
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

389

Abstract—Point quad tree is considered as one of the most

common data organizations to deal with spatial data & can be used to
increase the efficiency for searching the point features. As the
efficiency of the searching technique depends on the height of the
tree, arbitrary insertion of the point features may make the tree
unbalanced and lead to higher time of searching. This paper attempts
to design an algorithm to make a nearly balanced quad tree. Point
pattern analysis technique has been applied for this purpose which
shows a significant enhancement of the performance and the results
are also included in the paper for the sake of completeness.

Keywords—Algorithm, Height balanced tree, Point pattern
analysis, Point quad tree.

I. INTRODUCTION
UAD tree and its various derivatives are being considered as the
backbone for the storage, retrieval and analysis of spatial data.

Four children of each node of the quadtree represent the four
quadrants of the two dimensional space under it and the X, Y
coordinates of point (also area) features are stored and thus the
quadtree is formed. This way of storing the point features in a
quadtree according to their spatial distribution helps in searching the
tree in a depth-first search manner. Searching on quadtree is a
frequent operation for routine GIS [12]queries and it becomes a
bottleneck when the quadtree is not height balanced and hence the
need for height balanced quadtree is felt. In this paper we try to apply
point pattern analysis techniques to store point quadtree in nearly
height balanced order and have shown the results for searching
thereof.
 A. Quad Tree and Its Derivatives: The quadtree [1] is a
hierarchical, variable resolution data structure based on the
recursive partitioning of a plane into four quadrants. This data
structure is widely used for representing collection of points.
In 1974 Finkel & Bentley proposed point quadtree [2] to store
points in a multidimensional space. Each node of the point
quadtree has four children, each representing a quadrant of
four directions, namely, NE, NW, SW, and SE. The first point
that is inserted serves as the root node, while the second point
is inserted into the relevant quadrant of the tree rooted at the
first point and so on. Point quadtree is well suited for
searching but it creates significant search overhead when
points are inserted into the tree in an arbitrary fashion
resulting a highly unbalanced point quadtree. In 1982, Keden
proposed bisector list quadtree (BLQT) [3] as a modification

1 is with the Asansol Engineering College, Asansol, West Bengal
University of Technology, PIN CODE 713305, INDIA(phone:
+919474316464; fax:+913323373959 ; e-mail: amitava.c@rediffmail.com).

2 is with the Asansol Engineering College, Asansol, West Bengal
University of Technology, PIN CODE 713305, INDIA(email:
sudipkumarde@gmail.com).

3 is with the National Institute of Technical Teachers’ Training &
Research Institute, Block-FC, Sector-III, Salt Lake City, Kolkata, PIN CODE
700106, INDIA(e-mail:ranjandasgupta@ieee.org).

to store extended objects. In BLQT extended objects
intersecting more than one quadrant are stored in x & y
bisector line lists associated with the parent quadtree. But the
x & y bisector line list can grow long & then severely can
affect the search time. To avoid this concept, Brown proposed
Multiple Storage Quad Tree (MSQT) [4], which stores the
interesting objects in all of the intersected quadrants.
Although it removes the use of the bisector list but also wastes
a lot of space by storing objects more than once. In order to
avoid this problem objects are marked the first time they are
reported, and once marked, are not reported again. Two layer
quadtree [5] is another data structure to resolve bisector list
problem, which sorts and stores objects in the layer based on
their left corner locations & the size attributes of the objects
are also stored as additional information in the directory layer.
It is useful for both region query and size query. Quad List
Quad Tree (QLQT) [6] is a modification of MSQT with four
lists in each quadrant. If any object intersects the leaf
quadrant, a reference to this object will be included in one of
the four lists according to the relative position of the object
w.r.t. the leaf quadrant it intersects. QLQT is efficient for
large window queries but sometimes it becomes heavily
skewed due to the lists in each quadrant. The YAQT [7] is
another modified form of MSQT with no list required for
storing crossing objects. It improves the region query speed
with the cost of increasing memory requirement. The
Multicell Quad Tree [8] is a two level tree structure. At the
upper level it is a MSQT and at the lower level each leaf quad
of the MSQT is further subdivided into equal sized cells. It is
useful for large window query and it requires less memory
space than MSQT. PR quad tree [9] is another variant of quad
tree to store points. It is based on the recursive decomposition
of the underlying plane into four similar quadrants until each
quadrant contain no more than one point. Although point’s
insertion and deletion are quite simple with this data structure,
the trees may contain arbitrary depth, independent even on the
number of input points. Besides points, quad tree is a well
accepted data structure for representing regions, curves,
surfaces, volumes etc. For more discussions on relevant topics
see [10], [11], [13], [14], [15]. It has been observed that most
of the research work on quad tree & its derivatives had
focused on the storage & retrieval of various geographical
features & limitation of one such structure had been taken care
of in some other modified version. Whatever are the add-on
modifications, the inherent quad tree structure suffers from the
height balance issue while a huge number of features are
stored in the quad tree in an arbitrary fashion. No significant
effort was observed to overcome this height balance issue and
to make the searching operation on quad tree more efficient.

