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Optimal Maintenance Policy for a Partially
Observable Two-Unit System
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Abstract—In this paper, we present a maintenance model of a
two-unit series system with economic dependence. Unit#1 which is
considered to be more expensive and more important, is subject to
condition monitoring (CM) at equidistant, discrete time epochs and
unit#2, which is not subject to CM has a general lifetime distribution.
The multivariate observation vectors obtained through condition
monitoring carry partial information about the hidden state of unit#1,
which can be in a healthy or a warning state while operating. Only the
failure state is assumed to be observable for both units. The objective
is to find an optimal opportunistic maintenance policy minimizing
the long-run expected average cost per unit time. The problem
is formulated and solved in the partially observable semi-Markov
decision process framework. An effective computational algorithm
for finding the optimal policy and the minimum average cost is
developed, illustrated by a numerical example.

Keywords—Condition-Based Maintenance, Semi-Markov Decision
Process, Multivariate Bayesian Control Chart, Partially Observable
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I. INTRODUCTION

S INCE the 1970s, there has been a growing interest in the
maintenance modeling and optimization of single unit as

well as multiple unit systems. The maintenance optimization
surveys by [1]–[6] present the growing body of literature on
multi-unit systems.
The interaction between units in the multi-unit systems is
an important factor in maintenance decisions. In the early
maintenance literature, three types of interactions between
units have been considered, namely: economic dependence,
structural dependence and stochastic dependence [5].
Economic dependence implies that lower maintenance costs
can be incurred when several units are jointly maintained,
that is the economies of scale can be incorporated. Structural
dependence means that the units form a particular structure
and one failed unit causes to perform the maintenance of other
units as well. Stochastic dependence also referred to as failure
interaction or probabilistic dependence, means that the state
of a unit influences the lifetime distribution of other units.
Most maintenance models for multi-unit systems consider just
one interaction dependence among units, namely economic
dependence or structural dependence, since combining these
interactions makes the models too complex to be analyzed
analytically. In this paper we will consider the economic
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dependence between two units.
The failure is more costly in multi-unit systems compared to
single unit systems, especially in the case of series systems
since each failure can cause the breakdown of the whole
system. In the case of system failure, non-failed units should
not be replaced if they are in a good condition, because their
remaining useful life would be wasted. The condition of each
unit can specify the condition of a multi-unit system. When
maintenance activities are performed jointly, then economies
of scale can be obtained and the maintenance cost can be
minimized. Therefore, there is a potential to save maintenance
costs considerably by implementing preventive maintenance
on several units if an opportunity occurs.
To avoid costly failure, different multi-unit system models
have been developed based on different maintenance or
replacement policies, such as group maintenance policy,
opportunistic maintenance policy, multi-level control-limit
replacement policy and condition-based maintenance (CBM)
methods for multi-unit systems. Except CBM, other policies
do not take into account the condition monitoring(CM)
information, therefore CBM can predict the system failure
more precisely.
Condition-based maintenance is a maintenance program
that recommends maintenance actions (decisions) based
on the information collected through condition monitoring
process [7]. A well established and effective CBM program
can eliminate unnecessary maintenance actions, decrease
maintenance costs, reduce system downtime and minimize
unexpected catastrophic failures. Most existing work reported
in the literature focuses only on determining the optimal
CBM policy for single unit systems. Replacement and
other maintenance decisions are made independently for
each component, based on the components’ age, condition
monitoring data, and the CBM policy. ([8] and [9])
Reference[10] presented an overview of CBM and time-based
maintenance (TBM) and compared the challenges of
implementing each technique from a practical point of
view. They made conclusion that the application of CBM
is more realistic and more worthwhile to apply. So far,
most published research on condition-based maintenance deals
with simple one-unit systems, very few papers deal with
multi-unit systems. Reference[11] studied the combination of
CBM and opportunistic maintenance. Reference[12] presented
a condition based maintenance model for two-unit series
systems with exponential failures and fixed inspection
intervals. The objective was to minimize the long-run average
cost. Reference[13] presented a model for continuously
monitored deterioration systems where the unit was subjected
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to stochastic degradation. They applied Monte Carlo (MC)
simulation to find the optimal degradation threshold that
minimizes the expected total maintenance cost over a given
mission time, then they extended the model to multi-unit
repairable systems.
Reference[14] proposed a model to maximize both profit
and availability simultaneously. They applied Monte Carlo
simulation method for degradation process, and Genetic
Algorithms (GA) to find the optimal degradation level.
Reference[15] considered condition-based maintenance to
model a two-unit series system. They supposed that there
is an economic dependence between units. The condition
of the units was modelled by a stochastic process and
the inspection intervals were not constant. They suggested
four thresholds for each unit, two thresholds for individual
preventive and corrective maintenance and two thresholds for
the joint preventive and corrective maintenance. Reference[16]
proposed a maintenance model for n-unit systems. The
deterioration levels of the units were observed at sampling
epochs and the degradation process was modelled by a
continuous-time jump diffusion model. They supposed that
there is an interaction among the units of the system.
The proper maintenance action on the system or the units
can be performed if the deterioration of the system or
the unit crosses a critical threshold level. They developed
a simulation-based optimization heuristic to minimize the
long-run expected maintenance cost in order to obtain the
optimum critical threshold value. Reference[17] proposed a
model for a series system composed of two units, which
were subject to continuous deterioration and stochastic failure.
The units’ condition was monitored periodically and they
presented a model to determine the inspection interval as
well as preventive maintenance and preventive replacement
thresholds for the whole system.
Reference[18] developed a model for a multi-unit system.
They assumed that the degradation condition of each
unit can be accurately assessed through inspection. The
degradation follows a Markov model with continuous time
and discrete states. Two types of maintenance actions were
considered: minimal and major maintenance. They considered
resource constraints in their model (one repairman for three
machines). Reference[19] built a proportional hazards model
(PHM) for a multi-unit system and they supposed that
there is economic dependence among units. Reference[20]
presented a CBM policy for multi-unit system with continuous
stochastic deterioration. They considered a high set-up cost
of maintenance to minimize the long-run average cost as
an objective and a joint maintenance interval is the decision
variable. Unlike many previous efforts in multi-unit systems
which consider the CM or age information for each unit, in
this paper we will model a series system with two units,
where economic dependency exists among these units and the
combination of CM and age information will be considered.
The objective is to derive the optimal maintenance policy
to minimize the long-run expected average cost. Unit#1
is more expensive than unit#2 so that it is subject to
condition monitoring and the obtained information is used for
maintenance decision-making while the other unit is cheaper

