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Abstract—Cosmic showers, from their places of origin in space,
after entering earth generate secondary particles called Extensive Air
Shower (EAS). Detection and analysis of EAS and similar High
Energy Particle Showers involve a plethora of experimental set-
ups with certain constraints for which soft-computational tools like
Artificial Neural Network (ANN)s can be adopted. The optimality
of ANN classifiers can be enhanced further by the use of Multiple
Classifier System (MCS) and certain data - dimension reduction
techniques. This work describes the performance of certain data
dimension reduction techniques like Principal Component Analysis
(PCA), Independent Component Analysis (ICA) and Self Organizing
Map (SOM) approximators for application with an MCS formed
using Multi Layer Perceptron (MLP), Recurrent Neural Network
(RNN) and Probabilistic Neural Network (PNN). The data inputs are
obtained from an array of detectors placed in a circular arrangement
resembling a practical detector grid which have a higher dimension
and greater correlation among themselves. The PCA, ICA and SOM
blocks reduce the correlation and generate a form suitable for real
time practical applications for prediction of primary energy and
location of EAS from density values captured using detectors in a
circular grid.
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I. INTRODUCTION

Cosmic showers have extremely high energy and produce
complicated processes during their transit through the at-
mosphere of the earth. Such interactions with atmospheric
nuclei result in certain secondary particles called Extensive
Air Shower (EAS) [1] [2]. The study of these EAS involves
the measurement of the position, size, primary energy, time
extent of the events and other related factors. Detection and
analysis of EAS comprises of complex measurement and
detection equipments with several constraints due to partial
knowledge regarding interactions of shower particles and pri-
mary energies [2] for which inaccuracies are observed. These
difficulties make the analysis of showers a tedious task and
requires constant support from expensive experimental set-
ups which is a limitation for visualization, conceptualization
and monitoring of EAS events. These constraints necessitate
soft-computational approaches which can be used to predict
primary energy and locations of shower events. Soft compu-
tational tools like Artificial Neural Network (ANN)s can be
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trained to adapt to situations and learn the variations taking
place. The knowledge developed using apriori references
patterns can be utilized for predicting future events as an aid
to expand the knowledge of EAS and can be made a part of
physical experiential apparatus to facilitate adaptive orientation
of monitoring and analysis of EAS phenomena that too in real
time.

Several works exist which have used multiple approaches to
analyze EASs and thereby develop applications suitable for
shower events. A work by D. Hanna [3] reports application
of ANNs for EAS. Another work by J C Perrett and J
T P M van Stekelenborg [4] describes the implementation
of an ANN to estimate the core position and energy of
EASs recorded by the South Pole Air Shower Experiment
(SPASE) [5]. Another work of similar nature is [6]. This
work discusses the possibilities of using ANNs for individual
EAS data evaluation. A work as cited in [7] uses ANN for
providing a mass likelihood distribution for each measured
shower based on its multi-parameter training with simulated
showers. Another work by A. Chilingarian . et. al [8] is related
to ANN models to recognize the experimental EAS without
known primary energy.

Application of soft computational methods to EAS analysis
involves the configuration of tools like ANNs as classifiers.
The ANN classifiers receive inputs from a host of detectors
placed in a circular grid. The detectors are placed in certain
assumed regularity and record shower events as they enter the
atmosphere of the earth. It means that a shower event can be
recorded simultaneously by several detectors and the measured
parameters reported for analysis. These data can be highly
correlated which at times makes the computational complexity
of ANN classifiers increase. The end result is a less optimal
decision generated by the ANN. Such a fact is applicable
to systems that use Multiple Classifier System (MCS)s for
EAS and other similar analysis. This work describes certain
data dimension reduction techniques like Principal Component
Analysis (PCA), Independent Component Analysis (ICA) and
Self Organizing Map (SOM) approximators for application
with an MCS formed using Multi Layer Perceptron (MLP),
Recurrent Neural Network (RNN) and Probabilistic Neural
Network (PNN). The data inputs are obtained from an array
of detectors placed in a circular arrangement resembling a
practical detector grid which have a higher dimension and
greater correlation among themselves. The PCA, ICA and
SOM blocks reduce the correlation and generate a form
suitable for real time practical applications for prediction of
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primary energy and location of EAS from density values
captured using detectors in a circular grid. The objective is to
formulate optimal sets of density values of EAS events such
that subsequent tasks of prediction or detection is accelerated
with greater efficiency. The work should be considered to be
related to the earlier work reported in [9] [10].