Amitava Chakraborty, Sudip Kumar De, and Ranjan Dasgupta
Balancing of Quad Tree using Point Pattern Analysis

Q

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

390

II. POPULATING QUAD TREE WITH POINTS IN ARBITRARY
FASHION

The quad-tree node and the four quadrants have been shown in Fig. 1.

Fig. 1 Quadtree

The point quad-tree is constructed consecutively by inserting the
data points one by one. To insert a point, firstly a point search is
performed. If no point corresponding to target point (the point which
has to be inserted) is found in the tree, then the target point is inserted
into the leaf node where the search has terminated. The planar
representation of a point quadtree is shown in Figure 2(a).

Fig. 2 (a) Planar Representation of Point Quad tree

Fig. 2 (b) Point Quadtree (Arbitrary Fashion)

Searching in a quad-tree is similar to searching in an

ordinary binary search tree. At each level, one has to decide
which of the four sub trees need to be included in the future
search. This process is repeated recursively up to the depth of
the tree. In case of point quad-tree at each level, three sub

trees are rejected and only one sub tree is followed for future
search. The point Quad-trees are especially attractive in
applications that involve search [1]. The height as well as the
shape of the point quadtree highly depends on the insertion
sequence. When point quadtree is populated in arbitrary
fashion then the height balanced quadtree might not be
achieved. As a result the average searching time increases and
the advantage of using point quad-tree is reduced.

Fig. 2 (c) Planar Representation of Point Quadtree

Fig. 2 (d) Point Quadtree

For example, the planar representation of points and its

corresponding point quad-tree has been shown in Figure 2(b) when
point insertion is in the sequence e.g. I, J, A, F, B, G, C, H, D, K, and
E. The depth of the tree becomes 6 and the first leaf is found at level
1.So, it becomes unbalanced. But, if the insertion sequence is- A, B,
F, G, C, H, D, J, I, E, K we find a nearly balanced tree. (See figure
2.(c) and 2.(d))

III. POINT PATTERN ANALYSIS
 The Point Pattern Analysis is a technique that is used to identify
patterns in spatial data. There are several methods and algorithms that
endeavor to describe pattern for a collection of points. One of the
common methods for spatial pattern analysis is Quadrant Count
Method and a brief review of the method is presented in Sec 4.1 and
its use for balancing quadtree is described in Sec 5.0.

A. Quadrant Count Method:
According to this method total data set or total region is partitioned

into n equal sized sub regions. These sub regions are also known as
quadrants. The size of the quadrant takes an important role to
determine the point pattern. If quadrant size is too large then patterns
within that large quadrant may be missed. Again if quadrant size is too
small and if there exist clustering then due to small scales it (clustering

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60

X Value

Y
Va

lu
e

Series1
A

B

F

G

C

H

EKD

J
I

I

J

NE

A

NE

F

NE

B

SE

G

SE

C

NW
H

NW
D

SE

K

SE

E

NE

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60

X Value
Y

 V
al

ue

Series1
A

B

F

G

C

H

EKD
JI

 A

 B C D E

 H

N N S S

 F G J I K

N
S

S N N S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

391

pattern) may be missed. If there is a large amount of variability in the
number of points from quadrant to quadrant then this implies a
tendency towards clustering. It happens when some quadrants have
many points and some quadrants have none. If there is a little amount
of variability in the number of points from quadrant to quadrant then
this implies a tendency towards a pattern that is termed regular,
uniform, or dispersed. It happens when the number of points per
quadrant is about same in all quadrants.

Let us partition the total region into n sub regions and:-

a) the total number of points in each quadrant be Xi
b) the mean number points per quadrant be M= (Total

number of points) / n

 Then variance of the number of points per quadrant (V) is

1

/)(
1

2

1

2

−

−
=

∑∑
==

n

nXX
V

n

i
i

n

i
i

And the Variance to Mean Ratio is defined as

 VTMR =V/M

If VTMR >1, it indicates a tendency toward clustering in the pattern.

If VTMR < 1, then it indicates an evenly spaced arrangement of points
[12].

If VTMR=1, then the pattern is random.

IV. USE OF QUADRANT COUNT METHOD IN QUAD TREE
HEIGHT BALANCING

 The main logic behind the balancing mechanism is to choose a
point as root such that each quadrant has more or less same number
of points. As the quadrant count method helps us to find out the point
pattern of the distributed points we apply this point pattern analysis
technique in our algorithm with necessary modification.

