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MIBiClus: Mutual Information based Biclustering

Algorithm
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Abstract—Most of the biclustering/projected clustering algorithms
are based either on the Euclidean distance or correlation coefficient
which capture only linear relationships. However, in many applica-
tions, like gene expression data and word-document data, non linear
relationships may exist between the objects. Mutual Information
between two variables provides a more general criterion to investigate
dependencies amongst variables. In this paper, we improve upon our
previous algorithm that uses mutual information for biclustering in
terms of computation time and also the type of clusters identified.
The algorithm is able to find biclusters with mixed relationships and
is faster than the previous one. To the best of our knowledge, none
of the other existing algorithms for biclustering have used mutual
information as a similarity measure.

We present the experimental results on synthetic data as well as
on the yeast expression data. Biclusters on the yeast data were found
to be biologically and statistically significant using GO Tool Box and
FuncAssociate.
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I. INTRODUCTION

W
ITH the help of microarray experiments biologists are

able to study the expression of thousands of genes

under a large number of conditions simultaneously. The large

scale of the data makes it challenging to analyse it to extract

any biologically significant information from it. The output

of a microarray experiment is the gene expression data. The

gene expression data has the expression of thousands of genes

under thousands of conditions. Standard clustering algorithms

like k-means clustering work well for small data sets but fair

poorly when the number of experimental conditions is large

as they cluster the genes based on their expressions under

all the conditions whereas the cellular processes are generally

affected by a small subset of conditions. Most of the other

conditions which do not contribute to the cellular process add

to the background noise. Moreover, these algorithms compute

non-overlapping clusters i.e. a gene belongs to at most one

cluster whereas in fact a gene may be responsible for several

cellular activities and hence must be included in more than

one cluster.

Projected clustering is a technique in which data points are

projected onto a relevant set of dimensions and a cluster is

defined as a set of data points and a set of dimensions that are

most relevant to these data points. However, the algorithms

for projected clustering ( [1], [2], [3]) also compute non-

overlapping clusters. The clusters overlap on the conditions

but not on the genes. In [4], Cheng and Church introduced
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the notion of biclustering in which the clusters are defined to

be a set of genes and a set of conditions under which these

genes are most tightly regulated. By definition, biclusters are

overlapping.

The existing algorithms ( [4], [5], [6], [7], [8], [9], [10],

[11]) for biclustering/projected clustering use some kind of

similarity measure like Euclidean distance or correlation co-

efficient. Though these measures have been successfully and

satisfactorily used for several years they capture only the linear

relationships between the objects. In particular, a vanishing

correlation coefficient implies absence of linear dependencies.

However, in many applications, like gene expression data

and word-document data, non linear relationships may exist

between the objects. Moreover, with advances in experimental

technology, increasing methodologies are available for unveil-

ing more complex relationships. Hence, we need similarity

measures which exploit non linear dependencies.

In [12], Steur et al have shown that mutual information

can be used as a measure of similarity to cluster data. They

show that mutual information provides a better and more

general criterion to investigate relationships (positive, negative

correlation and non linear dependencies) between variables

by showing that higher correlation coefficient implies higher

mutual information but two variables having very low values

of correlation coefficient (implying no linear relationship) may

still be related to each other (non linear dependencies).

Many researchers ( [13], [14], [15], [16]) have used mutual

information for one way clustering (clustering of genes on

the entire set of conditions). These algorithms also support

that information theoretic measure is responsive to any type

of dependencies, including strongly non linear structures as

compared to traditional measures which search only for linear

relations. In [13], Priness et al have compared the mutual

information measure with respect to both Euclidean distance

and correlation coefficient as a similarity measure for one way

clustering . They show that the mutual information is a more

generalized measure of statistical dependence and is resistant

to outliers and missing data. They also show that mutual infor-

mation based methods give better quality clusters. With some

procedural modifications they incorporated mutual information

measure in some clustering algorithms like k-means [17], self

organized maps [18], Click [19] and sIB [20]. They found

that the clusters obtained from these algorithms using mutual

information were similar to each other but different from

the clusters obtained when using different distance measures

with these algorithms, once again endorsing the need of a

different similarity measure. In [14], Butte and Kohane com-

pute pairwise mutual information for all genes against each



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1250

other. They hypothesize that an association between two genes

indicated by high amount of mutual information between them

would also signify biological relationship. In [21], we have

given the first such algorithm that uses mutual information for

biclustering. To the best of our knowledge no other work has

been done to use mutual information for biclustering. In [23],

Dhillon et al and in [24], Slonim et al have used mutual

information for co-clustering (simultaneous clustering of rows

and columns). In co-clustering, the clusters are obtained by

partitioning the rows and the columns, hence the resulting

bi-clusters are non-overlapping. In this paper, we present an

algorithm which improves upon our previous algorithm in

terms of computation time. Also the type of clusters identified

can have mixed relationships in contrast to our previous work

where the clusters identified had only single relationship.