ANN as a unitary classifier though generates a number of clas-
sification boundaries, but fail to reach optimality of decision
making as per theoretical considerations for which Multiple
Classifier System (MCS)s are preferred. These help to enhance
the ability of the system to make decisions adjusting to finer
variations. Such capability makes it relevant for the study of
EAS because of the volume of correlated data involved. This
work considers the use of several data dimension reduction
techniques for use with a MCS constituted using Multi Layer
Perceptron (MLP), Recurrent Neural Network (RNN) and
Probabilistic Neural Network (PNN) for application in high
energy shower analysis with special emphasis on prediction of
EAS primary energy and core positions. The highly correlated
density values provided by detectors distributed in a circular
arrangement of 100 meters are subjected to dimensionality
reduction using PCA, ICA and SOM approximation before
applying to MCS for primary energy prediction and location
of core position of certain EAS. The EAS events are assumed
to be taking place inside the arc with the detectors recording
the phenomena from all the locations within the arrangement.
The requirement is to train the MCS with reduced dimension
density sets from the detectors to enable them predict primary
energies and core locations and produce a comparative per-
formance measure as demonstrated by the two approaches. A
few works related to the use of MCS for data analysis, pattern
recognition and clustering is included here and cted between
[11] and [16].

Il. SYSTEM MODEL

The system consists of a conceptual arrangement of detec-
tors in a circle of radius 100 meters with density values of
the shower events considered in groups taken from each of
the four quadrants. The core positions are considered to be
placed inside the 50 meter radius. The experimental set - up
consists of a group of data mapping or dimensionality reducing
blocks constituted by Principal Component Analysis (PCA),
Independent Component Analysis (ICA) and Self Organizing
Map (SOM) approximators and three ANNs blocks. These
ANN blocks are Multi Layer Perceptron (MLP), Recurrent
Neural Network (RNN) and Probabilistic Neural Network
(PNN) structures. The MLP, RNN and PNN forms the MCS
system. The density of the detector size is taken to be 100
per quadrant to obtain more detailed description for the EAS
but since the data shall be correlated PCA, ICA and SOM
approximator blocks are used to map the most relevant portion
for use with the MCS system. The complete system is depicted
in Figure 1.

Let Dir; and Cr; be the sets of density values and core
positions respectively captured from a detector array placed in
the circular arrangement. During the shower event a core may
be placed within the 50 meter arc during which the sensors

placed inside and outside the 50 meter circle act as detectors.
The data captured from the detectors are density values of the
showers and are applied to PCA, ICA and SOM approximator
blocks. These reduce the density values to one fourth of the
applied size which is equally contributed by each of the four
quadrants of the circular arrangement.

The output of the SOMs are applied to the three ANNSs blocks
which are MLP, RNN and PNN structures. The output of these
three blocks can be given as

ys1 = y11 X [ANN1]|y,, (1)
Y32 = Y11 X [ANN2]|y21 2
Y33 = Y11 X [ANN?’“’UM (3)

where ANN; is and MLP, ANN, is a RNN and AN N3 is
a PNN and are trained as per the considerations mentioned in
[10] [18].

The final segment of the system is a SOM block used as an
optimizer of the outputs generated by the three ANNs. At a
given instant the SOM retains the best output among the three
ANNSs. The selection is made by resorting to “Winner Takes
AlI” approach of training and an Euclidean distance based cost
function [18]. The optimization rule can be expressed as

Your = Best of{ys1,ys2, Y33} 4)

I11. PRINCIPAL COMPONENT ANALYSIS APPROACH OF
DIMENSIONALITY REDUCTION

Principal Components Analysis (PCA), is a way of identify-
ing patterns in data, and expressing the data in such a way as to
highlight their similarities and differences. PCA is a powerful
tool for analyzing data. Another advantage of PCA is that
once these patterns are found, the data can be compressed,
i.e. by reducing the number of dimensions, without much loss
of information [19].

