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Approximating Maximum Weighted Independent
Set Using Vertex Support

S. Balaji, V. Swaminathan and K. Kannan

Abstract—The Maximum Weighted Independent Set (MWIS)
problem is a classic graph optimization NP-hard problem. Given an
undirected graph G = (V, E) and weighting function defined on the
vertex set, the MWIS problem is to find a vertex set S V whose total
weight is maximum subject to no two vertices in S are adjacent. This
paper presents a novel approach to approximate the MWIS of a graph
using minimum weighted vertex cover of the graph. Computational
experiments are designed and conducted to study the performance
of our proposed algorithm. Extensive simulation results show that
the proposed algorithm can yield better solutions than other existing
algorithms found in the literature for solving the MWIS.

Keywords—weighted independent set, vertex cover, vertex support,
heuristic, NP - hard problem.

I. INTRODUCTION

IN graph theory an independent set of a graph is a subset
of vertices in which no two vertices are adjacent (i.e.,

connected by an edge) and the maximum independent set prob-
lem (MIS) calls for finding the independent set of maximum
cardinality. The MIS is a classic one in computer science and
in graph theory and it has many important applications, in-
cluding combinatorial auctions[7], graph coloring[13], coding
theory[9], geometric tiling, fault diagnosis, pattern recognition,
molecular biology[11], and more recently its application in
bioinformatics[16] have become important. The Maximum
Weighted Independent Set (MWIS) is a generalization of MIS
problem, in which vertices have positive weight and one has to
find an independent set of maximum weight and both MIS and
MWIS problems are known to be NP-hard[12]. Hence simple
algorithms which yield acceptable solutions sufficiently fast
are quite important for such related practical problems.

Pardalos and Xue[15] recently published a review with 260
references. This problem is computationally intractable even
to approximate with certain absolute performance bounds[6,
10]. Very few numbers of algorithms has been proposed for
the MWIS problem. Babel[1] proposed an efficient branch
and bound procedure. Ostergard[14] also developed a fast
branch and bound based exact method. Bomze et al.[4, 5]
proposed a method based on replicator dynamics. It uses the
continuous formulation of maximum weight clique problem.
Recently, Pullan[18] proposed a local search procedure for
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maximum independent set problem, which was supported by
computational experiments.

In this paper for efficiently solving MWIS problems, an
effective algorithm called Support Ratio Algorithm (SRA) is
proposed. This algorithm effectively finds MWIS of a graph
G by finding the Minimum Weighted Vertex Cover (MWVC)
of the graph G. The proposed algorithm designed with the
term called support of vertices, which involves the sum of
the degrees of adjacency vertices, ratio between weight and
product of support and degree of vertices to get a near smallest
weighted vertex cover of the graph. It’s effectiveness for
finding the MWVC of the graph shown in[2]. We compared
our algorithm with the other existing algorithm namely[1, 5,
14, 18]. The experimental result shows that our algorithm
is very fast and yields better solutions than the compared
algorithms for many random graphs and DIMACS benchmark
graphs.

The paper is organized as follows. Section II briefly
describes the maximum weighted independent set (MWIS)
problem and the minimum weighted vertex cover problem
(MWVC) and its theoretical background. Section III outlines
the SRA. In Section IV graph model used in the experiments
is briefly described. Section V provides experiments done and
their results. Section VI summarizes and concludes the paper.

II. MAXIMUM WEIGHTED INDEPENDENT SET AND

MINIMUM WEIGHTED VERTEX COVER

Let G = (V, E) be an arbitrary undirected graph, where
is the set of vertices and (not

in ordered pairs) is the set of edges. Two distinct vertices u
and v are called adjacent if they are connected by an edge; an
independent set S of G is a subset of V whose elements are
pairwise non-adjacent. The maximum independent set (MIS)
problem seeks to find an independent set with large number of
vertices. The size of the maximum independent set of G is the
stability number of G and is denoted by . MWIS problem is
a generalization of MIS in which vertices have positive weight
i.e., a weight function R associated with each vertex
of v V and one has to find the independent set with maximum
weight.