and only age information of this unit is available.
The remainder of the paper is organized as follows. Section II
summarizes the assumptions and the details of the proposed
model and presents the problem formulation. In Section III,
we present the Bayesian control policy which is used for
maintenance decision-making under partial information. In
Section IV, an effective computational algorithm in the
SMDP framework based on the policy iteration algorithm
is developed. The effectiveness of the proposed model is
investigated in Section V by using a numerical example. In
Section VI, we discuss possible extensions to our model, and
provide concluding remarks.

II. MODEL FORMULATION

Consider a series system consisting of two operating units.
We assume that failure of either of the units causes a
breakdown of the system. For the maintenance cost, economies
of scale are incorporated in case maintenance activities are
combined, so these two units have economic dependency. One
unit is the core part of the system and more expensive than
the other one. The more expensive unit (unit#1) is subject
to condition monitoring, while only the age information is
available for unit#2.
The condition of unit#1 can be categorized into one of
three states: a healthy or ”as good as new” state (state 0),
unhealthy or warning state (state 1) and a failure state (state
2), where only failure state is observable. Let ξ1 = inf{t ∈
R+ : Xt = 2} be the observable failure time of unit#1.
We model the state process of unit#1 as a continuous-time
homogeneous Markov process (Xt : t ∈ R+), with state space
Ω = {0, 1, 2}. The unit#1 is assumed to start in a healthy state,
i.e. P (X0 = 0) = 1. It is assumed that the sojourn time in the
state i for i = 0, 1 is exponentially distributed.

The age information of unit#2 is available and its lifetime
distribution function is of a general type denoted by f2(t) and
ξ2 represents the failure time.

The system state at any time is determined by the states of
both units. In other words, the system state will be presented in
two dimensions. Let S be the state space of the whole system.
Then S = {(i, n, h) | i ∈ Ω, n, h ∈ N}, i is the state of unit#1
which can be in healthy, unhealthy or failure state, whereas
nΔ and hΔ represent age of unit#1 and unit#2, respectively
and the sampling interval is indicated by Δ. The failure time
of the system is denoted by ξ where ξ = min(ξ1, ξ2).

Unit#1 can make transition from state 0 to state 1 with
probability P01 or from state 0 to state 2 with probability
P02, where P01 + P02 = 1. The instantaneous transition rate
λij , i, j ∈ Ω, is defined by:

λij = lim
u→0+

P (Xt+u = j|Xt = i)

u
< +∞, i �= j ∈ Ω

λii = −
∑
i �=j

λij . (1)

To model monotonic system deterioration, we assume that
the state process is non-decreasing with probability 1, i.e.
λij = 0 for all j < i. We also assume that unit#1
is more likely to fail in the unhealthy state i = 1 than
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in healthy state i = 0, it means that λ02 < λ12 and
the failure state is absorbing state. Upon unit#1 failure,
corrective maintenance is carried out which brings the unit#1
to the healthy state, and simultaneously the opportunistic
maintenance will be performed for unit#2. The transition
probability matrix P(t)=(Pij(t))i,j∈Ω, is obtained by solving
the Kolmogorov backward differential equations, and it is
given by

Pij(t)=

⎡
⎢⎣
e−ν0t λ01(e

−ν1t−e−ν0t)
ν0−ν1

1−e−ν0t− λ01(e
−ν1t−e−ν0t)
ν0−ν1

0 e−ν1t 1−e−ν1t

0 0 1

⎤
⎥⎦ (2)

where Pij(t) = P (Xs+t = j | Xs = i).
The unit#1 condition is monitored at equidistant sampling

times Δ, 2Δ, ... and the data Y1, Y2, ... ∈ Rd are collected
at these times which represent partial information about the
system state. In this paper, we assume that the observations
have d-dimensional normal distribution Nd(μi,Σi) and are
conditionally independent given the system state i.e.

gYn|XnΔ
(y | i)= 1√

(2π)ddet(Σi)

exp(−1

2
(y − μi)

TΣi
−1(y − μi)) (3)

where μ0, μ1 ∈ Rd, Σ0, Σ1 ∈ Rd×d are known observation
process parameters. We note that these assumptions are
satisfied for the residuals obtained using a reference model
approach (see e.g.[9]).