A. Definition of PCA:

A principal component can be defined as a linear combi-
nation of optimally - weighted observed variables. PCA is a
classical statistical method and is a linear transform widely
used in data analysis and compression. It is based on the
statistical representation of a random variable [20].

Suppose we have a random vector population x, where

X = (21, o) " (5)

and the mean of that population is denoted by
pe = E{x} (6)

The covariance matrix of the same data set is
Cp = E{(2 — pa)(x — p1a) "} @)

The components of C, denoted by ¢;;, represent the covari-
ances between the random variable components x; and Xx;.
The component ¢;; is the variance of the component x;. The
variance of a component indicates the spread of the component
values around its mean value. If two components x; and x; of
the data are uncorrelated, their covariance is zero (c;;=c;;=0).
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Fig. 1. System Model showing PCA, ICA and SOM approximators as part

The covariance matrix is, by definition, always symmetric [20].
From a sample of vectors zi,....... Ty , we can calculate
the sample mean and the sample covariance matrix as the
estimates of the mean and the covariance matrix [20].

From a symmetric matrix such as the covariance matrix, we
can calculate an orthogonal basis by finding its eigenvalues
and eigenvectors. The eigenvectors e; and the corresponding
eigenvalues ); are the solutions of the expression

Cre; = Njej, i =1, n (8)

For simplicity we assume that the \; are distinct. These values
can be found, for example, by finding the solutions of the
characteristic equation

|C, — AI| =0 9)

where the | is the identity matrix having the same order
than Cx and the |.| denotes the determinant of the matrix. If
the data vector has n components, the characteristic equation
becomes of order n. This is easy to solve only if n is small.
Solving eigenvalues and corresponding eigenvectors is a non-
trivial task, and many methods exist. One way to solve the
eigenvalue problem is to use a neural solution to the problem.
The data is fed as the input, and the network converges to
the wanted solution [20]. By ordering the eigenvectors in the
order of descending eigenvalues (largest first), one can create
an ordered orthogonal basis with the first eigenvector having
the direction of largest variance of the data. In this way, we can
find directions in which the data set has the most significant
amounts of energy [20].

B. Dimension Reduction using PCA

Principal component analysis is a widely used tool for
dimension reduction. Let z; € IR* , where i = 1,..., n, be
the training patterns. The principal components are a set of
g < d orthonormal vectors and span a subspace in the major
directions into which the patterns extend as in Figure 3 [21].

Let us assume that the patterns are centered around the
origin (without loss of generality). Let y be the projection
onto a subspace,

y=wTg (10

MCs
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Fig. 2. Encoding-decoding process using PCA [18]

W is a dg matrix that contains the principal components as
columns. The vector y is a dimension-reduced representation
of x. Let & be the reconstruction of x given only the vector y,

=Wy (11)

The goal of PCA is to set the subspace such that the mean
reconstruction error E,... is minimized’

1
Erec = - T — 'A'i 2 12
o= ; i — ] (12)

This goal is equivalent to finding the g major directions of
maximal variance within the set of patterns x;[21]. Moreover,
it is equivalent to the principal components being the first g
eigenvectors T/ of the covariance matrix C of the pattern set,

1 & T
— =3, -] 1
C ni:lr T; (13)

The corresponding eigenvalue equation is

cwy1 = )\ZWI (14)
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Fig. 3.  The principal component points into the direction of maximum
variance. The gray dots are the training patterns. The intersection of the dashed
lines is the center of the pattern distribution[21]

The eigenvalue ); is the variance of the distribution z; in the
direction of W;[21].

C. Generalized Hebbian Algorithm (GHA) Based PCA:

There is a close relationship between SOMs and PCA such
that the Hebbian learning can be used to formulate a PCA
type encoder. Let m be the number of inputs and | be the

#4[n] ¥i[n]

Yiln]

Fig. 4. GHA based PCA [18]

number of outputs such that mgl. Let [w] be a matrix of
random values representing the synaptic weights connecting
inputs to the output layer. Thus for the set of inputs z;(n),
the output is given as

y(m) = Y- ws(n)ai(n) 15)

The weight matrix [w] is updated following a Generalized
Hebbian Learning Algorithm expressed as

Awji(n) = nly;(n)zi(n) —y;(n) Y wei(n)yx(n)]  (16)
k=1

where Awj;(n) is the change in the synaptic weight matrix at
time n and 7 is the learning rate parameter.

