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A weighted least square algorithm for low-delay
FIR filters with piecewise variable stopbands

Yasunori Sugita, Toshinori Yoshikawa, and Naoyuki Aikawa

Abstract—Variable digital filters are useful for various signal
processing and communication applications where the frequency
characteristics, such as fractional delays and cutoff frequencies, can
be varied. In this paper, we propose a design method of variable
FIR digital filters with an approximate linear phase characteristic
in the passband. The proposed variable FIR filters have some
large attenuation in stopband and their large attenuation can be
varied by spectrum parameters. In the proposed design method, a
quasi-equiripple characteristic can be obtained by using an iterative
weighted least square method. The usefulness of the proposed design
method is verified through some examples.

Keywords—Weighted Least Squares Approximation, Variable FIR
Filters, Low-Delay, Quasi-Equiripple

I. INTRODUCTION

Variable digital filters (VDFs) are digital filters with control-
lable spectral characteristics such as variable cutoff frequency
response, adjustable passband width, controllable fractional
delay, etc. [1]. They have many applications in different areas
of signal processing for communications, acoustics, images,
measurements, and so on [2]-[8].

In the field of measurement signal processing, a digital filter
with a large stopband attenuation and a linear phase charac-
teristic is required to perform high-precision measurements.
While an exactly linear phase FIR filter possesses many good
properties, its group delay could be unacceptably large. This
causes a fall of processing speed since the hardware required
for filtering and a computational cost become a large. In
order to realize high-speed processing, there is a way that the
large stopband attenuation is given only in the frequency band
including a principal noise. However, in this way, the filter
must be redesigned whenever the frequency band including
the principal noise changes.

In [3]-[5], authors considered to design the exactly linear
phase variable FIR filters in which a piecewise large attenu-
ation band of the stopband is variable. As a result, the filter,
has about the same measurement accuracy as the case of a
filter with a large attenuation in the overall stopband, was
implemented by few degrees.

By the way, an exactly linear phase FIR filter has high
redundancy because the linear phase characteristic does not be
needed in the transition bands and the stopbands. Thus, more
high-speed signal processing can be expected by using filters
with an approximate linear phase characteristics only in the
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passband. However, as far as authors know there is no report
on the design method of an approximate linear phase FIR
filter that a piecewise large attenuation band of the stopband
is variable. For convenience, we shall call the filters having
approximate linear phase characteristics in passband the ”low-
delay” digital filters.

In this paper, we propose a design method of a low-delay
FIR filter that one or more piecewise large attenuation bands
in the stopband are variable. In the proposed design method,
we use the weighted least square method and combine the
iterative technique to obtain a quasi-equiripple magnitude
characteristic. The effectiveness of the proposed method and
the proposed VDF is confirmed through numerical examples.

II. DESIGN PROBLEM
A. Preliminaries

Let the desired frequency response of the VDF with a
variable magnitude response as shown in Fig. 1 be

D(ω, δ1, · · · , δK) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(ω)ejθ(ω) 0 ≤ ω ≤ ωp

0 ωs ≤ ω ≤ δ1

0 δ1 < ω ≤ δ1 + τ1

0 δ1 + τ1 < ω ≤ δ2

0 δ2 < ω ≤ δ2 + τ2

...
...

0 δK < ω ≤ δK + τK

0 δK + τK < ω ≤ π

(1)

Here, A(ω) and θ(ω) are the desired amplitude and phase
responses, ωp and ωs are the normalized angular frequency
in the bassband and stopband, δ1 ∈ [δ1,1 δ1,m1] · · · δK ∈
[δK,1 δK,mK ] are the normalized angular frequency on the left
of the frequency band with large attenuation, and τ1, · · · , τK

denote the band-width to be large attenuation. In this paper,
δ1, · · · , δK are called as the spectrum parameter.

In order to realize some large attenuation, we consider the
wighting parameter as follows.