A. Proposed Algorithm
 The algorithm Balance_Maker() deals with two functions. Firstly
the function recursively calls two sub functions, first one of which
selects the seed points & the second one employs the actual physical
points based on that seed points. Ultimately the function provides the
nearly balanced quadtree as output. In this algorithm the physical
points are stored in both X-value & Y-value wise and are stored
separately. Suppose the set of physical points is P=[(x3, y1), (x5,y3),
(x2,y4), (x1,y5), (x4,y2)] then the set of X-value-wise-sorted-points
would be PX=[(x1,y5),(x2,y4), (x3,y1), (x4,y2), (x5,y3)] and the set
of Y-value-wise-sorted-points would be PY =
[(y1,x3),(y2,x4),(y3,x5),(y4,x2),(y5,x1)].The main logic of this step is
to find out the position where the point distribution in each quadrant is
more or less same. To find that position some additional points are
created whose x values are taken from PX set and y values are taken
from PY set. Then the set of newly created points would be V= [(x1,
y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)]. We call these points as
Virtual points because these are not the actual physical points. The x
value of virtual point is taken from X-value-wise-sorted-array and the
y value is taken from Y-value-wise-sorted-array. At each virtual point
a partition (we termed it as virtual partition) is made and total number
of physical points in each quadrant is counted and then the Quadrant
Count Method is applied with an exception. The exception is that the

total area is not divided into four equal sized quadrants. According to
this method Variance to Mean Ratio (VTMR) is calculated for each
virtual point. The virtual point with minimum VTMR is selected. We
call this point as ‘Seed point’. The Seed point is a virtual point and at
each seed point virtual partition has been made. But we have to
consider the actual physical partition rather than virtual partition. For
this reason the physical point near to the seed point is searched. To
find the nearest physical point of the seed point, Pythagorean distance
measurement formula is used. The distance between each physical
point, within the range, and the seed point is calculated. The physical
point for which minimum distance is achieved is selected. We denote
that physical point as Candidate Balanced Point. This process executes
recursively until all the physical points are treated as candidate
balanced point.

A. Algorithms:

i) Algorithm: Balance_Maker ()

Input: The range of x & y co-ordinate, total no of physical points,
physical points with x, y coordinate

Output: A Balanced Quadtree

Procedure:

Step 1: If the total no. of points within the range is 0, then
return
Step 2: Call Virtual_Point_Finder (range) // to find out seed
points
Step 3: Call Physical_Point_Finder (range) // to find out
physical points
Step 4: Find the new ranges for all four quadrants.
Step 5: Store the physical point, supplied by
Physical_Point_Finder (range)
Step 6: Call Balance_Maker () for each quadrant, with specific
range and total no. of points within that range.
Step 7: Store all the candidate balanced points using the
sortXvalue [] & sortYvalue [] arrays.

ii) Algorithm: Virtual_Point_Finder (range)

Input: The sortXvalue [], sortYvalue [] and the range

Output: A list of seed points

Procedure:

Step 1: Extracts those points which are within the range and
store those point’s reference into Xwise_index[], in increasing
order of X value

Step 2. Extracts those points which are within the range and
store those point’s reference into Ywise_index[], in increasing
order of Y value

Step 3: Store the total no. of points within the given range
Step 4. Store the index of the point within the range. // Virtual

point’s X value & Y value are taken from the X value of sortXvalue
& Y value of sortYvalue []

Step 5: Find that virtual point for which point distribution is
better than other virtual points. Count the no. of physical points for
all four quadrants.

Step 6.1: Calculate the Variance & Mean as accordance.
Step 6.2: Calculate VTMR = Variance/Mean
Step 6.3: Find the Virtual Point for which minimum VTMR is

achieved // store the points as seed points.

iii) Algo: Physical_Point_Finder (range)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:4, 2011

392

Input: sortXvalue [], sortYvalue [] and seed points

Output: A set of candidate balanced points

Procedure:

Step 1: Starts with total no. of points within the range
Step 2: Store virtual point’s X value(vpx) & virtual point’s Y

value(vpy)
Step 3: Find physical point’s x value(x1) & physical point’s y

value(y1)
Step 4: Calculate the distance,

 d = √((vpx-x1)2+(vpx-y1)2)
Step 5: Store selected physical point’s coordinate ppx & ppy
Step 6: Make partition at (ppx,ppy) and count down the number

of points for all four quadrants.
Step 7: Store the index number of selected physical point & also

store the total no. of points for all four quadrants.

V. RESULTS
 In the real world objects within a particular area or zone are not
distributed evenly. Rather it is observed that within an area some
places are highly populated and some places are lowly populated. To
take such effect of the real world situation our input data points are
also not distributed within the total area or total zone. The total zone
or simply zone is subdivided into sub zones and each sub zone is
arbitrarily populated with different percentage (0 to 100%) of data
points. We have done our experiment with 4000 data points. We
assumed that the level of the root node is 1.