D. Adaptive Principal Component Extraction (APEX) Algo-
rithm:

The Adaptive Principal Component Extraction (APEX) Al-
gorithm is an extension of the GHA based PCA. It uses both

win] w ¥In]

xan] ¥an]

| [ Feedback

Q ! Paths
g

]

Fig. 5.  APEX algorithm based PCA [18]

feedforward and feedbackward connections. The algorithm
calculate the first j—*" principal components from the given
(j-1)-components.

Let w; = [wj1(n),wjz(n)..wjn(n)]T be the feedforward
weight vector and a;(n) = [aj1(n),ajz2(n)...a;;—1(n)]T be
the feedbackward weight vector. The feedforward part works
with a Hebbian Learning Rule while the feedbackward part
uses an anti-Hebbian updation [18]. The output y;(n) of the
neuron j is given by

y;i(n) = wJT(n)w(n) + ajr(n)yj_l(n) an

The update equations for w; and a;(n) are expressed as

y;(n) = w] (n)z(n) + a] (n)y;-1(n) (18)

The update equations for w; and a;(n) are expressed as
wj(n +1) = w;(n) + nly; (n)ax(n) — yi (n)w;(n)]  (19)
and

aj(n+1) = a;(n) — nly;(n)y;—1(n) + y; (n)a;(n)] (20)
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TABLE |
COMPUTATIONAL COMPLEXITY OF GHA AND APEX ALGORITHMS

SI Num Algorithm Computational
Complexity
1 GHA-PCA | 0.5(m? + m)(p + 1) + 2pm

2pm + 1.5m? + 2.5m
m being the principal
component,
p being uncorrelated zero
mean random process

2 APEX-PCA

E. Dimensionality Reduction using Kernal PCA:

Kernel principal component analysis (kernel PCA) is an
extension of principal component analysis (PCA) using tech-
nigues of kernel methods. Using a kernel, the originally linear
operations of PCA are done in a reproducing kernel Hilbert
space with a non-linear mapping [22].

Different from the mixture models, kernel PCA just works
with a single PCA. It is an extension of PCA to non-linear
distributions. Instead of directly doing a PCA, the n data points
x; are mapped into a higher-dimensional (possibly infinite-
dimensional) feature space, [21]

z; — p(x4) (21)

In the feature space, principal components are extracted. That
is, the following equation needs to be solved where it is
assumed that (z;) has zero mean

AW = CW 22)

with the covariance matrix
1 n
C==> wl)p;)" (23)
j=1

From the definition of C follows that Cyy is a linear combi-
nation of the vectors p(z;). Thus W, must lie in the span of
o(x1), ..., p(zy) [21]. Hence, we can write

W = Z%SO(%) (24)
-1

Combining Eq 22 and Eq 24 gives

A aiplan) = o O plen)ase(a;) (o) () (@29)

i,j=1

which is equivalent to the set of n equations

AY - ailpl) o)) = XY (26)
where .
= (o) p(x1)) VI @7)
i,j=1
and N
Y= (ela;) o) W (28)
i,j=1

Using the kernel matrix, Eq 26 can be written as

nAKa = k2o (29)

Thus, the vector « for each principal component can be
obtained by extracting the eigenvectors of K. For further
processing, the principal component W needs to be normalized
to have unit length [21]. This can be also established by
working solely with the kernel,

W2 = O aip(@)) O ayplz;)") = a"Ka =n*a’a
i=1 j=1

(30)

which results in a normalization rule for «. To apply kernel
PCA, a data point’s features (the projections on the principal
components) need to be extracted, and the formalism needs
to be adjusted to distributions that do not have zero mean in
feature space [21].
PCA itself is a powerful technique for extracting structure from
possibly high-dimensional data sets. But it is not effective
for data with non-linear structure. In kernel PCA, the input
data with nonlinear structure is transformed into a higher-
dimensional feature space with linear structure, and then linear
PCA is performed in the high-dimensional space [23].

IV. INDEPENDENT COMPONENT ANALYSIS (ICA)
APPROACH OF DIMENSIONALITY REDUCTION

ICA is a method in which the goal is to find a linear
representation of non-Gaussian data so that the components
are statistically independent, or as independent as possible.
Such a representation seems to capture the essential structure
of the data in many applications, including feature extraction
and signal separation [25].