W (ω, δ1, · · · , δK) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0 0 ≤ ω ≤ ωp

1 ωs ≤ ω ≤ δ1

w1 δ1 < ω ≤ δ1 + τ1

1 δ1 + τ1 < ω ≤ δ2

w2 δ2 < ω ≤ δ2 + τ2

...
...

wK δK < ω ≤ δK + τK

1 δK + τK < ω ≤ π

(2)

where, w0, w1, · · · , wK are the positive real value.
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Fig. 1. Desired magnitude responses of the proposed variable FIR filters

B. Weighted Least Square Approximation
The frequency response of the variable FIR filters can be

shown as

H (ω, δ1, ..., δK)=
N∑

n=0

h (n, δ1, ..., δK)e−jnω (3)

where h (n, δ1, ..., δK) is the real filter coefficients and is
defined as the LK th-order polynomial with the spectrum
parameters as follows.

h(n, δ1, · · · , δK)

=
L1∑

l1=0

· · ·
LK∑

lK=0

g(n, l1, · · · , lK)δl1
1 · · · δlK

K
(4)

Bellow, for simplicity, we will restrict our discussion to the
case of K = 2.

Then, the approximation error between the desired fre-
quency and designed frequency responses is

e(ω, δ1, δ2) = D(ω, δ1, δ2) − H(ω, δ1, δ2) (5)

Considered the discrete evaluation points Δ1 =
[δ1,1 · · · δ1,m1] for δ1, Δ2 = [δ2,1 · · · δ1,m2] for δ2,
and ωt(t = 1, 2, · · · ,M) for ω, the evaluation function of
WLS can be shown as

V =
m1∑

l=1

m2∑

k=1

M∑

t=1
W (ωt, δ1,l, δ2,k)|e(ωt, δ1, δ2)|2 (6)

Here we define the following matrices.

g = [g(0, 0, 0) g(0, 0, 1) · · ·
g(n, l1, l2) · · · g(N,L1, L2)]

T (7)

U = [U1,1 U1,2 · · · Ul,k · · · Um1,m2]T (8)

Ul,k =

⎡

⎢
⎢
⎢
⎣

ul,k(ω0, 0, 0, 0) ul,k(ω0, 0, 0, 1) · · ·
ul,k(ω1, 0, 0, 0) ul,k(ω1, 0, 0, 1) · · ·

...
...

...
ul,k(ωM , 0, 0, 0) ul,k(ωM , 0, 0, 1) · · ·

ul,k(ω0, n, l1, l2) · · · ul,k(ω0, N, L1, L2)
ul,k(ω1, n, l1, l2) · · · ul,k(ω1, N, L1, L2)

...
...

...
ul,k(ωM , n, l1, l2) · · · ul,k(ωM , N, L1, L2)

⎤

⎥
⎥
⎥
⎦

(9)

ul,k(ωi, n, l1, l2) = δl1
1,lδ

l2
2,ke−jnωi (10)
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Fig. 2. Magnitude response of a filter by WLS

W = diag[W1,1 W1,2 · · · Wl,k · · · Wm1,m2] (11)

Wl,k = [W (ω0, δ1,l, δ2,k) W (ω1, δ1,l, δ2,k) · · ·
· · · W (ωM , δ1,l, δ2,k)] (12)

D = [D1,1 D1,2 · · · Dl,k · · · Dm1,m2]T (13)

Dl,k = [D(ω0, δ1,l, δ2,k) D(ω1, δ1,l, δ2,k) · · ·
· · · D(ωM , δ1,l, δ2,k)] (14)

Then, the least square solution on Eq.(6) can be obtained by

g =
(
Re(UT)WRe(U) + Im(UT)W Im(U)

)+

(
Re(UT)WRe(D) + Im(UT)W Im(D)

) (15)

where Re( · ) and Im( · ) are the real and imaginary parts of
( · ), and ( · )+ denotes the pseudo-inverse matrix of ( · ). Fig.
2 is an example of the filters which is obtained by solving eq.
(15). It has been well known that the filters obtained by WLS
method have a large magnitude ripple near the band edges.

C. Quasi-Equiripple Approximation
To apply the WLS method in designing our variable quasi-

equiripple FIR filters, the weighting function is adjusted in
every iteration and the WLS algorithm is used to obtain the
coefficients. In this paper, the weighting function W in kth
iteration step is updated as follows:

W [k](ω, δ1, δ2) = W [k−1](ω, δ1, δ2)β[k−1](ω, δ1, δ2) (16)

where

β[k](ω, δ1, δ2) =
(
B[k](ω, δ1, δ2)/A[k]

)α

(17)

A[k] =
1
M

M∑

t=1

B[k](ωt, δ1, δ2), (18)

and the parameter α is the empirical convergence factor and
the superscript [ · ] denotes the number of the iterations.

