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Abstract—In this paper, an analytical approach is used to study 

the coupled lateral-torsional vibrations of laminated composite beam. 
It is known that in such structures due to the fibers orientation in 
various layers, any lateral displacement will produce a twisting 
moment. This phenomenon is modeled by the bending-twisting 
material coupling rigidity and its main feature is the coupling of 
lateral and torsional vibrations. In addition to the material coupling, 
the effects of shear deformation and rotary inertia are taken into 
account in the definition of the potential and kinetic energies. Then, 
the governing differential equations are derived using the Hamilton’s 
principle and the mathematical model matches the Timoshenko beam 
model when neglecting the effect of bending-twisting rigidity. The 
equations of motion which form a system of three coupled PDEs are 
solved analytically to study the free vibrations of the beam in lateral 
and rotational modes due to the bending, as well as the torsional 
mode caused by twisting. The analytic solution is carried out in three 
steps: 1) assuming synchronous motion for the kinematic variables 
which are the lateral, rotational and torsional displacements, 2) 
solving the ensuing eigenvalue problem which contains three coupled 
second order ODEs and 3) imposing different boundary conditions 
related to combinations of simply, clamped and free end conditions. 
The resulting natural frequencies and mode shapes are compared 
with similar results in the literature and good agreement is achieved. 
 

Keywords—Free vibration, Laminated composite beam, Material 
coupling, State space 

I. INTRODUCTION 
OMPOSITE beams are extensively used in many structures 
in aerospace, mechanical, civil and mining engineering. 

Mechanical properties such as high strength/stiffness to 
weight ratio and excellent fatigue strength of composite 
materials have increased applications of them in the 
construction of several structures. Therefore, the vibrational 
behavior of composite beams has been studied by many 
researchers in recent years. Free vibration analysis of the 
simple laminated composite beams started by Abarcar [1], 
Mansfield [2] and Teh [3] in 1970’s. They neglected the 
effects of shear deformation and rotary inertia in their studies. 
When cross-sectional dimensions are large or higher 
frequencies are studied in the vibrational analysis of the 
beams, the effects of shear deformation and rotary inertia 
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(similar to the Timoshenko beam theory) should be taken into 
account. Furthermore, low shear moduli of fibrous composites 
that results in low shear stiffness of the beam, intensifies this 
requirement. Also in composite beams, because of the ply 
orientation and stacking sequence of the fibers imbedded in 
continuous resin media, the effect of bending-torsion material 
coupling should be considered [1, 4-6]. This effect adds some 
additional terms and an additional equation to the equations of 
motion of the metallic Timoshenko beam and so they become 
more complicated to solve. Using some numerical approaches, 
the vibrational behavior of composite beams according to 
Timoshenko beam theory was studied [5, 7-8]; Bank and Kao 
[9] studied the free and forced vibrations of the thin-walled 
fiber-reinforced composite material beams using the 
Timoshenko beam theory. Banerjee and Williams [8] and 
Banerjee [10] developed the dynamic stiffness matrix method 
for the problems of free vibration of composite Timoshenko 
beam and axially loaded composite Timoshenko beam, 
respectively. Moreover the later is analyzed by Kaya and 
Ozdemir Ozgumus [11] using the differential transform 
method (DTM). Also Banerjee [12] represented frequency 
equation and mode shape formulae for clamped-free boundary 
conditions composite beam using symbolic computations. As 
known by authors, the problem of coupled lateral-torsional 
vibrations of laminated composite beam has been analyzed 
using various approaches for cantilever beam which is usually 
used as a model for composite aircraft wing or helicopter 
blade. In many other applications, a combination of simply 
supported, clamped and free boundary conditions will take 
into account. In this paper, the three coupled PDEs of motion 
for a laminated composite beam subjected to several 
combinations of boundary conditions are studied using an 
analytical approach. 

