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Abstract—Mostly the real life signals are time varying in na-

ture. For proper characterization of such signals, time-frequency 
representation is required. The STFT (short-time Fourier trans-
form) is a classical tool used for this purpose. The limitation of the 
STFT is its fixed time-frequency resolution. Thus, an enhanced 
version of the STFT, which is based on the cross-level sampling, is 
devised. It can adapt the sampling frequency and the window func-
tion length by following the input signal local variations. There-
fore, it provides an adaptive resolution time-frequency representa-
tion of the input. The computational complexity of the proposed 
STFT is deduced and compared to the classical one. The results 
show a significant gain of the computational efficiency and hence 
of the processing power. The processing error of the proposed 
technique is also discussed. 
 

Keywords—Level Crossing Sampling, Activity Selection, 
Adaptive Resolution Analysis, Computational Complexity.  

I. CONTEXT OF THE STUDY  
HIS work is a contribution in the development of smart 
mobile systems. The goal is to reduce their cost, size, 

processing noise, electromagnetic emission and especially 
power consumption, as they are remotely powered by bat-
teries. This can be done by smartly reorganizing their asso-
ciated signal processing theory and architecture. The idea is 
to combine the signal event driven processing with the 
clock less circuit design in order to reduce the system activ-
ity. 

Almost all natural signals like speech, seismic and biological 
signals are of non stationary nature. Moreover the man made sig-
nals like Doppler, ASK (Amplitude Shift Keying), FSK (Fre-
quency Shift Keying) etc. also lie in the same category. The spec-
tral contents of these signals vary with time, which is a direct con-
sequence of the signal generation process [5].  

Classical systems are based on the Nyquist signal processing 
architectures. They cannot sense the input signal local variations 
and therefore they process it at a fixed pace. Thus, in case of low 
activity sporadic signals like electrocardiogram, phonocardiogram, 
seismic signals etc. they produce a large number of useless sam-
ples without any relevant information. It causes a useless increase 
in the system activity and so a useless increase of the power con-
sumption. 
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The power efficiency can be achieved by smartly adapting the 
system computational load according to the input signal local 
variations. In this context, a signal driven sampling scheme, which 
is based on “level-crossing” is employed. The LCSS (Level Cross-

ing Sampling Scheme) [1] adapts the sampling rate by following 
the local characteristics of the input signal [12, 16]. Hence, it dras-
tically reduces the activity of the post processing chain, because it 
only captures the relevant information [11, 13]. In this context, 
analog to digital converters based on the LCSS have been devel-
oped [2, 4, 17]. Algorithms for processing [3, 11, 13] and analysis 
[8, 12] of the non-uniformly spaced out in time sampled data ob-
tained with the LCSS have also been developed. 

The focus of this work is to achieve a smart time-frequency rep-
resentation of the time varying signals. The idea is to adapt the 
time-frequency resolution along with the computational load by 
following the input signal local variations. An efficient solution is 
proposed by smartly combining the features of both uniform and 
non-uniform signal processing tools. 

II.  LCSS (LEVEL CROSSING SAMPLING SCHEME) 

In the case of LCSS, a sample is captured only when the 
input analog signal x(t) crosses one of the predefined thresh-
old levels [1]. The samples are not uniformly spaced in time 
because they depend on x(t) variations as it is clear from Fig. 
1. Thus, the non-uniformity in the sampling process reflects 
the signal local characteristics [12]. 

According to [1], the sampling instants of a non-uniformly 
sampled signal obtained with the LCSS are defined by Equa-
tion 1. 
 

tn = tn-1 + dtn .                                      (1) 
  dtn = tn – tn-1 .                                      (2) 

 
Where tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between the current and the pre-
vious sampling instants (cf. Equation 2). 
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Fig. 1 Level crossing sampling scheme  

 

III.  PROPOSED ADAPTIVE RESOLUTION STFT 

The block diagram of the proposed STFT is shown in Fig. 
2. The description of different blocks is given in the follow-
ing subsections. 
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Fig. 2 Block diagram of the proposed STFT. ‘____’ represents the 

signal flow, ‘……’ represents the control flow and ‘-----’ represents 
the parameters flow at system different stages 

 
A.  AADC (Asynchronous Analog to Digital Converter) 
The AADC [2], is employed for digitizing x(t). An M-bit 

resolution AADC has 2M - 1 quantization levels which are 
disposed according to x(t) amplitude dynamics. In the studied 
case, the levels are uniformly spaced.  

