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Abstract—In this contribution, a way to enhance the performance 
of the classic Genetic Algorithm is proposed. The idea of restarting a 
Genetic Algorithm is applied in order to obtain better knowledge of 
the solution space of the problem. A new operator of “insertion” is 
introduced so as to exploit (utilize) the information that has already 
been collected before the restarting procedure. Finally, numerical 
experiments comparing the performance of the classic Genetic 
Algorithm and the Genetic Algorithm with restartings, for some well 
known test functions, are given. 

Keywords—Genetic Algorithms, Restartings, Search space 
exploration, Search space exploitation.

I. INTRODUCTION

ENETIC Algorithms (GAs) are known to be one of the 
best methods for searching and optimization [1]–[3]. By 
applying genetic operators (reproduction, crossover and 

mutation) in a population of individuals (sets of unknown 
parameters properly coded), they achieve the optimum value 
of the fitness function, which corresponds to the most suitable 
solution. As a result, they converge to the (near) optimal 
solution by evolving the best individuals in each generation. 
The main advantage of the GAs is that they use the 
parameters’ values instead of the parameters themselves. In 
this way they search the whole parameter space. However, 
GAs encounter some serious problems (concerning the 
convergence speed and the finding of the exact value of the 
global optimum) when they have to deal with functions that 
contain too many local optima. 

The idea of restarting the classic GA, so as to increase the 
performance, derives from the well known idea of restarting 
the Arnoldi’s method for finding the eigenvalues [4]–[7]. In 
this restarting technique [4]–[7], we are not willing to throw 
away the useful information, concerning the Krylov subspace, 
that has been captured before restarting. This is achieved by 
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using a vector that constitutes of a mix of Ritz values [4], as a 
starting vector for the next step of Arnoldi’s method.  

In order to apply this strategy to the classic GA the 
following technique is established. A fixed number of genomes 
– from the current population before the restarting –is selected 
and included into the new population. Hopefully these 
genomes encapsulate all the useful information gathered about 
the solution space till that generation. The role of the “vector 
that is a mix of Ritz values” is played by the set of genomes 
that is passed to the new generation. 

The paper is organized as follows. In section II the proposed 
technique is described and analyzed. In section III 
experimental results are presented in order to prove the 
significance and the efficiency of the proposed technique. 
Finally, section IV summarizes the conclusions and suggests 
future applications and extensions of the method.  

II. GAS’ RESTARTINGS

Experimental results have shown that GAs, when used for 
optimizing a function, are able to reach a relative good score 
(compared to the global optimum) in a quite small number of 
generations. In the sequel generations, they just refine the 
solution space trying to identify the exact optimal solution of 
the function. As known, classic GAs make use of three basic 
genetic operators (selection, crossover and mutation) in order 
to evolve the population of possible solutions to fit to the 
conditions and the characteristics of each specific problem.  

Generally speaking, one can interpret the initial generations 
of a classic GA as a global search mechanism and all the 
remaining ones as a refining procedure towards the true 
optimal value of each specific optimization problem. At this 
point, it should be noticed that the application of the crossover 
operator is a clever way to escape from local optima (at the 
early stages of the evolution procedure it assists the effective 
exploration of the whole search space). So, in a typical classic 
GA, trying to avoid premature convergence, the evolution 
procedure can be described as in Fig.1. 

It is clear that this procedure wastes a large amount of 
evaluations of the objective function in order to refine a local 
optimum solution which is often abandoned in the next 
generations due to the application of the mutation operator. 
This is because the use of the mutation operator can often lead 
to much better solutions compared to the ones found so far, 
directing the evolution of the algorithm to another area of the 
search space in which a local optimum with higher objective 
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FIGURE 1
THE EVOLUTION PROCEDURE OF A CLASSIC GA 

value lies. In general, the application of the mutation operator 
usually leads to a “from the beginning” global search for 
“good” areas (areas of the search space that will hopefully 
include the global optimum). The use of restartings manages to 
succeed better exploration of the search space by avoiding 
premature convergence and entrapment in local optima while 
at the same time it saves most of the evaluations included in 
the local refining procedure (fewer generations and evaluations 
of the fitness function). 

In this contribution, a restarting procedure for the classic 
GA is proposed so as to achieve a better global exploration of 
the solution space while executing the minimum possible 
number of generations (function evaluations). In order to 
achieve this goal, we use the standard global exploration 
mechanism used by classic GAs (selection, crossover, 
mutation) but when the GA reaches the local refining phase, 
we restart the GA so as to preserve the global search 
procedure. This technique alleviates the enormous 
computational burden introduced by the local refining 
procedure, which is quite often useless in finding the optimal 
solution. The proposed technique is described in Fig. 2. Of 
course, the new starting of the GA procedure should include 
all the valuable information gathered from the previous global 
search. Thus, we propose a new operation called “insertion” to 
be included in the classic GAs’ evolution procedure. The 
insertion operator works as follows. It chooses randomly a 
constant percentage of the genomes of the population of the 
last generation (before the restarting procedure takes effect) 
and inserts them into the new initial population of the GA as 
shown in Fig.3.  