II. FORMULATION 
The differential equations of motion for free vibrations of a 

laminated composite beam can be easily derived using 
Hamilton’s principle. According to the Hamilton’s principle 
the integration of the Lagrangian of a dynamical system on 
any arbitrary interval of time is stationary, i.e. 
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Where kU  and pU  are the kinetic and the potential 
energies, respectively. Considering w  as transverse 
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deflection, θ  as bending rotation and ψ  as twist angle of the 
beam, the total kinetic energy kU  of the beam is given by 
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and the total potential energy of the beam is 
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Where, ρ  is the density of the material, A  is the cross-
sectional area, αI  is the polar mass moment of inertia per unit 
length, I  is the second moment of area of the beam cross-
section, EI  is the bending rigidity, GJ  is torsional rigidity, 
K  is bending-torsion coupling rigidity, L  is the length of the 
beam and AGκ  is shear rigidity of the material (includes shear 
correction factor) and differentiation with respect to space and 
time are shown by indices x  and t  respectively. Substituting 
Eqs. (2) and (3) into Eq. (1), using integration by parts and 
simplifying the results, the equations of motion for the 
laminated composite beam are derived in the following form 

 

0)( =−+−+ ttxxxxx IKwAGEI θρψθκθ  (4)
0)( =−− ttxxx AwwAG ρθκ  (5)

0=−+ ttxxxx IKGJ ψθψ α  (6)
 

Beside the above coupled PDEs, geometric and natural BCs 
must be taken into account. Notice that natural BCs include 
the values of shear force S , bending moment M  and twisting 
torque T  at the boundaries. These quantities are represented 
by the following expressions 

 

,)( θκ −= xwAGS  ,xx KEIM ψθ +=  xx GJKT ψθ +=  (7)
 

Now, assuming synchronous motion in which the general 
shape of the beam does not change with time. Mathematically, 
this implies that the unknown functions w , θ  and ψ  are 
separable in space and time, 
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Substituting these functions into Eqs. (4-6) leads to 
 

02 =Φ+Φ ωtt  (9)
 

which shows a harmonic motion and the following coupled 
ODEs 
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These ODEs have the following non-dimensional form 
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Where the non-dimensional parameters are defined as 
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Consequently, the non-dimensional shear force, bending 
moment and twisting torque are 

 