Consider unit#1. The decision maker takes a sample at each
sampling epoch at a cost Cs and the posterior probability
i.e. the probability of unit#1 being in the warning state
(see e.g.[9]) is updated using the Bayes’ rule. When the
posterior probability exceeds a critical limit CL ∈ [0, 1] on
the Bayesian control chart, full inspection is initiated. If the
unit is found to be in the healthy state, it is left operational
and unit#2 adjustment is performed. If it is found to be
in the warning state (state1), unit#1 is preventively replaced
at a cost CP1, which takes TP time units and unit#2 will
be adjusted, simultaneously. If unit#1 fails before the chart
signals, failure replacement is triggered with corresponding
cost CF1 accompanied by unit#2 adjustment and unit#1
failure replacement takes TF time units. When the age of
unit#1 exceeds the pre-determined age M then preventive
maintenance will be triggered and unit#2 is adjusted. If unit#2
failure occurs, the posterior probability of unit#1 is updated,
and if it crosses the opportunistic level (OL) then inspection of
unit#1 is performed, which can be indicated false alarm or true
alarm. If it is true alarm, then the opportunistic maintenance
will be performed on both units, otherwise just unit#2 will
be replaced at a cost CF2 and unit#1 will be left operational.
Adjustment cost of unit#2 is equal to CP2. The inspection cost
CI will be considered when inspection is performed, which
takes TI unit time. Whenever the system is stopped, the fixed
cost K and CLP cost rate will be charged. A fixed cost K
is incurred for any maintenance operation and CLP will be
considered as the cost rate of lost production.

After collecting an observation sample and processing
information of unit#1 and age information of unit#2, the
decision maker follows the policy described above and the

objective is to determine the optimal policy that minimizes
the long-run expected average cost per unit time.

III. THE BAYESIAN CONTROL POLICY

The Bayesian control chart monitors the posterior
probability that the system is in the warning state. This
approach has received a lot of attention ([21] and [9]) and was
proven to be the optimal tool for decision making by [22]. It
is well-known from the theory of partially observable Markov
decision process [23] that the posterior probability that the
system is in the warning state is sufficient for optimal decision
making. Thus, at each sampling epoch the new observations
are collected and the posterior probability is updated using
Bayes’ theorem. The posterior probability that unit#1 is in the
warning state is denoted by:

Πn = P (XnΔ = 1 | ξ1 > nΔ, Y1, ..., Yn,Πn−1, nΔ < M). (4)

The posterior probability can be expressed as:

Πn =
P (XnΔ = 1, ξ1 > nΔ, Y1, ..., Yn,Πn−1, nΔ < M)

P (ξ1 > nΔ, Y1, ..., Yn,Πn−1, nΔ < M)
. (5)

The objective is to find the optimal value of the control
and opportunistic limits (CL∗, OL∗) ∈ (0, 1) such that the
long-run expected average cost per unit time is minimized.
From renewal theory, the long-run expected average cost per
unit time is calculated for any control policy as the expected
system cost incurred in one cycle (CC) divided by the expected
cycle length (CL). The optimization problem can then be
formulated as:

E(CL∗,OL∗)(CC)

E(CL∗,OL∗)(CL)
= inf(CL,OL)∈[0,1]

(E(CL,OL)(CC)

E(CL,OL)(CL)

)
(6)

where a cycle is completed when the system is brought
back to the healthy state. We now develop an efficient
computational algorithm in the semi-Markov decision process
(SMDP) framework to determine the optimal control limit
(CL∗, OL∗) ∈ (0, 1). Using Bayes’ Theorem, Πn can be
expressed as:

Πn = g(y |1).[P01(Δ)(1−Πn−1)+P11(Δ)Πn−1]/
[
g(y |0).P00(Δ)

(1−Πn−1)+g(y |1).[P01(Δ)(1−Πn−1)+P11(Δ)Πn−1]
]
. (7)

We further need to simplify the posterior probability under
the assumption Σ0 �= Σ1, which is common in maintenance
applications. We have

gYn|XnΔ
(y |0)

gYn|XnΔ
(y |1) =

1√
(2π)d det(Σ0)

exp(−(1/2)(y−μ0)TΣ0
−1(y−μ0))

1√
(2π)d det(Σ1)

exp(−(1/2)(y−μ1)TΣ1
−1(y−μ1))

=S × exp
1

2
((Yn −B)TA(Yn −B) + C), (8)

where constants A,B,C and S are given by

A = Σ−1
1 − Σ−1

0

B = (Σ−1
1 − Σ−1

0 )−1(Σ−1
1 μ1 − Σ−1

0 μ0)

C = (μT
1 Σ−1

1 μ1 − μT
0 Σ−1

0 μ0)−BT (Σ−1
1 μ1 − Σ−1

0 μ0)

S = (det(Σ1).(det(Σ0))
−1)1/2. (9)
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So, (7) can be simplified to (10) if we denote Vn = (Yn−
B)TA(Yn−B).