A vertex cover for G is a subset of V such that for each
edge (u, v) E, at least one of u or v or both belongs to . The
minimum vertex cover (MVC) problem consists of identifying
the vertex cover of G which has minimum cardinality and
the size of the minimum vertex cover of G is denoted by .
The MIS and MVC problems are related in that the maximum
independent set S of G contains all those vertices that are
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Fig. 1. Illustration of MWIS and MWVC Problem

not in the minimum vertex cover of G. i.e. S = V - and
. The relationship identified above for MIS and

MVC problems also hold for MWIS and MWVC instances
and, in addition, if is the total weight of the vertices in G
and , denotes the total weights in minimum weighted
vertex cover, the maximum weighted independent set in G then

. Fig.1 briefly explains the above criteria.
Graph of MWIS and MWVC instances shown in the Fig. 1,
where the index of the vertices are denoted by alphabets and
the number in the brackets is the weight of the associated
vertices. The optimal solution for MWIS is
with a total weight of 18 and MWVC is with
total weight of 5. However there is no vertex set in G with
pairwise non adjacent vertices and total weight greater than 18
and no vertex set in G covering all the edges with total weight
less than 5. Moreover we can see clearly that .

There are two versions of the vertex cover problem: the
decision and optimization versions. In the decision version,
the task is to verify for a given graph G, a weight function

and , weighted vertex cover asks for a
vertex cover of total weight at most but in the optimization
version the task is to find a vertex cover of minimum total
weight. In this paper we consider the optimization version of
the minimum weighted vertex cover with the goal of obtaining
optimum solution. Now the minimum weighted vertex cover
problem can be formulated as an integer programming prob-
lem by using the following conditions:

Binary variables a ( i = 1, 2, 3, ..., n; j = 1, 2, 3,..., n )
form the adjacency matrix of the graph G. Each variable has
only two values (1 or 0) according as an edge exists or not.
In other words, if an edge (v ,v ) is in E, then a is 1 else
a is 0. For example, for the graph of Fig.1 has the following
adjacency matrix

A =

The output of the program expresses the vertex v is in
the MWIS or not. v =1 if it is in the MWIS otherwise v =0.
Thus the total weight in the MWIS can be expressed by Z
= . Any one or none of the vertex of
the edge is included in the independent set, so we

have the constrained condition of the minimum vertex cover
can be written as 1. Thus the problem can be
mathematically transformed into the following optimization
problem as

Max Z =
Subject to

E
V

Thus we find the MWIS of the graph G by finding MWVC
of the graph G. i.e., if the set contains the vertices of
MWVC of the graph then the set S of all vertices of MWIS
of the graph G can be extracted from MWVC by S = V - .

III. TERMINOLOGIES AND PROPOSED ALGORITHM

Neighborhood of a vertex: Let G = (V, E), V is a vertex set
and E is an edge set, be an undirected graph and let = n
and = m. Then for each v V, the neighborhood of v is
defined by and N[v] =
v N(v).

Degree of a vertex: The degree of a vertex v V, denoted
by d(v) and is defined by the number of neighbors of v.

Support of a vertex: The support of a vertex v V is defined
by the sum of the degree of the vertices which are adjacent to
v, i.e., support(v) = s(v) = .

A. Support Ratio Algorithm (SRA - Proposed)

The following algorithm is designed to find the general
maximum weighted independent set of a graph G. Adjacency
matrix of the given graph G of n vertices and m edges
and the weights of the each vertexes are given as the input
of the program. The degree d(v) and support s(v) of the each
vertex v V are calculated. Support of the vertex calculated
by the relation . Moreover the ratio r(v) of
each v V calculated by the relation . Add
the vertex which has the maximum value of the ratio r(v)
into the vertex cover V . If one or more vertices have equal
maximum value of the support, in this case if (s(v ) s(v )),
add the vertex v into the vertex cover V otherwise add v
into V . Update the adjacency matrix of G by putting zero
in to the row and column entries of the corresponding vertex

. Proceed the above process until the edge set E has
no edges. i.e., up to . The pseudo-code of the
proposed algorithm is given below.

Input: G (V, E)
Output: Max. Weighted Independent Set S(G) = V -
and Z =
while E do
step 1:
for i 1 to n
for j 1 to n

step 2:
for i 1 to n
for j 1 to n
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step 3:
for i 1 to n

step 4:
;

k = 1;
select the vertex which has the maximum value
of r(v) in to
for i 2 to n
if

;
t = i;

end if
if multiple vertices have equal maximum value of s(v)
then follow step 4a
step 4a:
if( )

;
t = i;

end if
if( )

;
t = i-k;

end if
k = k+1;
end for
step 5:
for i 1 to n

;
;

end for
end while.
for i 1 to n
if

;
else

;
end for
end

IV. GRAPH MODELS

This section outlines the graph models used to assess the ef-
fectiveness of the proposed algorithm in previous section. The
graph models used are (i) G(n, p) graphs[3] and (ii)G(n, m)
graphs[3][19]. The models are standard random graph models
from the graph theory and all the graphs are undirected.