,~~~
~ θ−= xwS  ,~~~

~~ xbx kM ψθ +=  xxT ~~
~~~ ψθ +=  (17)

 

III. ANALYTIC SOLUTION 
Free vibration analysis of the beam deals with the solution 

of an eigenvalue problem which consists of Eqs. (10-12 or 13-
15) with corresponding boundary conditions of the beam.  To 
solve this problem the state space approach is used by 
introducing the state variables vector Q~ , 
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Via this vector, the equations of motion can be simplified in 
the state space as 
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where, xQ~
~  is stand for the derivative of Q~  with respect to 

x~ (the non-dimensional coordinate), I~  is the identity matrix 
and the non-zeros components of 3×3 matrices Λ

~  and Γ
~  are 
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The equations of motion which are transformed to the state 
space as a system of first order ODEs can be solved 
analytically. It easy to show that the analytical solution is 
equal to 
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Where, iλ s and iv~ s which are functions of ω  indicate the 
eigenvalues and the eigenvectors of the system respectively. 
In addition, unknown coefficients ic s can be determined by 
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applying boundary conditions. It should be noticed that at 
each end of the beam three boundary conditions encounter the 
problem. These BCs are any triple proper-combinations of the 
geometric or the natural BCs. By a simple calculation the total 
number of possible BCs is thirty six. In this paper, among 
these possible BCs only a few cases are studied and the 
complete procedure to find the natural frequencies and mode 
shapes is briefly explained for a cantilever beam (the same 
route is applicable for other cases). In the case of cantilever 
beam the boundary conditions are given by 
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and the following system of algebraic equations is carried 
out by substitution of these end conditions to the definition of 
the state variables (Eq. 18), shear force, bending moment, 
twisting torque (Eq. 17) and the general solution (Eq. 21) 
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All information that are required in the free vibration 
analysis can be found from the above system of algebraic 
equations. This system has non-zero solutions if and only if 
the determinant of its coefficient matrix is equal to zero. This 
condition gives the characteristic equation and its roots 
determine the natural frequencies. Consequently, mode shapes 
can be obtained by substituting the corresponding natural 
frequencies in the coefficient matrix and solving the problem 
for unknown ic s. 

IV. RESULTS 
The coupled lateral-torsional free vibration of the laminated 

composite cantilever beam was analyzed by Banerjee [13]. To 
validate and confirm the accuracy of solution procedure, the 
numerical results are calculated for the glass-epoxy composite 
beam with those data used in Ref. [13] (These data are 
represented in table 1). For the cantilever beam, comparison 
of the results with Ref. [13] shows a good agreement. Indeed, 
the two approaches which are introduced here and Ref. [13] 
have the same nature. The first three normalized mode shapes 
of the cantilever beam are shown in Fig. 1. Similar figures are 
presented in Ref [13] with slight differences. Also, the same 
method is applied for free vibration analyses of different types 
of boundary conditions which are free-free (Fig. 2), clamped-

clamped (Fig. 3) and pseudo-simply supported (Fig. 4). In 
addition, the first four natural frequencies for these cases and 
some other types of BCs are presented in Table 2. For semi-
definite system only non-zero mode shapes are shown (e.g. in 
the case of Free-Free ends). 

 

TABLE I 
PHYSICAL PROPERTIES OF GLASS-EPOXY COMPOSITE BEAM WITH ALL FIBER 

ANGLES SET TO +15˚ AND CROSS-SECTIONAL DIMENSIONS: THICKNESS 
(H=3.18 MM) & WIDTH (B=12.7 MM) 

EI(Nm2) GJ(Nm2) K(Nm2) ρA(kg/m3) Iαሺkgmሻ κAG(N) L(mm) 

0.2865 0.1891 0.1143 0.0544 0.777×10-6 6343.3 190.5 
 

TABLE II  
THE FIRST FOUR NATURAL FREQUENCIES FOR VARIOUS BOUNDARY 

CONDITIONS 

BCS ω1ሺrad/s2ሻ ω2ሺrad/s2ሻ  ω3ሺrad/s2ሻ ω4ሺrad/s2ሻ

C-F 193.19 1192.42 3259.65 4073.21 
C-C 1203.4998 3223.9494 6100.0963 8125.0104
F-F 1220.3711 3300.8862 6262.8822 8183.6200
S-S 540.7359 2128.7098 4669.6608 8030.4573

at ξ=0, 1: w=0, θ=0, T=0 1203.4877 3224.0146 6100.0627 8129.6382

at ξ=0, 1: w=0, M=0, ψൌ0 602.5454 2116.4747 4715.4566 7304.1033

at ξ=0, 1: S=0, θ=0, T=0 541.0425 2128.5001 4671.3989 7903.5821

at ξ=0, 1: S=0, M=0, ψൌ0 1339.1478 3262.8299 6406.3463 7497.8193

at ξ=0, 1: S=0, θ=0, ψൌ0 540.7359 2128.7098 4669.6608 8030.4573

 

IV.CONCLUSIONS 
The coupled lateral-torsional vibrations of laminated 

composite beam are studied using an analytical approach. This 
approach is based on the state space description of the 
vibrational system and its solution. The effect of boundary 
conditions on the vibrational phenomena is investigated. The 
results show that how the torsional motion is affected by the 
lateral vibration. In the formulation of the problem, bending-
twisting material coupling, the effects of shear deformation 
and rotary inertia are taken into account. The natural 
frequencies and mode shapes for cantilever beam are 
compared with similar results in the literature and good 
agreement is achieved. In this paper, the results for some other 
BCs which are listed in table (2) are presented for the first 
time by an analytical approach. Focusing on the data in table 2 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:6, 2011

1116

 

 

indicate that the increase/decrease of the natural frequencies 
are compatible with the nature of BCs. Although the 
numerical results for the composite beam with rectangular 
cross-section are represented, the approach can be similarly 
applied to other cross-sections such as box or airfoil.  
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Fig. 1 Mode shapes of cantilever beam 
 
 

 
 
 
 
 
 
 

 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ξ

w

 

1st Mode
2nd Mode
3rd Mode

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ξ

θ

 

1st Mode
2nd Mode
3rd Mode

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ξ

ψ

 

1st Mode
2nd Mode
3rd Mode

Fig. 2 Mode shapes of Free-Free beam 
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Fig. 3 Mode shapes of clamped-clamped beam 
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Fig. 4 Mode shapes of beam with BCs: at ξ=0, 1: w=0, M=0, ψൌ0 
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