Πn=
P01(Δ)(1−Πn−1)+P11(Δ)Πn−1

S×exp(Vn+C
2

)P00(Δ).(1−Πn−1)+[P01(Δ)(1−Πn−1)+P11(Δ)Πn−1]

=
C1

Πn−1

S×exp(Vn+C
2

).C0
Πn−1

+ C1
Πn−1

, (10)

where

C1
Πn−1

= P01(Δ)(1−Πn−1) + P11(Δ)Πn−1,

C0
Πn−1

= P00(Δ).(1−Πn−1). (11)

In the next section, we develop the computational algorithm
using the SMDP formulation which will be used to find the
optimal CBM policy.

IV. COMPUTATIONAL ALGORITHM IN THE SMDP
FRAMEWORK

Typically, computing the long-run expected average cost in
the SMDP framework requires discretization of [0,1], which is
the state space of the posterior probability process (Πt, t ≥ 0).
Suppose that at sampling time nΔ the unit#1 is operational,
and we obtain the posterior probability Πn considering new
data. We partition the state space of the posterior probability
into L subintervals. The SMDP is defined to be in state l,
1 ≤ l ≤ L, if the current value of the posterior probability Πn

lies in the interval [ l−1
L , l

L ). Before calculating the transition
probabilities, the exact definition of states is required.

• State (0,n,0): both units are in as good as new condition
and age of unit#1 is nΔ.

• State (m,n, h): the first component represents the state
of unit#1, i.e. Πn = m, the second and third components
are the age of unit#1 and unit#2, respectively. i.e. nΔ
and hΔ.

• State PM : unit#1 is in PM state which means that PM
action is performed.

• State F : unit#1 failure occurs.
Now, the SMDP is determined by the following quantities:
P(m,n−1,h−1)(l,n,h)= the probability that at the next decision

epoch the system will be in state (l, n, h) given the current
state is (m,n− 1, h− 1),
τ(m,n−1,h−1)= Expected sojourn time until the next decision

epoch given the current state is (m,n− 1, h− 1),
C(m,n−1,h−1)= Expected cost incurred until the next

decision epoch given the current state is (m,n− 1, h− 1).
Once all of these quantities are defined, for a fixed control

and opportunistic limits (CL,OL), the long-run expected
average cost g(CL,OL) can be obtained by solving the
following linear equations:

ν(m,n−1,h−1) = C(m,n−1,h−1)−g(CL,OL)τ(m,n−1,h−1)

+
∑

(l,n,h)∈S

P(m,n−1,h−1)(l,n,h)ν(l,n,h),

ν(s,n,h) = 0 , for some (s, n, h) ∈ S. (12)

So, the optimal control and opportunistic limits (CL∗, OL∗) ∈
[0, 1] and the corresponding minimum long-run expected
average cost per unit time g(CL∗, OL∗) can be found by

g(CL∗, OL∗) = inf(CL,OL)∈[0,1]{g(CL,OL)}. Next, we will
derive the closed form expression for the SMDP quantities.

A. Transition Probabilities

The SMDP transition probability P(m,n−1,h−1)(l,n,h) from
state (m,n− 1, h− 1) to state (l, n, h) where 0 < m, l < CL
and unit#2 is working properly can be calculated as follows:

P(m,n−1,h−1)(l,n,h)=P (
l−1

L
≤ Πn<

l

L
, ξ2>hΔ, ξ1>nΔ |ξ1>(n−1)Δ,

Πn−1, ξ2> (h−1)Δ). (13)

It means that the probability that the current value of the
posterior probability Πn lies in the interval [ l−1

L , l
L ) , given

that we have all the information up to now and we know that
both units did not fail. Then, this probability can be calculated
as:

P(m,n−1,h−1)(l,n,h)=P (
l−1

L
≤Πn<

l

L
, ξ2>hΔ, ξ1>nΔ |ξ1>(n−1)Δ,

Πn−1, ξ2> (h−1)Δ, nΔ < M)

= P (
l − 1

L
≤ Πn <

l

L
| ξ1 > nΔ,Πn−1, nΔ < M)

×P (ξ1>nΔ |ξ1> (n−1)Δ,Πn−1, nΔ<M)× R2(hΔ)

R2((h−1)Δ)

= P (
l − 1

L
≤ Πn <

l

L
| ξ1 > nΔ,Πn−1, nΔ < M)

×R1(Δ | Πn−1 = m)× R2(hΔ)

R2((h− 1)Δ)
for 0 ≤ m, l < CL. (14)

The closed form of the first term on the right hand side of
(14) can be computed by using (10) as

P (
l − 1

L
≤ Πn <

l

L
| ξ1 > nΔ,Πn−1, nΔ < M)

= P
[ l−1

L
≤

C1
Πn−1

S. exp(Vn+C
2

).C0
Πn−1

+C1
Πn−1

<
l

L
| XnΔ=0

]

×(
C0

Πn−1

C0
Πn−1

+C1
Πn−1

)

+P
[ l−1

L
≤

C1
Πn−1

S. exp(Vn+C
2

).C0
Πn−1

+C1
Πn−1

<
l

L
| XnΔ=1

]

×(
C1

Πn−1

C0
Πn−1

+C1
Πn−1

)

=P
[
2ln[

(1− l
L
)C1

Πn−1

l
L
C0

Πn−1
.S

]−C≤Vn<2ln[
(1− l−1

L
)C1

Πn−1

l−1
L

C0
Πn−1

.S
−C |XnΔ=0

]