The main difficulty of all restarting techniques is to decide 
when to apply the restartings. If they are applied too early (in a 
rather early phase of the evolution procedure), the global 
search procedure completed till that point will be able to 
reveal only a small part of the useful information included in 
the solution space of the specific problem. In other words, the 
GA should be let to run for a minimum number of generations 
(before the application of the restarting procedure) in order to 
manage to search effectively the solution space and gather 
useful information. On the other hand, if restartings are applied 
too late (in a rather late phase of the evolution procedure) most 
of the information carried by the genomes of the last 
population (the population before the restarting procedure) 
will be concentrated on a local solution, probably not the 

optimal one. Of course, this leads to loss of useful information 
and premature convergence. 

FIGURE 2
THE EVOLUTION PROCEDURE OF THE PROPOSED GA WITH RESTARTINGS
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In this contribution, three different criteria for deciding 
when to apply restartings are proposed: 

• Fitness function value (that is the restarting procedure is 
applied whenever the value of the fitness function 
exceeds a predefined threshold) 

• Number of generations (that is the restarting procedure 
is applied whenever the number of generations 
executed exceeds a predefined threshold) 

• Mean fitness function value of population (that is the 
restarting procedure is applied whenever the mean 
value of the fitness function of the whole population 
exceeds a predefined threshold) 

Another important aspect of the restarting method is to 
decide its termination criterion, that is, to decide when the 
application of the restarting procedure used to refine the 
solution should stop. A rule of thumb is the following: the 
more complex the solution space is, the more times the 
restarting procedure should be applied. Following this rule, an 
integer constant, whose value is totally depended on the 
complexity of the solution space, is proposed in each specific 
application in order to specify the total number of restartings.  

FIGURE 3
THE INSERTION OPERATOR

III. EXPERIMENTAL RESULTS

In order to demonstrate the efficiency and performance of 
the proposed technique, several simulation experiments were 
carried out. All the experiments were carried out 100 times 
(100 Monte Carlo runs). In this section, we present the results 
of the application of both the classic GA and the proposed GA 
with restartings to four well known optimization problems. 
The functions selected to be optimized are the first three 
functions of the De Jong test suite [8] and the Himmelblau 
function [9]. These functions are quite popular in GAs’ 
literature, so it is possible to make direct comparisons. 

The first De Jong test function is the sphere model: 

( ) ∑
=

=
3

1

2
3211 ,,

i

ixxxxf , 12.512.5 ≤≤− ix (1) 

It is smooth, unimodal and symmetric. The goal is to find the 

global minimum ( ) ( ) 00,0,0min 11 == ff .

The second De Jong test function is the Rosenbrock’s 
valley: 
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It has a very narrow ridge. The tip of the ridge is very sharp 
and it runs around a parabola. The goal is to find the global 
minimum ( ) ( ) 01,1min 22 == ff .

The third De Jong test function is the Step function: 
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It is discontinuous and representative of the problem of flat 
surfaces. The goal is to find the global minimum 

( ) [ ) [ )( ) 05,12.5,...,5,12.5min 33 =−−−−= ff .

The fourth test function is the Himmelblau function: 
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It is a multimodal function with four distinct minima. The goal 
is to find the global minimum ( ) ( ) 02,3min 44 == ff .

For both the classic GA and the proposed GA with 
restartings the same set of GA’s operators and parameters were 
used in order to have a fair comparison of their efficiency and 
performance. The representation used for the genomes of the 
genetic population is the classic binary string. As far as the 
reproduction operator is concerned, the classic biased roulette 
wheel selection was used. The crossover operator used is 
uniform crossover (with crossover probability equal to 0.9), 
while the mutation operator is the flip mutator (with mutation 
probability equal to 0.001. The size of the population both for 
the classic GA and the proposed GA with restartings was set to 
50, while the percentage of the genomes passed to the next 
initial population by each restarting procedure equals 20% (in 
our case 10 genomes, i.e. c=10). Except for that, both GAs 
used linear scaling and elitism.  

Both GAs were implemented using the C++ Library of 
Genetic Algorithms GAlib [10] and especially the 
GASimpleGA class for the implementation of the GAs (non-
overlapping populations) and the GABin2DecGenome class 
for the binary string genomes (an implementation of the 
traditional method for converting binary strings to decimal 
values). All the experiments were carried out on a Intel 
Pentium IV 2.7GHz PC with 256 MB RAM. 

The comparison of the algorithms is based on two criteria. 
For each one of the four test functions two specific quantities 
are taken into consideration. The first one is the value 
achieved by the fitness function of each algorithm. We 
measure the number of fitness function evaluations made by 
each algorithm in order the value of the fitness function to 
overcome a predefined threshold. The second quantity is the 
number of fitness function evaluations. We measure the best 
value of the fitness function achieved by each algorithm for a 
specific number of fitness function evaluations. 