We define a bicluster as a pair (G′, C′), where G′ is the

subset of genes which are most closely related to each other

under the subset C′ of conditions and C′ is the subset of

conditions under which the genes of G′ are more closely

related to each other as compared to other conditions. Here, we

would like to mention that though we have defined the problem

in the context of gene expression data, it has its application

in other problems like word-document clustering, stock prices

monitoring and others.

As in [21] algorithm works in three stages. In the first stage

we take a gene as a seed and find the set of genes which

are most related to the input seed gene. For this we compute

the pairwise mutual information of all the genes with the

seed gene over all the conditions and select the genes having

mutual information above some threshold. In the second stage,

the algorithm identifies the experimental conditions under

which the selected subset of genes are most related to each

other. In the third and the final stage the algorithm selects

those genes which are most co-related with the seed gene

under the reduced set of conditions identified in stage two.

The main difference between the previous approach and the

one presented here is in stage 2 i.e. selecting the relevant

conditions. In the previous approach we take a reference

condition C∗ and compute the set of conditions closely related

to C∗ for the reduced set of genes; since we do not know

which C∗ is best we do it for all the conditions one by one.

However, to save time, we select a random set of conditions

to be treated as C∗ instead of doing it for all of them. In the

current approach, instead of finding the relevant conditions by

finding mutual information between them, we find the subset

of conditions on which the mutual information between the

selected genes is maximum. Thus the time spent in computing

pairwise mutual information between all pairs of conditions is

saved which is a significant improvement in time. Moreover,

since now we are not looking for relationship amongst the

conditions, we are able to exploit mixed kind of relationships

amongst the genes.

We tested the performance of our algorithm on computer

generated synthetic data and S. cerevisiae expression data [25].

The main idea behind the synthetic data was to model non-

linear relationships between genes of the bicluster over a

subset of conditions. The biclusters have different types of

relationships amongst the genes. We created the synthetic

expression data for two overlapping biclusters for 100 genes

and 100 conditions. We tested our algorithm on yeast expres-

sion data. Gene expression data for Saccharomyces cerevisiae

was downloaded from the site http://www.weizmann.ac.il. The

dataset contains expression profiles of 6206 genes under 1011
conditions. Our algorithm was able to successfully extract

the related groups of genes and the related conditions. We

checked the biological significance of our biclusters by finding

the functionality on the Gene Ontology database [25]. Our

biclusters were found to be significantly enriched with GO

categories and had small p values ranging from e−11 to e−120.

We also used the web tool FuncAssociate [26] to evaluate

the discovered biclusters. More than 90% of our biclusters

were found to be statistically significant with adjusted p values

< 0.001.

II. THE MUTUAL INFORMATION

The mutual information between two random variables X
and Y is a measure of information contained in X about Y or

the information contained in Y about X . If given a value of

X , it is easy to predict the value of Y then X contains good

amount of information about Y . Clearly with this definition,

if X and Y are independent the mutual information between

them is zero and it is high if they are highly dependent or

closely related to each other. Thus Kullback has defined mutual

information between two random variables as a measure of

divergence from the hypothesis that X and Y are independent.

A. The Kullback Divergence

Consider a system A with NA possible states. An exper-

iment performed on A puts the system in one of the states

a1, a2 . . . aNA
, each with its corresponding probability p(ai).

The information gained by the system through a series of

experiments is the amount of surprise one feels on reading

the outcomes of the experiments. Thus if one hypothesize that

probability distribution observed by the outcomes is {p0} and

the actual densities are {p}, the Kullback divergence K(p/p0)
between the two probability distributions is given by

K(p/p0) =
∑

i pi log pi

p0
i

Kullback divergence can be interpreted as the information

gained when the assumed probability distribution {p0} is

replaced by the final distribution {p}. K(p/p0) is always

greater than or equal to zero [27]. It equals zero if and only if

{p0} and {p} are same. In our case the assumed probability

distribution {p0} is given by the hypothesis that two variables

X and Y are statistically independent. Thus p0
XY (xi, yj) is

given by

p0
XY (xi, yj) = pX(xi)pY (yj)

The final distribution {p} is given by the observed joint

probability densities pXY (xi, yj). Thus using Kullback diver-

gence mutual information is defined as

I(X, Y ) =
∑nx

i=1

∑ny

j=1 pXY (xi, yj) log
pXY (xi,yj)

pX (xi)pY (yj)

where X takes values x1, x2 . . . xnx
, Y takes values

y1, y2 . . . yny
, pXY (xi, yj) represents the joint probability
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distribution of X, Y and, pX(xi) and pY (yj) are the marginal

distributions of X and Y respectively. The mutual information

is zero if and only if X and Y are statistically independent i.e.

vanishing mutual information does imply that the two variables

are independent. This shows that mutual information provides

a more general measure of dependencies in contrast to the

commonly used measures of Euclidean distance and correla-

tion coefficient which quantify only the linear relationships.

