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Abstract—Competing risks survival data that comprises of more 

than one type of event has been used in many applications, and one 
of these is in clinical study (e.g. in breast cancer study).  The 
decision tree method can be extended to competing risks survival 
data by modifying the split function so as to accommodate two or 
more risks which might be dependent on each other.  Recently, 
researchers have constructed some decision trees for recurrent 
survival time data using frailty and marginal modelling.  We further 
extended the method for the case of competing risks.  In this paper, 
we developed the decision tree method for competing risks survival 
time data based on proportional hazards for subdistribution of 
competing risks.  In particular, we grow a tree by using deviance 
statistic.  The application of breast cancer data is presented.  Finally, 
to investigate the performance of the proposed method, simulation 
studies on identification of true group of observations were executed. 
 

Keywords—Competing risks, Decision tree, Simulation, 
Subdistribution Proportional Hazard.  

I. INTRODUCTION 
huge amount of data has been rapidly accumulated, due 
to the fast development of computer technology.  A new 

data analysis problem has arisen in such situation.  Data 
mining is used to find important “knowledge” from large 
databases.  Decision tree as one of many data mining 
techniques has become a popular approach for segmentation, 
classification and prediction by applying a series of simple 
rules.  The advantage that researchers have is that the results 
can be understood and explained easily, since it is expressed 
by a tree structured diagram as a final output.  Decision tree 
automatically constructed from data have been used 
successfully in many real-world situations. Their effectiveness 
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has been compared widely to other automated data exploration 
methods and to human experts.  Decision tree can be an one of 
the important tools in data mining and can provide useful 
insight of the data being analysed.   

The landmark work of a decision tree is the Classification 
and Regression Trees (CART) methodology of [1], who 
introduced a tree methodology for univariate discrete or 
continuous response.  A different approach was C4.5 
proposed by [2]. 

There is now quite a lot of work dealing with decision tree 
especially in survival analysis ([3] – [13]), but there are no 
decision tree methods for competing risks survival data.  Since 
analysis of competing risks survival data is complex due to the 
presence of more than one cause of failure, then it should be a 
useful method to develop. 

In this paper, we extended the decision tree for competing 
risks survival time data analysis by utilizing the proportional 
hazards model for subdistribution.  In the application part, 
breast cancer data was studied where there were several 
events that might occur following the treatment after breast-
conserving surgery [14]. 

II. REGRESSION TREE FOR COMPETING RISKS 
CART is not directly applicable to survival and competing 

risks data because of the censored observations.  Additionally, 
the major focus in survival analysis is on the survival 
(distribution) or hazard function rather than the mean 
function.  In extending tree based techniques to cope with 
univariate or independent failure times, some approaches 
allow the direct use of the CART procedure by defining 
appropriate prediction error terms, while the others have made 
modifications to CART in an effort to overcome the 
difficulties naturally associated with censored failure times. 

In the development of tree for competing risks, we used 
deviance for the between-node difference. Deviance is derived 
from likelihood ratio test statistic of proportional hazards 
model for subdistribution developed by [15].  Therefore, only 
internal nodes have associated deviance statistics.  The tree 
structure is different from CART because, for original tree, 
each node, either terminal or internal, has an associated 
impurity measure.  This is why the CART pruning procedure 
is not directly applicable to such type of tree.  However, 
Segal’s pruning algorithm [4] which exerts little 
computational burden, has resulted in tree that have become a 
well-developed tool. 
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We consider a typical setting for competing risks survival 
data. Suppose that there are n individuals and each subjected 
to J (J ≥ 2) types of event.  Let *

iT  be the time when ith unit 
experiences one of the jth type of event, and let Ci be the 
corresponding censoring time, where j = 1, 2, …, J; i = 1, 2, 
…, n.  The sample consists of the set of vectors {(Ti,δi,Zi) : i = 
1, 2, ..., n}.  Here, Ti = min( *

iT ,Ci) are the observed failure 

times; δi = I( *
iT  < Ci), where I(•) is an indicator function; Zi 

∈ ℜp denotes the covariate vector for the ith unit.  Since 
recursive partitioning handles covariates one by one, we 
assume p = 1 for the ease of illustration.  In order to ensure 
identifiability, we also assume that the failure time *

iT  is 
independent of the censoring time Ci conditional on the 
covariate Zi, for any i = 1, …, n. 
 
In the subdistribution approach by [15], the subdistribution 
hazard for each type of failure is formulated with the 
proportional hazards model.  Since we only consider splitting 
on a single covariate, the subdistribution hazard function 

( )tλ~  is assumed to take the following form: 
 

 ( ) ( ) ( )[ ] JjZItZt i
j

jij ,...,1,exp~;~
0 =<= γβλλ γ

              (1) 
 
where ( )tj0

~λ  is an unspecified baseline subdistribution 

hazard function and j
γβ  is an unknown regression parameter 

corresponding to cutpoint γ and type of event j.  We assume 
that there is a change point effect of Zi on the subdistribution 
hazard function with cutpoint γ. 
 