In [11], the envelope function B[k](ω, δ1, δ2) is given as
the function of straight line formed by joining together all the
extremal points of the same frequency band of interest on the
error function |e[k](ω, δ1, δ2)|. However, to obtain the filters
with some different stopband attenuation, we must minimize
the following the weighted error function:

E[k](ω, δ1, δ2) = W [k](ω, δ1, δ2)e[k](ω, δ1, δ2). (19)
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Fig. 3. Choice of extremal points

That is, B[k](ω, δ1, δ2) is to be given from the weighted error
function |E[k](ω, δ1, δ2)|.

In an ordinary filter design problem, a constant weighting
function is used in the same frequency band. On the other
hand, to obtain the filters with some different stopband atten-
uation, we need to use the different wighting functions even if
it is the same frequency band. Therefore, the extremal points of
the |e[k](ω, δ1, δ2)| and |E[k](ω, δ1, δ2)| are not necessarily the
same and the magnitude of their ripples also may be different
(see Fig. 3). If all the extremal points of the |E[k](ω, δ1, δ2)|
are used for calculation of B[k](ω, δ1, δ2) as with [11], it may
cause a significant problem in convergence.

To overcome this problem, in this paper we decide the
extremal points, which use to calculate B[k](ω, δ1, δ2), as
follows.

Let the mth extremal frequency point in the stopbands be
ω̂m. As shown in Fig. 3, |E[k](ω̂m, δ1, δ2)| at ω̂m = δ+τ is the
extremal point but |e[k](ω̂m, δ1, δ2)| is not one. So, at ω̂m =
δ+τ , |E[k](ω̂m, δ1, δ2)| is compared with |E[k](ω̂m+1, δ1, δ2)|,
and only large one is selected as an extremal point to decide
B[k](ω, δ1, δ2). Similarly, at ω̂m = δ, |E[k](ω̂m, δ1, δ2)| is
compared with |E[k](ω̂m−1, δ1, δ2)|, and only large one is
selected as an extremal point. Using the extremal points ω̄i

obtained by this way, B[k](ω, δ1, δ2) can be calculated by

B[k](ω, δ1, δ2) =
ω − ω̄i

ω̄i+1 − ω̄i
|E[k](ω̄i+1, δ1, δ2)|

+
ω̄i+1 − ω

ω̄i+1 − ω̄i
|E[k](ω̄i, δ1, δ2)|

for ω̄i < ω < ω̄i+1.

(20)

Then, the least square solution in kth iteration step can be
obtained by

g[k] =
(
Re(UT)W [k]Re(U)+Im(UT)W [k]Im(U)

)+

(
Re(UT)W [k]Re(D)+Im(UT)W [k]Im(D)

)
(21)

The design procedure of the proposed design method is
summarized as follows.

[DESIGN PROCEDURE]
1. Set the filter order N , the spectral parameter polyno-

mial’s order (L1, L2), desired frequency response D,
initial weighting function W [0], and the upper bound
number J for the iterations. And , set to k = 0.

2. Calculate the least squared solution using eq.(21).

3. If
‖g[k] − g[k−1]‖

‖g[k]‖ ≤ ε (ε � 1) or k = J , then
terminates.

4. Find the extremal frequency points ω̄i of
|E[k](ω, δ1, δ2)|.

5. Calculate B[k](ω, δ1, δ2) using eq.(20).
6. Calculate W [k+1](ω, δ1, δ2) using eqs.(16)-(18) and

go back to Step 2 as k = k + 1.

III. SIMULATION

In this section, the design examples of the VDF with
two variable large attenuation are presented to illustrate the
effectiveness of the proposed method. In all the following
examples, α = 1.2 and ε = 10−2 are used.