B. Estimating Mutual Information

Given the joint probability distribution and the marginal

probability distributions, we can compute the mutual informa-

tion between two variables. This requires explicit knowledge

of the distributions. In general these probabilities are not

known. Various methods are used to estimate the probability

densities from the observed data. We have used Gaussian

kernel as the KDE (Kernel Density Estimator) (as used by

Steur et al in [12]) to estimate the mutual information. Con-

sider a series (xi, yi) of N simultaneous observations of two

continuous random variables X and Y . With Gaussian Kernel

the probability density estimate is given as:

f̂(x) = 1
Nh

√
2π

∑N
i=1 exp(−(x−xi)

2

2h2 ) (1)

and the joint probability density function may be estimated

as

f̂(x, y) = 1
Nh22π

∑N
i=1 exp(−di(x,y)2

2h2 ) (2)

where di(x, y) =
√

(x − xi)2 + (y − yi)2 and, (3)

h is called the window width or the smoothing parameter.

An appropriate value of h depends on the unknown density

being estimated. The estimated mutual information can then

be written as

I(X, Y ) = 1
N

∑N
j=1 log

f̂(xj ,yj)

f̂(xj)f̂(yj)
(4)

III. MIBICLUS: MUTUAL INFORMATION BASED

BICLUSTERING ALGORITHM

In this section, we present an algorithm to find biclusters

using mutual information for an expression matrix Emat hav-

ing Ng genes and Nc conditions. The algorithm takes a gene

as a seed (g∗). It finds biclusters which are pairs of (G′, C′),
where G′ is the subset of genes which are most closely related

to the gene seed under the subset C′ of conditions and C′ is

the subset of conditions under which the genes of G′ are more

closely related to each other as compared to other conditions.

The algorithm proceeds in three steps. In the first step we

find the set of genes which are most closely related to the

input seed gene (g∗). For this we compute the pairwise mutual

information of the seed gene with all other genes over all the

conditions. For a gene gi, we define the gene score sg
i as the

amount of mutual information betwen g∗ and gi. Genes having

the gene score greater than the gene threshold tg are selected.

In the second step, the algorithm identifies the experimental

conditions under which the set of genes found in the first step

show maximum dependence. For a condition cj , we define the

condition score sc
j as the average contribution of cj to the sum

of pair wise mutual information between the reduced set of

genes. Again only those conditions are selected whose score

is greater than the condition threshold tc.

In the third and the final step the algorithm selects from the

whole expression data those genes which are most dependent

on the gene seed under the reduced set of conditions identified

in step two.

The procedure MIBiClus() summarizes our algorithm.

MIBiClus (g∗, tg, tc, Ng, Nc)

1) G0 = Compute-G0(g∗, tg, Ng, Nc)
2) C′ = Compute-conditions(G0, tc, Nc).
3) G′ = Compute-biclus-genes(C′, tg, Ng)

Fig. 1. Main Algorithm.

Compute-G0 (g∗, tg, Ng, Nc)

1) Let g∗ = gt for some t.
2) For i = 1 to Ng

a) For j = 1 to Nc

m(i, j) = Compute-mi (i, t, Nc, j).
b) compute the gene score sg

i = Σjm(i, j)

3) µ =
Σis

g

i

Ng

4) σ2 =
Σi(s

g

i
−µ)2

Ng

5) G0 = {gi :
(sg

i
−µ)

σ
> tg}.

Fig. 2. Step 1: Compute the initial gene set.

Compute-conditions (G0, tc, Nc).

1) Compute the condition score sc
j = Σi∈G0m(i, j)

2) µ =
Σjsc

j

Nc

3) σ2 =
Σj(sc

j
−µ)2

Nc

4) C′ = {cj :
(sc

j
−µ)

σ
> tc}.

Fig. 3. Step 2: Compute the relevant set of conditions.
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Compute-biclus-genes (C′, tg, Ng)

1) For i = 1 to Ng

compute the gene score sg
i = Σj∈C′m(i, j)

2) µ =
Σi(s

g

i
)

Ng

3) σ2 =
Σi(s

g

i
−µ)2

Ng

4) G′ = {gi :
(sg

i
−µ)

σ
> tg}.