When there is no censoring, j

γβ  can be estimated in exactly 

the same way as in the Cox model for right-censored data 
using a modified risk set.  Here the risk set, R(t), at time t is all 
individuals yet to experience any event plus all those 
individuals who experienced types other than jth event at a 
time prior to t.  The risk set leads to a partial likelihood: 
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The log partial likelihood is 
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For the case where competing risks data contained censored 
observations, the score function is constructed by using 
weight developed by inverse probability of censoring 
weighting technique.  Value of j

γβ  that solve the score 

function is the desired estimators. 
 

Given the estimated j
γβ , the deviance is defined as 

( )jl γβ̂2− .  This is the summary measure of agreement 

between model and the data, where the smaller value 
corresponds to better goodness of fit [16]. 
 
The splitting function is defined in term of deviance as 

( ) ( )jlhR γβγ ˆ2, −= .  This statistic can be derived from 

likelihood ratio for testing the significance of j
γβ  in which 

j
γβ̂  is its maximum likelihood estimator.   

 
In summary, when a tree is constructed, a proportional 
subdistribution hazard structure is assumed within each node.  
The splitting function ( )hR ,γ  is evaluated at each allowable 
split, and the best cutpoint γ* is chosen such that 

( ) ( )hRhR h ,min*, γγ γ∈= .  This process is applied 

recursively until all the nodes cannot be split further. 
 

Algorithm to Grow Tree 
To grow a tree, the deviance statistic is evaluated for every 

possible binary split of the predictor space Z.  The split, s, 
could be of several forms: splits on a single covariate, splits 
on linear combinations of predictors, and boolean combination 
of splits. The simplest form, in which each split relates to only 
one covariate, can be described as follows: 
1. If Zk is ordered, then the data will be split into two groups 

specified by {Zk < γ} and {Zk ≥ γ} respectively; 
2. If Zk is nominal, then any subset of the possible nominal 

values could induce a split. 
 

The "best split" is defined to be the one corresponding to 
the minimum deviance statistic. Subsequently the data are 
divided into two groups according to the best split.  

Apply this splitting scheme recursively to the sample until 
the predictor space is partitioned into many regions. There 
will be no further partition to a node when any of the 
following occurs: 
1.  The node contains less than, say 10 or 20, observations. 
2.  All the observed times in the subset are censored. 
3.  All the observations have identical covariate vectors or 

the node has only complete observations with identical 
survival times. 

 

This procedure results in a large tree Γ0, which could be used 
for the purpose of data structure exploration. 
 

Algorithm to Prune Tree 
The idea of pruning is to iteratively cut off branches of the 

initial tree, Γ0, in order to locate a limited number of candidate 
subtrees from which an optimally sized tree is selected.  For 
the proposed method, we adopt Segal’s pruning algorithm 
(Segal, 1988) which exerts little computational burden.  The 
steps for adopting this algorithm are as follows: 

 
1.  Initially growing a large tree. 
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2. To each of the internal nodes in the original tree, assign 
the maximal splitting statistics contained in the 
corresponding branch.  This statistic reflects strength of 
linking for the branch to the tree. 

3. Among all these internal nodes, finds the one with the 
smallest statistic.  That is, find the branch that has the 
weakest link and then prune off this branch from the tree. 

4. The second pruned tree can be obtained in a similar 
manner by applying the above two steps to the first 
pruned tree. 

5. Repeating this process until the pruned tree contains only 
the root node, finally a sequence of nested trees is 
obtained.   

 

The desired tree can be obtained by plotting the size of 
these trees against their weakest linking statistics.  The tree 
corresponding to the “kink” point in the curve is chosen as the 
best one. 

III. ILLUSTRATION 
As an application of competing risks tree, we used breast 

cancer data from Fyles et al. (2004).  Between December 
1992 and June 2000, 639 women 50 years of age or older who 
had undergone breast-conserving surgery for an invasive 
adenocarcinoma 5 cm or less in diameter (pathological stage 
T1 or T2) were randomly assigned to receive breast irradiation 
plus tamoxifen, RT+Tam, (319 women) or tamoxifen alone, 
Tam, (320 women).  Participating centers included the 
Princess Margaret Hospital, the Women’s College Campus of 
the Sunnybrook and Women’s College Health Science Centre 
in Toronto, and the British Columbia Cancer Agency centers 
in Vancouver and Victoria.  Table I contains the list of 
variables and their description. 
 

TABLE I 
DESCRIPTION OF VARIABLES IN THE BREAST CANCER STUDY  

Variable 
name 

Description 

tx Randomized treatment: 0=tamoxifen, 
1=radiation+tamoxifen 

Variable assessed at the time of randomization 
pathsize Size of the tumour (cm) 
hist Histology: 1=ductal, 2=lobular,3=medullary, 

4=mixed, 5=other 
hrlevel Hormone receptor level: 0=negative, 1=positive 
hgb Haemoglobin (g/l) 
nodedis Whether axillary node dissection was done, 0=Yes, 

1=No 
age Age (years) 

Outcome variables 
time Time from randomization to event (relapse, second 

malignancy or death) or last follow up (years) 
d Status at last follow-up: 0=censored, 1=relapse, 

2=malignancy, 3=death 
 

The events that might occur in breast cancer study were 
relapse, second malignancy and death.  The patient’s survival 

time was the time length between the date of randomization 
and the occurrence of one event or last follow-up date.   