Let δ be the AADC processing delay for one sample. Thus 
for proper signal capturing the x(t) must satisfy the tracking 
condition [2], given by Expression 3, where q is the AADC 
quantum, which is defined by Equation 4. In Equation 4, ΔVin 
and M represent the amplitude dynamics and the resolution of 
the AADC respectively. 
 

δ
q
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tdx

Δ≤ π . (5) 

 
The left hand side of Expression 3 is the slope of x(t). The 

upper bound on the slope of a band limited signal is defined 
by the Bernstein’s inequality [2], given by Expression 5. In 
Expression 5, fmax and Δx(t) represent the bandwidth and the 
amplitude dynamics of the x(t) respectively. Thus, In order to 
respect the tracking condition, a band pass filter with pass-
band [fmin; fmax] is employed at the AADC input. 

In order to avail the complete AADC resolution, in the 
studied case, Δx(t) is always adapted to match ΔVin. For an M-
bit resolution AADC, the maximum and the minimum sam-
pling frequencies [11, 13] are defined by Equations 6 and 7 
respectively.  
 

Fsmax = 2.fmax.(2M-1). (6)  Fsmin = 2.fmin.(2M-1).       (7) 
 

Where, fmin is the fundamental (lowest) frequency of x(t). 
Fsmax and Fsmin are the maximum and the minimum sampling 
frequencies of the AADC.  
 

B.  EASA (Enhanced Activity Selection Algorithm) and 
Window Selector 

The EASA is an improved version of the ASA [8]. The 
relevant (active) parts of the non-uniformly sampled signal 
obtained with the AADC are selected by the EASA. This 
selection process corresponds to the adaptive length rectangu-
lar windowing process. 

The main difference between the ASA and the EASA is the 
choice of the upper bound on the selected window length. For 
the ASA the time length in seconds and for the EASA the 
number of samples is chosen as the upper bound. The EASA 
is defined as follow.  
 
  While (dtn ≤ T0/2 and Ni ≤ Nref)  
  Ni = Ni + 1;  
 end 
 

Where, T0 = 1/fmin is the fundamental period of x(t). T0 and dtn 
detect parts of the non-uniformly sampled signal with activ-
ity. The condition on dtn is chosen in order to satisfy the Ny-
quist sampling criterion for fmin, when sampling x(t) non-
uniformly with the AADC. Ni

 represents the number of non-
uniform samples lie in the ith selected window, which lie on 
the jth active part of the non-uniformly sampled signal. 
Where, i and j both belong to the set of natural numbers ℕ*. 
Nref represents the upper bound on Ni. The choice of Nref de-
pends on the x(t) characteristics and the system parameters. 
The above described loop repeats for each selected window, 
which occurs during the observation length of x(t). Every 
time before starting the next loop, i is incremented and Ni is 
initialized to zero.  

The EASA displays interesting features with the LCSS, 
which are not available in the classical case. It selects only 
the active parts of the non-uniformly sampled signal, ob-
tained at the AADC output. Moreover, it correlates the length 
of the selected window with the input signal local characteris-
tics.  

The window selector implements the condition given by 
Expression 8. The output of window selector is the window 
decision Di, which drives the switch state for the ith selected 
window (cf. Fig. 2). Jointly, the EASA and the window selec-
tor, provide an efficient spectral leakage reduction in the case 
of transient signals. Indeed, spectral leakage occurs due to the 
signal truncation problem, which causes to process the non 
integral number of cycles in the observation interval. Usually 
an appropriate smoothening (cosine) window function is em-
ployed to reduce the signal truncation, in the classical case. 
For the proposed case, as long as the condition 8 is true, the 
leakage problem is resolved by avoiding the signal truncation 
[8]. As no signal truncation occurs so no cosine window is 
required. In this case, Di is set to 0, which drives the switch to 
state 0 in Fig. 2. Otherwise an appropriate cosine window is 
employed to reduce the signal truncation problem. In this 
case, Di is set to 1, which drives the switch to state 1 in Fig. 2.   
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In expression 8, t1i represents the 1st sampling instant of the 

ith selected window and tend
i-1 represents the last sampling 

instant of the     (i-1)th selected window.  
For proper spectral representation, the condition given by 

Expression 9 should be satisfied [8]. Where, Li is the length in 
seconds of the ith selected window. In order to satisfy this 
condition for the worst case, which occurs for Fsmax, Nref is 
calculated for an appropriate reference window length Lref. 
Lref has to satisfy the condition: Lref  ≥ T0. The process of cal-
culating Nref is given by Equation 10.  
 