In the following table the performance and efficiency of 
both the classic GA and the proposed GA with restartings is 
shown for the first De Jong function. 
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TABLE I
EXPERIMENTAL RESULTS FOR THE FIRST DE JONG FUNCTION

GA with restartings 
Perfor-
mance 

Criterion 

Classic 
GA 

Every 
fifty 

genera-
tions 

Every 
sixty 

genera-
tions 

Every 
seventy 
genera-

tions 

Every 
eighty 
genera-

tions 

Every 
ninety 
genera-

tions 
Fitness 

function 
value 

Number of evaluations 

<1.0e-10 20768 21245 20524 18822 20608 21085 

<1.0e-16 35290 36044 34253 32017 34260 35415 

Number of 
evaluations Fitness function value 

10000 1.69e-06 1.06e-05 2.67e-06 1.01e-06 8.52e-06 1.26e-06 

20000 8.99e-10 4.33e-09 7.32e-10 8.88e-11 5.91e-10 2.97e-09 

In the following table the performance and efficiency of 
both the classic GA and the proposed GA with restartings is 
shown for the Second De Jong function. 

TABLE II 
EXPERIMENTAL RESULTS FOR THE SECOND DE JONG FUNCTION

GA with restartings 
Perfor-
mance 

Criterion 

Classic 
GA 

Every 
ten 

genera-
tions 

Every 
twenty 
genera-

tions 

Every 
thirty 

genera-
tions 

Every 
forty 

genera-
ions 

Every 
fifty 

genera-
tions 

Fitness 
function 

value 
Number of evaluations 

<1.0e-4 1238271 77218 34748 106398 88680 189813 

<1.0e-8 
Not able 

after 
4000000 

353265 156853 167083 225154 218781 

Number of 
evaluations Fitness function value 

50000 3.51e-02 2.36e-04 4.19e-05 4.45e-04 3.74e-04 1.51e-03 

 100000 2.09e-02 9.93e-05 8.86e-06 1.53e-04 9.05e-05 5.63e-04 

 200000 1.55e-02 1.69e-05 7.73e-09 9.69e-09 7.09e-08 6.45e-08 

In the following table the performance and efficiency of 
both the classic GA and the proposed GA with restartings is 
shown for the third De Jong function. 

TABLE III 
EXPERIMENTAL RESULTS FOR THE THIRD DE JONG FUNCTION

GA with restartings 
Perfor-
mance 

Criterion 

Classic 
GA 

Every 
ten 

genera-
tions 

Every 
twenty 
genera-

tions 

Every 
thirty 

genera-
tions 

Every 
forty 

genera-
ions 

Every 
fifty 

genera-
tions 

Fitness 
function 

value 
Number of evaluations 

<= 1 8692 7061 8116 8433 6517 6466 
= 0 15339 13236 14297 13107 14431 14215 

Number of 
evaluations Fitness function value 

6000 2.2 1.7 1.4 1.2 1.6 1.6 

12000 1.1 0.6 1.1 0.9 1.1 0.8 

In the following table the performance and efficiency of 
both the classic GA and the proposed GA with restartings is 
shown for the Himmelblau function. 

TABLE IV 
EXPERIMENTAL RESULTS FOR THE HIMMELBLAU FUNCTION

GA with restartings 
Perfor-
mance  

Criterion 

Classic 
GA 

Every 
ten 

genera-
tions 

Every 
twenty 
genera-

tions 

Every 
thirty 

genera-
tions 

Every 
forty 

genera-
ions 

Every 
fifty 

genera-
tions 

Fitness 
function 

value 
Number of evaluations 

<1.0e-4 114064 7779 8612 11401 16944 15925 

<1.0e-8 178481 30576 31712 37852 22950 25547 

<1.0e-12 
Not able 

after 
4000000 

2225732 118509 141107 96773 91626 

Number of 
evaluations Fitness function value 

10000 2.11e-02 1.37e-05 2.43e-05 3.91e-04 3.02e-03 1.57e-03

50000 2.02e-02 5.29e-09 6.67e-09 2.09e-09 1.19e-09 2.62e-09

100000 9.71e-03 1.34e-09 1.64e-10 2.24e-10 7.12e-13 7.11e-13

From the above tables, one can easily come to the 
conclusion that the proposed technique enhances significantly 
the performance of the classic GA. The restarting procedure 
manages to achieve a better global exploration of the solution 
space while executing fewer fitness function evaluations. This 
is more obvious especially when the function to be optimized 
has many local optima like the second De Jong function and 
the Himmelblau function. 

IV. CONCLUSIONS AND FUTURE WORK

As experimental results show, the proposed technique 
manages to significantly enhance the performance of the 
classic GA, especially in optimizing “hard” functions with 
many local optima. It would be very interesting to check the 
efficiency and performance of the proposed GA with 
restartings to other difficult test functions and NP-Hard 
problems like the TSP problem. These issues will be the main 
scope of our future work. 
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