenmodes. The critical eigenmodes
when η1 is far away from η2 or when η1 → η2 are localised
in ΩI (Fig. 4(a)) and ΩII (Fig. 4(b)) respectively, just similar
with the case in kink λC curves. However, this monotonic-
type λC has other features for the transition point (Fig. 4(d)):
on the process of η1 going close to η2, the localised wrinkles
move towards the interface, until it starts to cross the interface
as λC increase sharply; when the wrinkle crest crosses the
interface, nC reaches its first local maximum; after that, the
critical mode shift to the mode localised in ΩII as soon as
nC drop rapidly to its limit point at η2. It is to be emphasised
that during the whole range of η1, there is only one bump for
the critical mode, distinct from that of the former “kink” type.
From a physical point of view, the transition of the critical
eigenmodes occurs when the critical wrinkle number is in the
vicinity of its maximum. Also, this occurence happens as the

two-bump wrinkles or the wrinkle crest passes the interface,
which requires much higher elastic energy to buckle, thus,
for μ � 1 such a case is only noticeable for an extremely
narrow window of 0 < η1 < η2 < 1. Furthermore, because the
Young’s modulus E2 has been rescaled out, when γ := E1/E2

is fixed, the Poisson ratio of the localised region plays a
dominant role on the critical external loading λC .

V. CONCLUSION

The problem of tensile wrinkling for a radially stretched
thin annular plate [5] has been extended to a system consist-
ing of two (mechanically different) concentric annular plates
perfectly bounded along a circular interface. The wrinkling
problem is predicted firstly by the analysis of basic state
for a limit case as μ → ∞, the analysis also provides a
two types of neutral stability curves, the so called kink-type
and monotonic-type, which correspond to the conditions of
the relations of parameters whether γ := E1/E2 is smaller
or larger than ν1/ν2. Extensive numerical simulations have
been carried out by using numerical strategies of an adapted
version of compound matrix method, in conjugation with a
advanced collocation solver sbvp. The response curves and
neutral stability curves are obtained with respect to different
combinations of the mechanical parameters of the two annuli.
The neutral stability curves also can be classified into two
different types, the monotonic and the kink shape. More
specifically, a bi-annular plate with more flexible inner part
E1/E2 < ν1/ν2 is typically seen a “kink” shape neutral sta-
bility curves, and of higher resistance against wrinkling under
stretching (defined by λ = U1/U2), while such a plate with
stiffer inner annulus is tend to appear a “monotonic” shape
neutral stability curves with lower critical external stretching.
By further investigations on the critical eigenmodes, we have
gained a deeper understanding on the effects of the disconti-
nuities of the interface on either the critical external stretching
and the wrinkling mode. The strategy presented in this paper
can be extended to more number of concentric annuli that
make up the multi-annular plate. It would be of interest to
know how the kink-like feature in the critical stability envelope
is modified by the addition of at least another annular sub-
region, how the discontinuities affect the wrinkling patterns.
Also, the singular-perturbed feature of this problem enable
use to conduct asymptotic analysis, and this is the subject of
a forthcoming work [6].
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