1) G(n, p) Model: The G(n, p) model is also called Erdos
Renyi random graph model[3], consists of graphs of n vertices
for which the probability of an edge between any pair of nodes
is given by a constant . To ensure that graphs are almost
always connected, p is chosen so that . To generate
a G(n, p) graph we start with an empty graph. Then we iterate
through all pairs of nodes and connect each of these pairs with
probability p.

2) Algorithm to generate (G, n, p)graphs: The pseudo code
for generating G (n, p) graphs as follows

initialize graph G(V, E)
for i 1 to n
for j i+1 to n
add edge (i, j) to E with probability p
return (G).
The expected number of edges of G(n, p) graph is

and expected degree is np. Graphs are generated for
different p and n values.

3) G(n, m) Model: The G(n, m) model consists of all graphs
with n vertices and m edges. The number of vertices n and
the number of edges m are related by m = nc, where c 0
is constant. To generate a random G(n, m) graph, we start
with a graph with no edges. Then, cn edges are generated
randomly using uniform distribution over all possible graphs
with cn edges. Each node is thus expected to connect to 2c
other nodes on average. The pseudo-code for the random graph
generation is shown in the following algorithm.

4) Algorithm to generate (G, n, c)graphs: The pseudo code
for generating G (n, m) graphs as follows

initialize graph G(V, E)

for i 1 to m
repeat
e random edge
until e not present in E
E E
return (G).

V. EXPERIMENTAL RESULTS AND ANALYSIS

All the procedures of SRA have been coded in C++ lan-
guage. The experiments were carried out on an Intel Pentium
Core2 Duo 1.6 GHz CPU and 1 GB of RAM. The effectiveness
of the SRA heuristic was evaluated using 117 instances. These
instances are divided into 3 sets as shown in the TABLE
I. Simulations are carried out on three types of graphs: the
randomly generated small size, moderate and large scale
graphs for the maximum weighted independent set problem.

TABLE I
MWIS INSTANCES

Problem No. of Range of Graph Optimal

set Instances Weights Model Solution

1 44 [1,40] G(n, p) Known

2 53 [1, 10] DIMACS Unknown

3 20 [1, 100] G(n, m) Unknown

A. Experiment 1

We first tested the SRA on 20 random graphs generated
based on the concept explained in Section IV(1). The weight
w(i) on vertex i was randomly selected in the range [1 - 40],
1 . The result we recorded for each test graph and their
information are shown in the TABLE II, is the total weight
of the independent set found by corresponding algorithm and

represents the cardinality of the maximum weighted
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independent set. The results are compared with Ostergard[14]
method. From the TABLE II, we can see that the SRA
approach delivers the optimal solutions to the most of the
MWIS test instances and the quality of the solution of the
proposed algorithm is much better that of Ostergard method.
We are interested to test the proposed algorithm on high
density and large size (number of vertices) random graphs.
For these large size random graphs we have chosen the same
range of weights and the result we recorded are shown in the
TABLE III. The time taken (in seconds) to find the MWIS
for each of the instances are reported, in which the maximum
time taken of 28 sec. (1000; 0.9) is an encouraging one and it
is comparatively very less time for the graph of high density
and large number of vertices.

TABLE II
SIMULATION RESULTS FOR 1ST SET OF INSTANCES

Graph Ostergard SRA Optimum

V p

20 0.85 5 166.7 5 166.7 5 166.7

25 0.85 8 294.4 8 294.4 8 294.4

30 0.85 7 228.3 7 228.3 7 228.3

40 0.85 9 278.9 9 278.9 9 278.9

45 0.9 9 236.3 9 236.3 9 236.3

45 0.85 6 159.2 6 159.2 6 159.2

50 0.9 6 143.2 6 143.2 6 143.2

50 0.85 4 100.1 4 100.1 4 100.1

55 0.9 10 244.5 10 244.5 10 244.5

55 0.85 7 168.5 7 168.5 7 168.5

60 0.9 11 269.4 11 269.4 11 269.4

60 0.85 8 190.2 8 193.9 8 193.9

65 0.9 7 157 7 157 7 157

65 0.85 5 113.8 5 113.8 5 113.8

70 0.9 7 147.9 7 147.9 7 147.9

70 0.85 5 107.7 4 97.3 5 107.7

75 0.9 5 116.4 7 146.8 7 146.8

75 0.85 6 122.4 6 130.4 6 130.4

80 0.9 10 193.4 10 217.2 10 217.2

80 0.85 7 157.3 8 172.8 8 177.8

B. Experiment 2

As there are no resulted benchmark set for the maximum
weighted clique, to test the performance of SRA approach,
further we have tested the proposed algorithm on benchmark
graphs of maximum clique, which are made available by
DIMACS [8], and this suite structured from the perspective
of finding maximum cliques, so we considered the benchmark
graphs as . These DIMACS instances were converted into
weighted benchmark instances by allocating w(i), for vertex
i ( ), uniformly in the interval [1 - 10] The result
we recorded are shown in TABLE IV, in which the first two
columns reports the name and size of the graphs; For the
MWIS obtained by SRA, the third column reports the
total weight; the fourth column reports the cardinality;
the fifth column A(C) gives the average vertex weight and
sixth column delivers the the time (in sec.) taken to find the
MWIS.