A. Definition of ICA:

To rigorously define ICA (Jutten and Hrault, 1991; Comon,
1994), one can use a statistical “latent variables” model. Let
us assume that we observe n linear mixtures x1, ..., z, of n
independent components

for all j (31)

The time index t has not been included. In ICA model, each
mixture z; as well as each independent component s; is
assumed to be a random variable, instead of a proper time
signal. The observed values x;(t), are then a sample of this
random variable with zero mean which makes the model zero-
mean [25].

It is convenient to use vector-matrix notation instead of the
sums like in the previous equation. Let us denote by = the
random vector whose elements are the mixtures z1, ..., z,,
and likewise by s the random vector with elements s1, ..., S,.
Let us denote by A the matrix with elements a,;. All vectors
are understood as column vectors; thus =7, or the transpose
of x, is a row vector. Using this vector-matrix notation, the
above mixing model is written as

x = As (32)

Sometimes we need the columns of matrix A; denoting them
by a; the model can also be written as
n

T = Z a;S; (33)

i=1

Tj = aj181 + aj282 + .oeen. + GjnSn,
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The statistical model in Eqs 33 is called ICA model. The ICA
model is a generative model, which means that it describes
how the observed data are generated by a process of mixing
the components s;. The independent components are latent
variables, meaning that they cannot be directly observed. Also
the mixing matrix is assumed to be unknown. All we observe
is the random vector z, and we must estimate both A and s
using it. This must be done under as general assumptions as
possible.ICA is very closely related to the method called blind
source separation (BSS) or blind signal separation [25].

B. Dimensionality Reduction using ICA

Speech signals are composed of independent higher order
statistical characteristics. ICA is often used in speech process-
ing to extract the most important signal components [26]. Here
an ICA network is trained to obtain independent components
u from speech segment x, and the trained weight matrix
W extract basis function coefficients u from x. ICA assume
the observation x is the linear mixture of the independent
components u. If A denote the inverse matrix of W then the
columns of A represent basis feature vectors of observation x
[26].

u=WJX;, X=Au (34)

To extract basis functions one has to train mixing matrix A or
unmixing matrix W, and we trained the mixing matrix W.
The learning rule is based on maximization of joint entropy
H(y), and is represented as

6I(y,x) _ 6H(y)
dp(u)
AWa W+ Su_gT (36)
p(u)

where p(u) denotes the approximation of the speech signal
component probability density function,
Syi _ 0gi

plus;) = = 37

p(ui) 5w~ bu, (37)
Here, g(u) is a nonlinearity function, which approximates the
cumulative distribution function of the source signal u [26].
Natural gradient is also introduced to improve a converging
speed. Particulary, this method does not require the inverse of
matrix W, and provides the following rule:

AWa %V?WTW =[I—pu' W (39

where (u) is related to the source probability density function
and called as the score function [26].
Using the learning rule in Eqs 38, W is iteratively updated
by gradient ascent manner until convergence. Let’s denote N
as the size of speech segments, which are randomly generated
from training speech signals.
Figure 6 shows the basis vector training network. ICA network
is composed of N inputs and N outputs, and N basis vectors
are produced from N by N matrix A (A = W—1) [26].

The above approach can be applied to extract the most
important data sets from a host of samples provided by a grid
of detectors arranged to monitor EAS events.

Fig. 6. ICA network for training the basis vector

C. Slection of Dominant Feature Vectors:

For a given set of correlated data, the most important
ensemble can be selected from the N basis vectors. The
ICA algorithm finds independent components corresponding
to the dimensionality of the input, and may result in redundant
components. To reduce this redundancy, several techniques
have been proposed. The contribution of basis vectors to the
input sample and the variability of the basis vector coefficients
can be considered. The contribution means the power of the
basis vector in the input samples and the Ls-norm (||a;l|,
where a; is the i—*" column vector of A) can represent the
relative importance of basis vectors. Therefore, from N basis
vectors ordered in decreasing Lo-norm, M dominant and least
correlated vectors can be selected. The variability denotes the
variance of the basis vector coefficients, and this can represent
the relative importance of basis vectors in extracting the most
significant part of the input [26].