A. Comparison of Results

Comparison in Computer Time

0

0.5

1

1.5

No. of Differet Areas

Se
co

nd
s

Balanced
Unbalanced

Balanced 0.5 0.521 0.493 0.516 0.495 0.505 0.511 0.511 0.52 0.489
Unbalanced 0.953 0.865 0.906 0.745 0.88 0.932 0.943 0.854 0.838 0.906

1 2 3 4 5 6 7 8 9 10

Fig. 3 Average Search Time-wise Comparison

Each row in the Table 1 corresponds to a unique zone, average

search time with respect to arbitrary fashion insertion and nearly
balanced quad tree according to our algorithm.The average search
time for the quadtree created in arbitrary fashion and nearly balanced
quad tree are 0.8822667 & 0.5061 respectively. From the result it is
clear that if point quadtree is populated in arbitrary fashion then the
quad tree may not be a height balanced one. As a result average search
time increases. (See Table I) The result shows that the tree becomes
nearly height balanced by using the proposed algorithm based on point
pattern algorithm. The comparison of the result is also shown in the
figure 3.

TABLE I
COMPARISON OF THE ARBITRARY INSERTION & NEARLY BALANCED QUAD TREE

VI. CONCLUSION
Balancing of tree is an age-old problem and several attempts had

been made to balance a quad tree to increase the efficiency of overall
performance. Here we use point pattern analysis technique on quad
tree with due modifications. After implementation of our algorithm,
we notice that performance of it has improved.

REFERENCES
[1] H. Samet, “The quadtree and related hierarchical data structures”, ACM

Computing Surveys 16, 2(June 1984), pp. 187-260.
[2] R. A. Finkel & J. L. Bentley, “Quad trees – A data structure for retrieval

on composite keys”, Acta Inform., vol. 4, no. 1-9, 1974.
[3] G. Keden, “The quad-CIF Tree: A data structure for hierarchical on lone

algorithms”, in Proc. 19th Design Automation Conf. , pp. 352-357, June
1982.

[4] Brown R. L. “Multiple storage quad tree : a simpler faster alternative to
bisector list quad trees”, “ IEEE Trans. Computer Aided Design Vol
CAD-5 pp 413-419, July 1986.

[5] W. Li, S. Legendre & K. Gardiner, “ Two-layer quadtree: a data
structure for high-speed interactive layout tools”, International
Conference Computer-Aided-Design, pp. 530-533, 1988.

[6] W. Ludo & D. Wim, “ Quad List Quad Tree: A geometrical structure
with improved performance for large region queries” Computer –Aided
Design, Vol-8 March 1989.

[7] P. V. Srinivas & V.K. Dwivedi, “ YAQT: Yet Another Quad Tree”,
IEEE Trans., pp. 302-309, 1991.

[8] S. J. Lu & Y. S. Kuo, “ Multicell Quad Trees”, IEEE Trans., pp. 147-
151, 1992.

[9] J. A. Orenstein, “Multidimensional tries used for associative searching”,
[10] Information Processing Letters 14, 4(June 1982), 150-157.
[11] Pei-Yung Hsiao, “Nearly Balanced Quad List Quad Tree- A Data

Structure for VLSI Lay out Systems”, 1996 OPA(Overseas Publishers
Association) Amsterdam B. V.

[12] Pei-Yung Hsiao & Lih-Der Jang, “Using a Balanced Quad List Quad
Tree to speed Up a Hierarchical VLSI Compaction Scheme”, IEEE,
1991.

[13] David O’Sullivan & David J. Unwin, “ Geographic Information
Analysis”, John Wiley and Sons, 2002.

[14] Ralf Hartmut Güting, “An Introduction to Spatial Database Systems”,
Special Issue on Spatial Database

[15] A. Klinger, Patterns and Search Statistics , in Optimizing Method in
Statistics, J. S. Rustagi, Ed., Academic Press, New York, 1971, pp. 303-
337.

[16] H. Samet & R.E. Webber, “ Storing a collection of polygons using
quadtrees,” ACM Transactions on Graphics 4, 3(July 1985), pp. 182-
222(also Proceedings of Computer Vision and Pattern Recognition 88,
Washington, DC, June 1983,pp. 127-132).

Zones Avg. Search Time
(for Arbitrary Fashion)

Avg. Search Time
(Nearly Balanced)

1 0.953333 0.5

2 0.864667 0.521

3 0.906333 0.493333

4 0.744667 0.515666

5 0.880333 0.495

6 0.932333 0.505

7 0.942667 0.510666

8 0.854 0.510666

9 0.838333 0.520333

10 0.906 0.489333

Avg. 0.8822667 0.5061