×(
C0

Πn−1

C0
Πn−1

+C1
Πn−1

)

+P
[
2ln[

(1− l
L
)C1

Πn−1

l
L
C0

Πn−1
.S

]−C≤Vn<2ln[
(1− l−1

L
)C1

Πn−1

l−1
L

C0
Πn−1

.S
−C |XnΔ=1

]

×(
C1

Πn−1

C0
Πn−1

+C1
Πn−1

). (15)

Reference [24] showed that any indefinite quadratic form
in multivariate normal vectors Q = GTAG, where G ∼
Nr(μ,Σ), r ∈ N , can be expressed as the difference of
two linear combinations of independent non-central chi-square
variables. Using this property, we can derive the first part of
(15), since (Yn −B) | XnΔ = i ∼ N2(μi − b,Σi). Therefore,
(15) can be simplified as:
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P (
l − 1

L
≤ Πn <

l

L
| ξ1 > nΔ,Πn−1)

= Dq0 (Q0).[
C0

Πn−1

C0
Πn−1

+C1
Πn−1

] +Dq1 (Q1).[
C1

Πn−1

C0
Πn−1

+C1
Πn−1

] (16)

where Dqi(Qi), i = {0, 1} is the cumulative density of a
quadratic form in normal vectors.

The conditional reliability of unit#1 is obtained by

R1(t |Πn) =P (ξ1> nΔ+t |ξ1>nΔ,Πn, (nΔ+t)<M)

= (1−Πn)(1− P02(t)) + Πn(1− P12(t)). (17)

Equation (14) can be calculated by substituting (16), (17)
and the reliability function of unit#2.
When the posterior probability of unit#1 crosses the control
limit CL ≤ l < 1, which means that it made transition from
state (m,n−1, h−1) to state (l, n, h), then after the inspection
it can be either in state (0,n,0) or PM , where PM is the
preventive maintenance state. When the result of inspection
reveals that false alarm has occurred, then the system will
be in as good as new condition or in state (0,n,0). Otherwise,
true alarm occurs and the next state will be PM . The posterior
probability is approximated by the mid-point of the interval.
Thus, these transition probabilities are given by:

P(l,n,h)(PM) =
l − 0.5

L
. (18)

P(l,n,h)(0,n,0) = 1− (
l − 0.5

L
). (19)

When unit#1 is operating well and unit#2 failure happens at
time t before the sampling point, then the posterior probability
is updated as:

Π
′
t(π) = P (Xt = 1 | Π′

0 = π, ξ1 > t, t < M)

=
P01(t)(1− π) + P11(t)π

R1(t | π)
. (20)

If the updated posterior probability does not reach the
opportunistic limit, then unit#2 is replaced and the system
will be ready at the next sampling epoch, so the state will be
(l, n, 0) and the transition probability is given below, where
ξ
′
2 = ξ2 − hΔ, ξ

′
1 = ξ1 − nΔ and 0 ≤ m < OL:

P(m,n,h)(l,n,0) = P (ξ
′
2 < ξ

′
1, ξ

′
2 <Δ,Π

′
ξ
′
2

(m)<OL,Π
′
Δ= l |ξ′1> 0,

Π
′
0 = m, ξ

′
2> 0)

=

∫ Δ

0
P (ξ1 > t,Π

′
t(m) <OL,Π

′
Δ = l | ξ1> 0,Π

′
0 = m)×f2(t |h)dt

=

∫ Δ

0
P (Π

′
t(m) <OL,Π

′
Δ = l | Π′

0=m)×f2(t | h)×R1(t | m)dt

=

∫ Δ

0
P (Π

′
Δ= l |Π′

0=m)× P (Π
′
t(m)<OL | Π′

0=m)× f2(t |h)
×R1(t |m)dt, (21)

where M > nΔ+ t and

f2(t | h) = d

dt
P
(
ξ2 ≤ (hΔ+ t) | ξ2 > hΔ

)
. (22)

The first part of (21) is derived by using (15) as follows:

P (Π
′
Δ = l |Π′

0=m) = P (
l − 1

L
≤ Π

′
Δ <

l

L
| Π′

0=m)

=P
[
2ln[

(1− l
L
)C1

Π0

l
L
C0

Π0
.S

]−C≤V<2ln[
(1− l−1

L
)C1

Π0

l−1
L

C0
Π0

.S
−C |XΔ=0

]

×(
C0

Π0

C0
Π0

+C1
Π0

)

+P
[
2ln[

(1− l
L
)C1

Πt(m)

l
L
C0

Π0
.S

]−C≤V<2ln[
(1− l−1

L
)C1

Π0

l−1
L

C0
Π0

.S
−C |XΔ=1

]

×(
C1

Π0

C0
Π0

+C1
Π0

). (23)

The second part of (21) i.e. P (Π
′
t(m)<OL | Π0 = m)

can be zero or one which depends on the value of the
updated posterior probability of unit#1 at time t. We solve
the following inequality:

P01(t)(1−m) + P11(t)m

R1(t | m)
< OL

=
P01(t)(1−m) + P11(t)m

(1−m)(1− P02(t)) +m(1− P12(t))
< OL

=

λ01(e
−ν1t−e−ν0t)
ν0−ν1

(1−m) +me−ν1t

(1−m)(e−ν0t +
λ01(e

−ν1t−e−ν0t)
ν0−ν1

) +m(e−ν1t)
< OL

λ01(e−ν1t−e−ν0t)(1−m)+m(ν0−ν1)e−ν1t

(1−m)
(
(ν0−ν1)e−ν0t+λ01(e−ν1t−e−ν0t)

)
+m(ν0−ν1)e−ν1t

<OL

λ01(e(−ν1+ν0)t−1)(1−m)+m(ν0−ν1)e(−ν1+ν0)t

(1−m)
(
(ν0−ν1)+λ01(e(−ν1+ν0)t−1)

)
+m(ν0−ν1)e(−ν1+ν0)t

<OL

e(−ν1+ν0)t <
OL(1−m)

(
(ν0 − ν1)− λ01

)

(1−OL)(λ01(1−m) +m(ν0 − ν1))

t < ln(
OL(1−m)

(
(ν0 − ν1)− λ01

)

(1−OL)(λ01(1−m) +m(ν0 − ν1))
)× 1

(ν0 − ν1)
(24)

where the posterior (m) is approximated by the mid-point
of the interval, i.e. m−0.5

L , so we substitute it in (24) as:

t<ln(
OL(L−m+0.5)(ν0−ν1−λ01)

(1−OL)(λ01(L−m+0.5)+(m−0.5)(ν0−ν1))
)× 1

(ν0−ν1)
(25)

and

P (Π
′
t(m)<OL |m) =

⎧⎪⎨
⎪⎩
1 ; t<

ln(
OL(L−m+0.5)(ν0−ν1−λ01)

(1−OL)(λ01(L−m+0.5)+(m−0.5)(ν0−ν1))
)

(ν0−ν1)

0 ;O/W.

(26)

If false alarm has occurred, then unit#2 is replaced and
the system will be ready at the next sampling epoch after
inspection. Then, the system state will be (0, n, 0) and the
transition probability is given by:



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:9, 2014

1548

P(m,n,h)(0,n,0) = P (ξ
′
2<ξ

′
1, ξ

′
2<Δ,Π

′
ξ
′
2

(m)≥OL,X
ξ
′
2
=0 | ξ′1> 0,

Π
′
0 = m, ξ

′
2> 0)

=

∫ Δ

0
P (ξ

′
1>t,Π

′
t(m)≥OL,Xt=0 |ξ′1> 0,Π

′
0=m)×f2(t |h)dt

=

∫ Δ

0
P (Π

′
t(m)≥OL,Xt=0 |Π′

0=m)×f2(t |h)dt

=

∫ Δ

0
P (Xt=0 |Π′

t(m)≥OL,Π
′
0=m)×P (Π

′
t(m)≥OL |Π′

0=m)×f2(t |h)dt

=

∫ Δ

0
P00(t)(1−Π

′
0)× P (Π

′
t(m)≥OL | Π′

0=m)×f2(t | h)dt (27)

where M > nΔ+ t and

P (Π
′
t(m)≥OL | m) =

⎧⎪⎨
⎪⎩
1 ; t≥ ln(

OL(L−m+0.5)(ν0−ν1−λ01)
(1−OL)(λ01(L−m+0.5)+(m−0.5)(ν0−ν1))

)

(ν0−ν1)

0 ;O/W.

(28)

Otherwise, true alarm occurs and the next state will be PM .

P(m,n,h)(PM) = P (ξ
′
2 < ξ

′
1, ξ

′
2 <Δ,Π

′
ξ
′
2

(m) ≥ OL,X
ξ
′
2
=1 | ξ′1> 0,

Π
′
0 = m, ξ

′
2> 0)

=

∫ Δ

0
P (ξ

′
1>t,Π

′
t(m)≥OL,Xt=1 |ξ1> 0,Π

′
0=m)×f2(t |h)dt

=

∫ Δ

0
P (Π

′
t(m)≥OL,Xt=1 |Π′

0=m)×f2(t | h)dt

=

∫ Δ

0
P (Xt=1 |Π′

t(m)≥OL,Π
′
0=m)×P (Π

′
t(m)≥OL |Π′

0=m)×f2(t |h)dt

=

∫ Δ

0
(P01(t)(1−Π

′
0)+P11(t)Π

′
0)×P (Π

′
t(m)≥OL | Π′

0=m)×f2(t |h)dt.
(29)

When the age of unit#1 exceeds the pre-determined age M ,
then preventive maintenance will be triggered and unit#2 is
adjusted simultaneously, so the transition probability is given
by:

P(m,n,h)(PM) = 1; 0 < m < CL, nΔ ≥ M. (30)

When unit#1 is in the PM state, then mandatory replacement
of unit#1 and adjustment of unit#2 are performed and the
system goes back to state (0,0,0). We have:

P(PM)(0,0,0) = 1. (31)

When unit#1 failure occurs, then the next state will be
(F ) which is the failure state and the transition probability
P(m,n−1,h−1)(F ) from state (m,n − 1, h − 1) to state (F ),
where 0 ≤ m < CL can be calculated as follows:

P(m,n−1,h−1)(F ) = P (ξ
′
1≤Δ, ξ

′
1<ξ

′
2 |ξ

′
1> 0,Π

′
0 = m,nΔ<M)

=

∫ Δ

0
P (ξ

′
1≤Δ, ξ

′
1<ξ

′
2 |ξ

′
1> 0,Π

′
0 = m, ξ

′
2 = u)× f2(u | h)du

=

∫ Δ

0
(1−R1(u | Π′

0 = m))× f2(u | h)du. (32)

where f2(u | h) can be obtained from (22).