Li ≥ T0 .    (9)  Nref = Lref . Fsmax .              (10) 
 

The lower and the upper bounds on Lref are posed respec-
tively by T0 and the system resources (the maximum sample 
frame which system can process at once). For Nref (cf. Equa-
tion 10), the condition 9 holds for all selected windows ex-
cept for the case when the actual length of the jth activity is 
less than T0.  
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C.  Adaptive Rate Sampling 
The AADC sampling frequency is correlated to x(t) local 

variations [8, 11]. Let Fsi represents the AADC sampling 
frequency for the ith selected window. Fsi can be specific for 
each selected window, depending upon Li and the slope of 
x(t) part lying within this window [8]. Fsi can be calculated 
by using the following equations. 
 

Li = tmaxi – tmini
  . (11)  Fsi = Ni / Li

 .            (12) 
 

In Equation 11, tmaxi and tmini are the final and the initial 
times of the ith selected window. The upper and the lower 
bounds on Fsi are posed by Fsmax and Fsmin respectively. 

The selected data obtained with the EASA can be used di-
rectly for further non-uniform digital processing [3, 12]. 
However in the studied case, the selected data is resampled 
uniformly. It enables to take advantage of both non-uniform 
and uniform signal processing tools [8, 11, 13]. Due to this 
resampling, there will be an additional error. Nevertheless, 
prior to this transformation, one can take advantage of the 
inherent over-sampling of the relevant signal parts in the sys-
tem [11, 13]. Hence, it adds to the accuracy of the post re-
sampling process [4]. The NNRI (nearest neighbour resam-
pling interpolation) is employed for data resampling. It is a 
simple interpolation method as it employs only one non-
uniform observation for each resampled observation. Thus, it 
is efficient in terms of the computational complexity. More-
over, it provides an unbiased estimate of the variance of the 
original signal, due to this reason it is also known as a robust 
interpolation method [9, 10]. The detailed reasons of inclina-
tion towards NNRI are discussed in [8, 9, 10].  

The interpolation process changes the properties of the re-
sampled signal compared to the original one. The properties 
of the resampled signal depend upon the interpolation tech-
nique used to resample it [9, 10].  

A study on the interpolation error is made by taking into 
account an academic signal, known formally. If (trn, xrn) rep-
resent the time-amplitude pairs of the nth interpolated sample. 
Then the original sample amplitude xon can be mathemati-
cally calculated for trn, as the input signal is analytically 
known. Now the interpolation error per interpolated point Ien 
is given by the absolute difference between xon and xrn. The 
process is given by Equation 13. The mean interpolation error 
for the ith selected window MIei is given by Equation 14. 

 

nnn xrxoIe −=  . (13) ∑
=

=
iNr

n
ni

i Ie
Nr

MIe
1

.1  .       (14) 

 
In Equation 14, Nri is the number of resampled data points 

lie in the ith selected window.  
A reference sampling frequency Fref is chosen such as it 

remains greater than and closest to the FNyq=2.fmax. Depend-
ing upon the values of Fref and Fsi the resampling frequency 
for the ith selected window Frsi, can be adapted (cf. Fig. 2).   

For the case, Fsi
 > Fref, Frsi is chosen as: Frsi

 = Fref. It is 
done in order to resample the selected data, lie in the ith se-
lected window closer to the Nyquist frequency. It avoids the 
unnecessary interpolations during the data resampling process 
and so reduces the computational load of the proposed tech-
nique.  