TABLE III
SRA PERFORMANCE ON LARGE SIZE GRAPH OF 1 SET

Graph Proposed SRA

n p Time(s)

100 0.7 15 375 1

0.8 20 476 1

0.9 31 688 1

150 0.8 23 580 1

0.9 37 858 3

0.95 54 1177 2

200 0.7 19 475 1

0.8 26 603 3

0.9 43 912 5

300 0.7 21 529 2

0.8 29 754 1

0.9 51 1122 5

400 0.7 23 602 1

0.8 31 744 2

0.9 53 1219 4

500 0.7 32 812 1

0.8 41 951 5

0.9 59 1298 6

700 0.7 46 1150 6

0.8 52 1237 9

0.9 72 1620 12

1000 0.7 83 2058 17

0.8 107 2504 12

0.9 112 2576 28

To check whether the SRA reaches the optimum (best
solution) for these maximum weighted clique instances, we
took the experimental results reported in Bomze et al 2000,
Babel 1994 and Pullan 2008 and we analyzed the percentage of
deviation of these heuristics with the proposed algorithm. i.e.,
for some of these instances of same condition, we compared
the performance of SRA with other heuristics Babel[1], RD[5]
and PLS[17, 18]. These results are reported in TABLE V and
from the last three columns of TABLE V, we can see that
positive values tells us that SRA reaches the best optimum
solution and negative values represents the SRA fails to reach
the optimum solution than the other heuristics compared. If
the values are exactly equal to zero then SRA and compared
heuristics reaches the same optimum. Out of 23 compared
instances, for the instances c-fat500-1 and p hat1500-3, SRA
fails to reach the optimum than PLS and SRA reaches the same
optimum with PLS in brock800.1, brock800.2 and p hat1500-
1 instances and with Babel in c-fat500-1 instance and for the
remaining instances the SRA reaches the best solution.

In order to assess the amount of deviation of other heuristics
from SRA, further we obtained the statistical quantities of last
three columns values of TABLE V and obtained results are
shown in TABLE VI. It shows that Babel heuristic deviated
highly and PLS gets low deviation from SRA. From these
results shown in TABLES V and VI, we can see that the
quality of the solution delivered by SRA is much better than
the other heuristics, involved in this experiment.
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TABLE IV
SIMULATION RESULTS FOR THE WEIGHTED DIMACS INSTANCES

V A(C) Time(s)