B. Expected Sojourn Times

The expected sojourn time given the state is (m,n, h) where
0 ≤ m < CL can be derived as follows:

τ(m,n,h) = E(Sojourn time | Π′
0=m, ξ

′
1>0, ξ

′
2>0)

=

L∑
l=m

E(Sojourn time |Π′
0=m, ξ

′
1>0, ξ

′
2>0,Π

′
Δ= l, ξ

′
1>Δ,

ξ
′
2>Δ)×P(m,n,h)(l,n+1,h+1)+

L∑
l=m

E(Sojourn time |Π′
0=m, ξ

′
1>0,

ξ
′
2>0,Π

′
Δ= l, ξ

′
2<ξ

′
1, ξ

′
2<Δ,Π

′
ξ
′
2

(m)<OL)×P(m,n,h)(l,n+1,0)+

E(Sojourn time |Π′
0=m, ξ

′
1>0, ξ

′
2>0, ξ

′
2<ξ

′
1, ξ

′
2<Δ,Π

′
ξ
′
2

(m)≥OL,

X
ξ
′
2
= 0)×P(m,n,h)(0,n+1,0)+E(Sojourn time | Π′

0=m, ξ
′
1>0,

ξ
′
2>0, ξ

′
2<ξ

′
1, ξ

′
2<Δ,Π

′
ξ
′
2

(m)≥OL,X
ξ
′
2
=1)×P(m,n,h)(PM)+

E(Sojourn time |Π′
0=m, ξ

′
1>0, ξ

′
2>0, ξ

′
1<ξ

′
2, ξ

′
1<Δ)×P(m,n,h)(F )

=Δ×
L∑

l=m

P(m,n,h)(l,n+1,h+1)+Δ×
L∑

l=m

P(m,n,h)(l,n+1,0)+

∫ Δ

0
(t+TI)

P00(t)(1−Π
′
0)×P (Π

′
t(m)≥OL |Π′

0=m)×f2(t |h)dt+
∫ Δ

0
(t+TI)

(P01(t)(1−Π
′
0) + P11(t)Π

′
0)× P (Π

′
t(m)≥OL | Π′

0=m)

×f2(t | h)dt+
∫ Δ

0
t× (1−R1(t | Π

′
0 = m))× f2(t | h)dt

= Δ×
L∑

l=m

P(m,n,h)(l,n+1,h+1)+Δ

L∑
l=m

×P(m,n,h)(l,n+1,0)+

∫ Δ

0
(t+TI)×R1(t |Π

′
0=m)×P (Πt(m)≥OL |Π′

0=m)×f2(t |h)dt

+

∫ Δ

0
t×(1−R1(t |Π

′
0=m))× f2(t | h)dt. (33)

The mean sojourn time when the posterior probability
crosses the control limit and still unit#2 is working properly,
is given by:

τ(m,n,h) = TI , CL ≤ m < 1. (34)

If the age of unit#1 exceeds the pre-determined age M or
the result of inspection reveals that it was true alarm, then the
sojourn time in PM state will be:

τ(PM) = TP . (35)

The expected sojourn time when unit#1 failure occurs is
given by:

τ(F ) = TF . (36)

C. Expected Cost

The average cost incurred until the next decision epoch for
state (m,n, h) where 0 ≤ m < CL is given by:
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C(m,n,h) = E(Cost | Π′
0=m, ξ

′
1>0, ξ

′
2>0)

=
L∑

l=m

E(Cost |Π′
0=m, ξ

′
1>0, ξ

′
2>0,Π

′
Δ= l, ξ

′
1>Δ, ξ

′
2>Δ)×

P(m,n,h)(l,n+1,h+1)+

L∑
l=m

E(Cost |Π′
0=m, ξ

′
1>0, ξ

′
2>0,Π

′
Δ= l, ξ

′
2<ξ

′
1,

ξ
′
2<Δ,Π

′
ξ
′
2

(m)<OL)×P(m,n,h)(l,n+1,0)+E(Cost |Π′
0=m, ξ

′
1>0, ξ

′
2>0,

ξ
′
2<ξ

′
1,ξ

′
2<Δ,Π

′
ξ
′
2

(m)≥OL,X
ξ
′
2
=0)×P(m,n,h)(0,n+1,0)+E(Cost |Π′

0=m,

ξ
′
1>0, ξ

′
2>0, ξ

′
2<ξ

′
1, ξ

′
2<Δ,Π

′
ξ
′
2

(m)≥OL,X
ξ
′
2
=1)×P(m,n,h)(PM)

= Cs×
L∑

l=m

P(m,n,h)(l,n+1,h+1)+(K+CF2+Cs)×
L∑

l=m

P(m,n,h)(l,n+1,0)

+(K+CF2+CI+CLPTI)

∫ Δ

0
P00(t)(1−Π

′
0)×P (Π

′
t(m)≥OL |Π′

0=m)

×f2(t |h)dt+(K+CF2+CI+CLPTI)