Since the goal of regression tree is to partition patients into 
groups on the basis of similarity of their responses to 
treatment, we constructed a separated regression tree for each 
treatments (tamoxifen alone and tamoxifen plus radiation).  
The partitioning was based on baseline characteristics such as 
patient demographics and clinical measurements.  The final 
tree structure provides treatment effect within each group of 
patients.  The question to be answered by this type of analysis 
is – for whom does the treatment work best? 

The cumulative probability for relapse by time t is shown in 
Fig. 1.  Here we compared the probability for two types of 
treatment.  The patients with tamoxifen plus radiation have 
less probability to relapse compared to those with tamoxifen 
alone as expected.  It showed the advantage of radiation in 
reducing the occurrence of relapse. 
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Fig. 1 Cumulative Probability for relapse for two types of treatment 

 
The exploration was further executed to find group of 

patients for each treatment by using decision tree.  With 
respect to probability for relapse, we obtained four groups of 
patients which were treated by tamoxifen alone, and three 
groups of patients which were treated by tamoxifen plus 
radiation (Fig. 2). 
 

 
Fig.  2 Decision tree for probability for relapse 

 
The description of four groups of patient which was treated 

by tamoxifen alone is: 
1. Node 2: tumour size < 1.3 cm 
2. Node 4: tumour size ≥ 1.3 cm and age < 59.5 years 
3. Node 6: tumour size ≥ 1.3 cm and age ≥ 59.5 years and  
    haemoglobin < 139 g/l 
4. Node 7: tumour size ≥ 1.3 cm and age ≥ 59.5 years and 
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    haemoglobin ≥ 139 g/l 
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Fig. 3 Cumulative Probability for relapse for groups resulted by 

decision tree for patient with tamoxifen alone 
 

For patients with tamoxifen plus radiation, there were three 
groups resulted by decision tree, namely: 
1. Node 2: tumour size < 2 cm 
2. Node 4: tumour size ≥ 2 cm and hormone receptor level 
    negative 
3. Node 5: tumour size ≥ 2 cm and hormone receptor level 
    positive 
 

Women with tamoxifen plus radiation whose tumour size 
less than 2 cm have the lowest probability to relapse, whereas 
the highest probability is for those whose tumour size ≥ 2cm 
and negative hormone receptor level (Fig. 4). 
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Fig. 4 Cumulative Probability for relapse for groups resulted by 

decision tree for patient with tamoxifen plus radiation 
 

Overall comparison for both treatments reveals that the 
poorest and best prognosis are from tamoxifen plus radiation 
treatment group.  We found that tamoxifen plus radiation is 
not effective for those women whose tumour size greater than 
2 cm and negative hormone receptor level. This group is more 
likely to relapse compared to the others.  On the other hand, 
patients with tamoxifen plus radiation and tumor size less than 
2 cm have the best prognosis, because they are less likely to 
relapse (Fig. 5). 
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Fig. 5 Cumulative Probability for relapse for all groups resulted by 

decision tree 
 

The analysis for two other events (second malignancy and 
death) showed different results.  This showed that patients 
give different responses to the treatment. 

IV. SIMULATION STUDIES 
Several simulation studies were conducted to investigate 

the performance of the proposed method, since it is difficult to 
assess regression method analytically. For simplicity, we 
considered competing risks data with two types of event 
(j=1,2) and their survival times might be censored.  

The true population model consists of four groups of 
observations determined by their covariate values.  Those four 
groups are node 4, node 5, node 6 and node 7 of tree Γ1 or Γ2 
(Fig. 6). 

 

 
 

Fig. 6 True tree for simulation 
 

In addition to the observed data, censoring times were also 
introduced independently from a uniform distribution to 
obtain approximately 23%, 47% and 71% censoring [16].  
Each simulation had 1000 repetitions and each repetition 
consist of 400 competing risks survival time data. 

Simulations were summarized in terms of capability in 
identifying prognostic groups. A tree will be classified as 
“Identified” if all 4 prognostic groups or parts of true tree are 
correctly identified.  Otherwise, the tree will be classified as 
“Not identified”. Table II summarizes the simulations. The 
results show that the proposed method performs quite well in 
the identification of correct data structure.  However, the 
performance decreases as the censoring percentage increases. 

 
TABLE II 

EVALUATION OF IDENTIFYING DATA STRUCTURES 
Censoring (%) Identified Not identified 

0 99.4% 0.6% 
23 98.3% 1.7% 
47 94.1% 5.9% 
71 62.4% 37.6% 
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V. CONCLUSION 
In this article, we have proposed a competing risks tree 

method based on proportional hazards of subdistribution 
model.  The proposed method intends to provide an 
exploratory data analysis for competing risks survival data, 
and it is complimentary rather than competitive to those 
parametric or semi-parametric methods.  The application on 
breast cancer data showed that the method could find groups 
of observations which had similar response to treatment.  
Simulation results showed that the proposed method performs 
well for prognostic classification. In all of the simulations, 
high portion of data structures can be correctly identified.  
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