brock200 1 200 150 18 8.32 1

brock400 1 400 211 23 9.17 1

brock400 2 400 210 23 9.13 1

brock400 3 400 237 27 8.77 1

brock400 4 400 237 28 8.46 1

brock800 1 800 163 18 9.05 2

brock800 2 800 163 19 8.57 2

brock800 3 800 165 19 8.68 5

brock800 4 800 172 20 8.6 4

c-fat200-1 200 86 12 7.16 1

c-fat200-2 200 156 22 7.09 1

c-fat200-5 200 384 56 6.86 1

c-fat500-1 500 96 14 6.86 1

c-fat500-2 500 186 24 7.75 1

c-fat500-5 500 423 64 6.6 1

Hamming6-2 64 211 31 6.8 1

Hamming6-4 64 29 4 7.25 1

Hamming8-2 256 718 126 5.69 3

Hamming8-4 256 102 16 6.37 2

Hamming10-2 1024 2906 512 5.67 9

Hamming10-4 1024 316 40 7.9 23

Johnson8-2-4 28 29 4 7.25 1

Johnson8-4-4 70 86 12 7.16 1

Johnson16-2-4 120 51 8 6.37 1

Johnson32-2-4 496 96 15 6.4 6

MANN a9 45 100 14 7.14 1

MANN a27 378 786 121 6.5 12

MANN a45 1035 2658 338 7.86 33

p hat300-1 300 61 8 7.63 1

p hat300-2 300 175 23 7.6 1

p hat300-3 300 218 33 6.6 1

p hat500-1 500 78 9 8.66 2

p hat500-2 500 247 35 7.05 5

p hat500-3 500 342 46 7.43 3

p hat700-1 700 80 9 8.88 1

p hat700-2 700 288 43 6.69 15

p hat700-3 700 405 59 6.86 18

p hat1000-1 1000 87 9 9.66 8

p hat1000-2 1000 297 43 6.9 23

p hat1000-3 1000 436 63 6.92 30

p hat1500-1 1500 91 10 9.1 23

p hat1500-2 1500 431 58 7.43 26

p hat1500-3 1500 583 88 6.62 24

san200-0.7.1 200 219 27 8.11 1

san200-0.7.2 200 125 16 7.82 1

san200-0.9.1 200 483 67 7.21 5

san400-0.7.1 400 275 38 7.23 1

san400-0.7.2 400 207 29 7.14 1

san400-0.9.1 400 643 96 6.7 8

san1000 1000 95 10 9.5 1

sanr200-0.7 200 101 18 5.61 1

sanr200-0.9 200 257 41 6.27 1

sanr400-0.5 400 75 13 5.77 1

sanr400-0.7 400 143 20 7.15 1

C. Experiment 3

In this experiment the parameter set opted like small-large
scale problems, that is V varied from 50 to 1000. The weight
w(i) on vertex i was also randomly drawn from the interval
[1 - 100]. Here we used the G(n, m) graph model to generate
the random graphs. For most of the test instances the optimal
solutions are unknown, we obtained the time (in sec.) taken by
the SRA for finding the MWIS of the graph. These results are
shown in the Fig. 2 where the major axis represents the size
(in terms of number of vertices) of the 20 test instance’s and
for each test instances the time taken by SRA were plotted
as points and for each instances their points are linked by a
line. It is clear from the Fig. 2 that the time taken by the SRA
to find the optimum value of each of the MWIS instances
increases steadily when the size of the problem increases and
the maximum time taken is 12.31 sec. With this figure we show
that the proposed algorithm took very less time to produce a
maximum weighted clique for each of the test instances.

TABLE V
% OF DEVIATION OF OTHER HEURISTICS FROM SRA

Name RD Babel PLS % of deviation from SRA

RD Babel PLS

brock800 1 136 156 163 16.56 4.29 0

brock800 2 142 157 163 12.88 3.68 0

brock800 3 141 148 162 14.54 10.30 1.82

brock800 4 136 147 161 20.93 14.53 6.40

c-fat500-1 93 96 97 3.13 0 -1.04

c-fat500-2 181 181 168 2.69 2.68 9.67

c-fat500-5 371 395 418 12.29 6.62 1.18

hamming10-2 2674 1923 2853 7.98 33.83 1.82

hamming10-4 258 277 306 18.35 12.34 3.16

MANN a45 2643 2653 2133 0.56 0.19 19.75

san1000 80 94 90 15.78 1.05 5.26

p hat1000-1 77 80 82 11.49 8.04 5.75

p hat1000-2 285 284 293 4.04 4.37 1.35

p hat1000-3 435 349 407 0.22 19.95 6.65

p hat1500-1 74 87 91 18.68 4.39 0

p hat1500-2 327 309 427 24.12 28.30 0.93

p hat1500-3 490 390 586 15.95 33.10 -0.51

p hat500-1 56 72 75 28.20 7.69 3.84

p hat500-2 213 228 243 13.76 7.69 1.62

p hat500-3 307 294 338 10.23 14.03 1.17

p hat700-1 54 76 76 32.5 5.00 5

p hat700-2 275 272 283 4.51 5.55 1.74

p hat700-3 371 316 397 8.39 21.97 1.97

TABLE VI
STATISTICAL VALUES OF % OF DEVIATION

Algorithms Min. Median Average Max. Std. Dev

RD 0.23 12.88 12.95 32.5 8.58

Babel 0 7.69 10.85 33.83 10.09

PLS -1.04 1.81 3.37 19.75 4.47
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Fig. 2. Time taken (in sec.) by SRA for MWIS instances of G(n, m) graphs

VI. CONCLUSION

A new SRA for MWIS in a graph using MWVC has been
proposed and its effectiveness has been shown by simulation
experiments. The terminology support of a vertex introduced
in the new model, with that, the new model can find the
maximum weihted independent set effectively. Experimental
result shows that this approach greatly reduce the execution
time and in addition, the simulation results show that the new
SRA can yield better solutions than Babel, Ostergard, RD and
PLS heuristics found in the literature. At the same time, our
approach gives best solutions for DIMACS weighted instances
and also for random graphs. The proposed algorithm has led to
give near optimal solutions for most of the test instances where
we know the optimal solutions. Furthermore attractiveness of
this heuristic is its outstanding performance for solving MWIS.
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