∫ Δ

0
(P01(t)(1−Π

′
0)+P11(t)Π

′
0)

×P (Π
′
t(m)≥OL | Π′

0=m)×f2(t | h)dt

= Cs×
L∑

l=m

P(m,n,h)(l,n+1,h+1)+(K+CF2+Cs)×
L∑

l=m

P(m,n,h)(l,n+1,0)

+(K+CF2+CI+CLPTI)

∫ Δ

0
R1(t | Π

′
0=m)×P (Π

′
t(m)≥OL |Π′

0=m)

×f2(t |h)dt. (37)

The average cost incurred until the next decision epoch for
state (m,n, h), where CL ≤ m < 1 is as follows:

C(m,n,h) = CI + CLP .TI + CP2. (38)

If the result of inspection reveals that it is true alarm, then
the expected cost is given by:

C(PM) = CP1 + CLP .TP . (39)

When unit#1 failure occurs then the expected cost is as
follows:

C(F ) = K + CF1 + CP2 + CLP .TF . (40)

V. EXPERIMENTAL RESULTS

We assume that the unit#1 deterioration follows a
continuous-time homogeneous Markov chain (Xt : t ∈ R+),
with state space Ω = {0, 1, 2}. States 0 and 1 are
unobservable, representing the healthy and unhealthy
operational states respectively, and state 2 corresponds to the
observable failure state. The sojourn time in healthy state has
an exponential distribution with parameter ν0 = λ01 + λ02

and the sojourn time in unhealthy state has an exponential
distribution with parameter ν1 = λ12. The transition rates of
the state process are given by:

λ01 = 0.15, λ02 = 0.02 and λ12 = 0.2

The parameters of the residual observation process (Yn : n ∈
N) are given by:

μ0 =

(
0.21
−0.01

)
Σ0 =

(
1.5 0.61
0.61 1.9

)

μ1 =

(
0.75
0.54

)
Σ1 =

(
1.81 1.97
1.97 2.22

)
.

The age information of unit#2 is available and its lifetime
distribution follows Gamma distribution with parameters k =
2 and θ = 20 where,

f2(x) =
1

Γ(k)θk
xk−1e−x/θ; k > 0, θ > 0 (41)

The system inspection and replacement time parameters are
given by:

TI = 1, TP = 3, TF = 10

where TI is the inspection time, TP is the time to perform
preventive maintenance, and TF is the time to renew the
system upon unit#1 failure. Times of preventive and corrective
maintenance for unit#2 are negligible. When the age of
unit#1 exceeds the pre-determined age 50 then preventive
maintenance will be performed and unit#2 is adjusted.
The following costs will be considered in the experiment:

Cs = 1, CI = 10, CLP = 20,K = 50

CP1=500, CF1=1200, CP2=50, CF2=100

where Cs indicates the cost of sampling, CI is the cost of
inspection, CLP is the cost rate of lost production during
maintenance actions. CPi and CFi are the preventive and
corrective maintenance costs of unit i, i = {1, 2}, respectively.
We compute the optimal sampling interval, opportunistic limit
and control limit to minimize the long-run expected average
cost. We choose the partition parameter L = 40, and use (12)
to obtain the results shown in table I. The algorithm takes
7.1832 seconds for each run on an Intel Core (TM) i5 CPU
with 2.27 GHz.
The next stage of the analysis is to investigate the effect of the

TABLE I
THE OPTIMAL MAINTENANCE POLICY FOR A TWO-UNIT SERIES

SYSTEM WITH OPPORTUNISTIC MAINTENANCE LIMIT.

Optimal Optimal Optimal Average
opportunistic limit control limit sampling interval cost

0.2619 0.3810 2 35.4821

opportunistic maintenance limit on the optimal maintenance
cost for two-unit series system. Table II shows the optimal
control limit, sampling interval and the average cost when
there is no opportunistic limit.
The results show that the policy with opportunistic limit is

more economical than the optimal maintenance policy without
opportunistic limit.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have developed a model and a
computational algorithm that can be used to determine the
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TABLE II
THE OPTIMAL MAINTENANCE POLICY FOR A TWO-UNIT SERIES

SYSTEM WITHOUT OPPORTUNISTIC LIMIT.

Optimal Optimal Average
control limit sampling interval cost

0.3333 2 40.1286

optimal maintenance policy for a two-unit series system where
one unit is subject to condition monitoring while just the
age information of unit#2 is available. Unit#1 deterioration is
described by a hidden, 3-state homogeneous continuous-time
Markov process. It is assumed that observations at regular
sampling times are available which are related to the true
state of the system. States 0 and 1 representing healthy and
warning conditions are not observable and only failure state
(state 2) is observable. We have developed a computational
algorithm in the SMDP framework to find an optimal Bayesian
control policy that minimizes the long-run expected average
cost per unit time for the whole system. A numerical
example has been provided to illustrate the new maintenance
policy proposed for a two-unit series system. The optimal
opportunistic maintenance policy has been compared with
an optimal maintenance policy with no opportunistic limit.
For this policy the optimal average cost increased by %13
which indicates the cost effectiveness of the new opportunistic
maintenance policy proposed in this paper.
We suggest a few possible directions for future research. First,
a more general distribution such as an Erlang distribution of
the state sojourn times can be considered. Another possible
future research topic would be to test the effectiveness of our
model using real data sets.
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