For the case, Fsi
 ≤ Fref, Frsi is chosen as: Frsi= Fsi. In this 

case, it appears that the data lie in the ith selected window may 
be resampled at a frequency, which is less than the Nyquist 
frequency of x(t) and so it can cause aliasing. Since, the sam-
pling rate of the AADC varies according to the slope of x(t) 
[2]. A high frequency signal part has a high slope and the 
AADC samples it at a higher rate and vice versa. Hence, a 
signal part with only low frequency components can be sam-
pled by the AADC at a sub-Nyquist frequency of x(t). But 
still this signal part is locally over-sampled in time with re-
spect to its local bandwidth [11, 13]. It is valid as far as Δx(t) 
= ΔVin, because it makes the relevant signal part to cross all 
thresholds (more than one) of the AADC, so it is locally over-
sampled in time. This statement is further illustrated with the 
results summarized in Table II. Hence, there is no danger of 
aliasing, when the low frequency relevant signal parts are 
locally over-sampled in time at overall sub-Nyquist frequen-
cies.   
 

D.  Adaptive Resolution Analysis 
The STFT is a classical tool, used for the time-frequency 

characterization of time varying signals [6]. The STFT of a 
sampled signal xn is determined by computing the DFT (Dis-
crete Fourier Transform) of an N samples segment centred on 
τ, which describes the spectral contents of xn around the in-
stant τ. Where, N is defined by Equation 15. 
 

N = L . Fs .                                     (15) 
 

In Equation 15, L is the effective length in seconds of the 
window function wn and Fs is the sampling frequency. The 
STFT can be expressed mathematically by Equation 16.  

[ ] [ ] nfj

L
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nn ewxfX ..2.
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+

−=
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In Equation 16, f is the frequency index, which is normal-
ised with respect to Fs. 

L controls the STFT time and frequency resolution [6]. In 
the classical case, the input signal is sampled at a fixed sam-
pling frequency Fs, regardless of its local variations. Thus, a 
fixed L results into a fixed N (cf. Equation 15). In the case, 
when the spectrum of each windowed block is calculated 
with respect to τ and no overlapping is performed between 
the consecutive blocks, then the time resolution ∆t and the 
frequency resolution ∆f of the STFT can be defined by Equa-
tions 17 and 18 respectively. 
 

∆t = L  .       (17)      ∆f = Fs / N  .          (18) 
 

Equation 18 shows that for a fixed Fs, ∆f can be in-
creased by increasing N.  But increasing N requires to 
increase L which will reduce ∆t (cf. Equation 17). Thus, a 
larger L provides better ∆f but poor ∆t and vice versa. This 
conflict between ∆f and ∆t shows the limitation of the 
STFT, which is the reason for the creation of the MRA 
(multi resolution analysis) techniques [7, 14]. The MRA 
techniques provide a good frequency but a poor time resolu-
tion for the low-frequency events and a good time but a 
poor frequency resolution for the high-frequency events. It 
is the type of analysis, best suited for most of the real life 
signals [7].  
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In this article, the fixed resolution dilemma is resolved to a 
certain extent by revising the STFT. The proposed STFT is a 
smart alternative of the MRA techniques. It performs adap-
tive time-frequency resolution analysis, which is not attain-
able with the classical STFT. It is achieved by adapting the 
Frsi, Li and Nri according to the local variations of x(t). Thus, 
the time resolution ∆ti and the frequency resolution ∆f i of the 
proposed STFT can be specific for the ith selected window 
and are defined by Equations 19 and 20 respectively. 
 

∆ti = Li  . (19)  ∆f i = Frsi / Nri  .            (20) 
 

Because of this adaptive resolution, the proposed STFT will 
be named as the ARSTFT (adaptive resolution STFT), 
throughout the following parts of this article. This adaptive 
nature of the ARSTFT also leads towards a drastic computa-
tional gain, compared to the classical one. It is achieved 
firstly by avoiding the unnecessary samples to process and 
secondly by avoiding the use of the cosine window function 
as far as the condition 8 is true. The ARSTFT is defined by 
Equation 21. 
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Where, τi and f i are the central time and the frequency index 
of the ith selected window respectively. f i is normalised with 
respect to Frsi. n is the index of the resampled data points lie 
in the ith selected window. The notation wn

i represents that the 
window function length Li and shape (rectangle or cosine) 
can be adapted for the ith selected window.  

IV.  ILLUSTRATIVE EXAMPLE 

In order to illustrate the ARSTFT an input signal x(t),  
shown on the left part of Fig. 3 is employed. Its total duration 
is 30 seconds and it consists of four active parts. The sum-
mary of x(t) activities is given in Table I. 