V. EXPERIMENTAL DETAILS AND RESULTS

Experiments are carried out using density values taken from
detector readings spread around a radius of 100 meters. The
cores are assumed to be concentrated in an arc of 50 meter
radius thus providing a set-up for derivation of density values
using the NKG function [3]. These values are related to shower
primary energy and the coordinates of the location where the
event is assumed to have occurred.

The PCA, ICA and SOM approximator blocks at the input
perform a process through which less than 25% of the samples
supplied by the detectors are retained. These are data values
are least correlated and can be considered to be provided by
the detectors spread in a circular arc. In the true sense, the
actual training data set comes from about 400 detectors which
have high correlation. The highly correlated data can lead
to inefficiency, hence the PCA, ICA and SOM approximator
blocks are used which reduce the size of the input samples.
The presence of the PCA, ICA and SOM approximator blocks
helps in improving efficiency of the system as depicted by
Table Il. Experiments are carried out in several phases and
the details are provided in [10].

The PCA based dimensionality reduction is carried using
conventional PCA, GHA-PCA, APEX-PCA and Kernel-PCA.
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TABLE |1
AVERAGE IMPROVEMENT OF MCS PERFORMANCE DUE TO THE USE OF DATA APPROXIMATOR BLOCKS AT THE INPUT
Case Epochs Time Success in Difference Difference in
in Sec.s | Rate in % | in time in sec.s | success rate in %
Without 5000 87.2 92.0 - -
approximator blocks | 10000 107.3 93.0 - -
at Input 15000 132.5 93.0 - -
With 5000 72.0 93.0 14.9 1.0
approximator blocks | 10000 93.0 95.0 14.3 2.0
at Input 15000 111.8 95.0 20.7 2.0
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Fig. 7. Reconstruction error generated by PCA, ICA and SOM based data dimensionality reduction techniques

TABLE 11l
CONFIGURATION OF THE SOM APPROXIMATOR
SI Num Parameter Specification
1 Input Size 400 x 100
2 Data Blocks 20
3 Multipaths 10
4 Output grid 1 x 100
5 Topology Gridtop
and Hextop
6 Distance function linkdist
7 Ordering phase 051t 0.9
learning rate
8 Ordering phase steps 500 to 5000
9 Tuning phase learning rate 0.02 to 0.6
10 Epochs 100 to 5000 in steps of 100

Similarly, ICA based data approximation is carried out in-
dependently. The SOM approximators are used for data di-
mension reduction after 500, 1000, 2000 and 5000 sessions
of training. The SOM approximator is configured as per the
parameters given in Table IlI. Table IIl. A set of experiments
are performed to determine the reconstruction error. The
purpose is to ascertain the most suitable data dimensionality

reduction technique for the MCS and Committee Machine
based EAS analysis. The plot depicted in Figure 7 shows the
reconstructed error when each of the PCA and ICA methods
are implemented using respective ANN architectures. The
Figure 7 also shows the reconstruction error generated by the
SOM after four different training sessions. The SOM based
data dimensionality reduction methods turn out to be the most
suitable ones for the present application.

VI. CONCLUSION

This work describes certain data dimension reduction tech-
niques like Principal Component Analysis (PCA), Independent
Component Analysis (ICA) and Self Organizing Map (SOM)
approximators for application with an MCS formed using
Multi Layer Perceptron (MLP), Recurrent Neural Network
(RNN) and Probabilistic Neural Network (PNN). The data in-
puts are obtained from an array of detectors placed in a circular
arrangement resembling a practical detector grid which have
a higher dimension and greater correlation among themselves.
PCA in four forms namely PCA, GHA-PCA, APEX-PCA
and Kernel-PCA are considered. The coding decoding of
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each of these four techniques are carried out using specific
ANN architectures. Similarly, ICA based data dimensionality
reduction is implemented. The work also investigates the
effectiveness of the SOM as an approximator at the end of
different training sessions. The SOM based approximation
provides the best results in terms of reconstruction error
though PCA based techniques showed better computational
complexity than ICA. The techniques of data dimensionality
reduction discussed here provides an insight regarding how the
best set of density values can be considered for EAS analysis
using a MCS. The result is a system with enhanced features
of data dimensionality reduction suitable for applications for
primary energy prediction and core location detection proving
to be effective for EAS analysis.
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