A. example 1
The design specifications are as follows:
Filter order: N = 48
Polynomial order: L1 = L2 = 5
Passband edge: ωp = 0.15π
Stopband edge: ωs = 0.30π
Desired frequency response:

D(ω, δ1, δ2) =
{

e−j18ω 0 ≤ ω ≤ 0.15π
0 0.3π ≤ ω ≤ π

Band width: τ1 = τ2 = 0.1π
Weight value: w0 = 1, w1 = w2 = 10
In this example, a total grid point M = 425 were used with

75 points in the passband and 350 points in the stopband. And,
the discrete evaluation points for the spectrum parameter δ1

and δ2 were Δ1 = [0.40π 0.41π 0.42π 0.43π 0.44π 0.45π]
and Δ2 = [0.65π 0.66π 0.67π 0.68π 0.69π 0.70π], respec-
tively.

The design took 19 iterations for the above
design specifications. The magnitude response and
group delay response of the low-delay VDF with
(δ1, δ2) = (0.40π, 0.65π), (0.45π, 0.65π), (0.40π, 0.70π),
and (0.45π, 0.70π) are depicted with a solid line in from
Fig. 4(a) to (d). For comparison, the exactly linear phase
VDF with about same attenuation is designed by [5] and its
magnitude response is depicted with a dotted line. The order
of the exactly linear phase VDF is 48 and its group delay is
24 samples.
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It is seen from Fig. 4 that large stopband attenuation is
changed depending on each spectrum parameter δ1 or δ2 while
the group delay response has the ripples at near 18 samples
and it does not almost change even if the spectrum parameters
are changed.

B. example 2
The design specifications are as follows:
Filter order: N = 72
Polynomial order: L1 = L2 = 5
Passband edge: ωp = 0.20π
Stopband edge: ωs = 0.30π
Desired frequency response:

D(ω, δ1, δ2) =
{

e−j25.0ω 0 ≤ ω ≤ 0.20π
0 0.30π ≤ ω ≤ π

Band width: τ1 = τ2 = 0.1π
Weight value: w0 = 1, w1 = w2 = 10
In this example, a total grid point M = 630 were used with

140 points in the passband and 490 points in the stopband.
And, the discrete evaluation points for the spectrum parameter
δ1 and δ2 were Δ1 = [0.40π 0.41π 0.42π 0.43π 0.44π 0.45π]
and Δ2 = [0.70π 0.71π 0.72π 0.73π 0.74π 0.75π], respec-
tively.

The design took 7 iterations for the above design
specifications. The magnitude response and group
delay response of the low-delay VDF with (δ1, δ2) =
(0.40π, 0.70π), (0.415π, 0.715π), (0.435π, 0.735π), and
(0.45π, 0.75π) are depicted with a solid line in from Fig. 5(a)
to (d). For comparison, the exactly linear phase VDF with
about same attenuation is designed by [5] and its magnitude
response is depicted with a dotted line. The order of the
exactly linear phase VDF is 68 and its group delay is 34
samples.

Like example 1, the large stopband attenuation is changed
depending on each spectrum parameter δ1 or δ2 while the
group delay response has the ripples at near 25 samples and
it does not almost change even if the spectrum parameters
are changed. Moreover, it is seen from Fig. 5(b) and (c) that
the magnitude response of the obtained VDF is the quasi-
equiripple even at the δ1 or δ2 not used for evaluation.

IV. CONCLUSION

In this paper, we proposed a design method of low-delay
FIR filters with piecewise variable stopbands. The proposed
method is based on a weighted least square algorithm and a
quasi-equiripple magnitude response is obtained by using an
iterative WLS technique. With the proposed method, the about
same magnitude response as the exactly linear phase VDF is
realizable with the lower delay.
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(a) δ1 = 0.40π, δ2 = 0.65π
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(b) δ1 = 0.45π, δ2 = 0.65π
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(c) δ1 = 0.40π, δ2 = 0.70π
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(d) δ1 = 0.45π, δ2 = 0.70π
Fig. 4. Magnitude and group delay responses (example 1)
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(a) δ1 = 0.40π, δ2 = 0.70π

0 0.2 0.4 0.6 0.8 1−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

0 0.05 0.1 0.15 0.224.9

25

25.1

25.2

25.3

Normalized Frequency (×π rad/sample)

G
ro

up
 D

el
ay

 (s
am

pl
es

)

(b) δ1 = 0.415π, δ2 = 0.715π
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(c) δ1 = 0.435π, δ2 = 0.735π
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(d) δ1 = 0.45π, δ2 = 0.75π
Fig. 5. Magnitude and group delay responses (example 2)