 

 
Fig. 3 Input signal (left) and the selected signal (right) 

 
TABLE I 

SUMMARY OF THE INPUT SIGNAL ACTIVITIES 
Activity Signal Component Length (Sec) 

1st  0.9.sin(2.pi.50.t) 5 
2nd  0.9.sin(2.pi.50.t) 0.4 
3rd  0.9.sin(2.pi.200.t)  0.5 
4th  0.9.sin(2.pi.500.t) 1.6 

 
Table I shows that x(t) is band limited between 50 to 500 

Hz. In this example x(t) is sampled by employing a 3-bit reso-
lution AADC. Thus, Fsmax and Fsmin become 7 kHz and 0.7 
kHz respectively (cf. Equations 6, 7). Fref = 1.25 kHz is cho-
sen, which satisfies the criteria given in Section III-C. ∆Vin = 
1.8v is chosen, thus q becomes 0.2571v in this case (cf. Equa-
tion 4).  

The selected signal obtained with the EASA is shown on 
the right part of Fig. 3. By following the criteria given in Sec-

tion III-B, Nref =4096 is chosen, which leads to 6 selected 
windows. First three selected windows correspond to the first 
three activities and the remaining corresponds to the fourth 
activity. The last three selected windows are not distinguish-
able on the right part of Fig. 3, because they lie consecutively 
on the fourth activity. The parameters of each selected win-
dow are summarised in Table II.  

 
TABLE II 

SUMMARY OF PARAMETERS OF THE SELECTED WINDOWS 
Selected 
Window 

Li
 

(Sec) 

Fsi
 

(kHz) 
Ni 

(Smp) 
Fref 

(kHz) 
Frsi

 

(kHz) 
Nri 

(Smp) 
1st 4.99 0.7 3500 1.25 0.7 3500 
2nd 0.39 0.7 280 1.25 0.7 280 
3rd 0.49 2.8 1400 1.25 1.25 625 
4th 0.58 7.0 4096 1.25 1.25 731 
5th 0.58 7.0 4096 1.25 1.25 731 
6th 0.43 7.0 3005 1.25 1.25 536 

 
Table II exhibits the interesting features of the ARSTFT, 

which are achieved due to the smart combination of the non-
uniform and the uniform signal processing tools. Fsi repre-
sents the sampling frequency adaptation by following the 
local variations of x(t). Ni shows that the relevant signal parts 
are locally oversampled in time with respect to their local 
bandwidths. Frsi shows the adaptation of the resampling fre-
quency for the ith selected window. It further adds to the com-
putational gain of the ARSTFT, by avoiding the unnecessary 
interpolations during the resampling process. Nri shows that 
how the adjustment of Frsi avoids the processing of unneces-
sary samples during the spectral computation (cf. Equation 
21). Li

 exhibits the dynamic feature of the EASA, which is to 
correlate the window function length with the local variations 
of x(t). Adaptation of Li, Frsi and Nri leads to the adaptive 
time-frequency resolution of the ARSTFT, which is clear 
from the values of ∆ti and ∆f i in Table III.  
 

TABLE III 
TIME AND FREQUENCY RESOLUTION OF THE SELECTED WINDOWS 

Window 1st 2nd 3rd 4th 5th 6th 
∆ti (Sec) 4.99 0.39 0.49 0.58 0.58 0.43 
∆f i(Hz) 0.2 2.5 2.0 1.71 1.71 2.33 

 
Table III demonstrates that ARSTFT adapts its time-

frequency resolution by following the local variations of x(t). 
It provides a good frequency but a poor time resolution for 
the low frequency parts of x(t) and vice versa. This type of 
analysis is best suited for most of the real life signals [7]. The 
spectrum of each selected window is computed and plotted 
with respect to τi on Fig. 4. 

 
Fig. 4 The ARSTFT of the selected windows 

 
Fig. 4 shows the fundamental and the periodic spectrum 

peaks of each selected window. The adaptation of Frsi for the 
ith selected window can be visualised on Fig. 4. In this case, 
the spectrum periodic frequency fp

i is equal to Frsi, for the ith 
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selected window. As Fs1 and Fs2 both remain less than Fref, so 
Frs1= Fs1 and Frs2= Fs2 are chosen. Contrary, Fs3 to Fs6 all 
become greater than Fref, thus Frs3 to Frs6, all are chosen 
equal to Fref (cf. Table II). 