Fig. 4. Step 3: Compute the final genes of the bicluster.

Compute-mi (x, y, n, j)

1) f̂xj = Compute-marg (x, n, j)

2) f̂yj = Compute-marg (y, n, j)
3) f̂xyj = Compute-joint (x, y, n, j)

4) Return 1
n

log(
f̂xyj

f̂xj f̂yj

)

Fig. 5. Compute the jth component of the mutual information between
genes x and y.

Compute-marg (x, n, j)

1) Compute dji = (Emat[x][j] − Emat[x][i])2

2) Return 1

nh
√

(2π)
Σi exp

−dji

2h2

Fig. 6. Compute the jth component of the estimator f̂x for marginal
probability density.

Compute-joint (x, y, n, j)

1) Compute dx
ij = (Emat[x][j] − Emat[x][i])2

2) Compute dy
ij = (Emat[y][j] − Emat[y][i])2

3) Compute dij = dx
ij + dy

ij

4) Return = 1
nh22π

Σi exp
−dij

2h2

Fig. 7. Compute the jth component of the estimator f̂xy for joint probability
density.

IV. EXPERIMENTAL RESULTS

In order to study the performance of our algorithm we used

computer generated synthetic data. The main idea behind the

synthetic data was to model nonlinear relationships between

genes of the bicluster over a subset of conditions.

We created synthetic expression data for 100 genes and 100
conditions with two overlapping biclusters (refer to Figure

8). The first bicluster M1 consisted of genes g1 to g55 and

conditions c1 to c55. The first 15 genes (g1 to g15) of M1
had additive relation with the gene seed chosen as (g46), the

next 15 (g16 to g30) of M1 had circular relation with the gene

seed, the next 15 (g31 to g45) had parabolic relation with the

gene seed under the first 55 conditions.

Genes g47 to g50 had additive relation and genes g51 to g55

had parabolic relation with the gene seed g46 under all the

condition c1 to c100.

M2 consisted of genes g45 to g100 and conditions c45 to

c100. M2 had additive relation on the 15 genes (g56 to g70),

circular relation in the next 15 genes (g71 to g85) and parabolic

relation in the last 15 genes (g86 to g100) with the gene seed

g46 under the last 55 conditions from c45 to c100. The rest of

the rows and columns (D1 and D2 in the figure) were given

high constant value 10 to make them independent of the rows

and columns in the biclusters.

We were able to identify M1 at tg = −0.5, tc = −0.4,

h = 0.2 and choosing any of the genes from g1 to g45 as the

seed. By choosing the seed from g56 to g100 we were able to

identify M2.

The distance based algorithms like PROCLUS and MSB are

not able to find M1 and M2 as they clearly converge to D1
and D2. ISA also fails in detecting M1 and M2 because of

high expression values in D1 and D2. Our previous algorithm

also does not detect these biclusters because of the presence of

the mixed relationships. However it identifies the six biclusters

(with circular relationships only, with additive relationships

only and parabolic relationships only) contained in M1 and

M2.

We tested our algorithm on real dataset also. Gene ex-

pression data for Saccharomyces cerevisiae was downloaded

from the site http://www.weizmann.ac.il. The dataset contained

expression profiles of 6206 genes under 1011 conditions. We

chose 200 gene seeds randomly. The algorithm was able to

successfully extract the related groups of genes and a subset

of conditions for each of these groups. Frequency of each

bicluster was computed by comparing it against all other

biclusters for overlap. A bicluster showing less than 40%
overlap with all other biclusters was considered infrequent and

was filtered out. We checked the biological significance of

the remaining biclusters by finding their functionality on the

Gene Ontology database [25]. Our biclusters were found to

be significantly enriched with GO categories and had small p
values. At tg = 2.0, tc = 0.1 and h = 0.5 we found biclusters

having p values in the range of e−11 to e−120. Three biclusters

out of 200 showing high frequency of occurrence (> 15) had

p values of the order of e−65 to e−120. Also, these biclusters

had significant overlap with that of ISA. We also used the web

tool FuncAssociate [26] to evaluate the biclusters. More than

90% of our biclusters were found to be statistically significant

with adjusted p values < 0.001.

V. CONCLUSION

We have presented an algorithm which improves upon

our previous algorithm for computing biclusters using mutual

information. As the mutual information captures more general

relationships as compared to traditional similarity measures
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Fig. 8. Expression matrix for synthetic data showing two overlapping
biclusters.

like Euclidean distance and correlation coefficient, our algo-

rithm will be able to discover more and better biclusters in

more complex data sets.

We applied our algorithm to the Yeast expression data and

the results are promising. In future, we intend to apply it

on more complex data sets like expression matrix of higher

organisms.
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