The ARSTFT also adapts the window shape (rectangle or 
cosine), for the ith selected window. The condition 8 remains 
true for the first three selected windows, thus Di is set to 0. As 
no signal truncation occurs so no cosine window is required 
in this case. On the other hand, the number of samples for the 
fourth activity is 11200. Therefore, Nref =4096 leads to the 
three selected windows for the time span of the fourth activity 
of x(t). The condition 8 becomes false, thus Di is set to 1. As 
signal truncation occurs, so suitable length cosine (Hanning) 
windows are employed to reduce this truncation effect.  

In the classical case, if Fs=Fref is chosen, in order to satisfy 
the Nyquist sampling criterion for x(t). Then the whole signal 
will be sampled at 1.25 kHz, regardless of its local variations. 
Moreover, the windowing process is not able to select only 
the active parts of the sampled signal. In addition, L remains 
static and is not able to adapt with the local variations of x(t). 
This static nature makes the classical system to process un-
necessary samples and so causes an increased computational 
activity than the proposed one. For this studied example, the 
fixed N=4096, will lead to nine fixed L=3.3 second windows, 
for the total x(t) time span of 30 seconds. It leads to the fixed 
∆t=3.3 seconds and ∆f=0.31 Hz for all nine windows (cf. 
Equations 17 and 18).  

V.  COMPUTATIONAL COMPLEXITY 
This section compares the computational complexity of the 

ARSTFT with the classical STFT. The complexity evaluation 
is made by considering the number of operations executed to 
perform the algorithm.  

In the classical case, the incoming signal is sampled at a 
fixed sampling frequency, regardless of its local variations. In 
this case, a time invariant, fixed L, cosine window function, is 
employed to window the sampled data. If N is the number of 
samples lie in the window then the windowing operation will 
perform N multiplications between wn and xn (cf. Equation 
16). The spectrum of the windowed data is obtained by com-
puting its DFT. A complex term is involved in the DFT com-
putation. The DFT complexity is calculated by taking the real 
and the imaginary parts separately. Thus, DFT performs 2N 
multiplications and 2(N-1) additions per output frequency. 
For larger values of N, 2.(N-1)≈ 2.N. Thus, the DFT computa-
tional complexity for N output frequencies becomes 2.(N)2 
additions and 2.(N)2 multiplications. The combine computa-
tional complexity C1 of the STFT is given by Equation 22.  

For the proposed ARSTFT, Fsi, Frsi and wn
i are not fixed 

and are adapted for the ith selected window, according to the 
local variations of x(t). In comparison to the classical case, 
this approach locally requires some extra operations for each 
selected window. The EASA performs 2.Ni comparisons and 
Ni increments for the ith selected window (cf. Section III-B). 
The choice of Frsi and window shape, require three compari-
sons. The selected signal is resampled before computing its 
DFT. The NNRI is employed for the resampling purpose. The 
NNRI only requires a comparison operation for each resam-
pled observation. Therefore, the resampler performs Nri com-
parisons. If Di = 1, then a cosine window function is applied 
on the resampled data, which performs Nri multiplications 

(cf. Fig. 2). The DFT performs 2.(Nri)2 additions and 2.(Nri)2 
multiplications for the ith selected window. The combine 
computational complexity C2 of the ARSTFT is given by 
Equation 23. 
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In Equation 22, A is the total number of windows, occurs 

for the observation length of x(t). In Equation 23, i=1,2,..,K 
represents the index of the selected window. α is a multiply-
ing factor, its value is 1 if Di = 1 and 0 if Di = 0. From C1 and 
C2 it is clear that there are uncommon operations between 
both techniques. In order to make them approximately com-
parable the following assumption is made. 
 
* An increment or a comparison has the same processing cost 
as that of an addition. 
 

By following this assumption, comparisons and increments 
are merged into additions count, during the complexity 
evaluation process. The computational comparison of the 
ARSTFT with the classical one is made for results of the il-
lustrative example. The gains are summarized in Table IV. 
 

TABLE IV 
SUMMARY OF THE COMPUTATIONAL GAIN 

Time Span (Sec) Gain in Additions Gain in Multiplications 
1st activity 2.737 2.739 
2nd activity 212.473 214.021 
3rd activity 42.686 42.955 
4th activity 12.213 12.365 

 
Table IV shows the gain in additions and multiplications of 

the ARSTFT over the classical STFT for each x(t) activity. It 
shows that the ARSTFT leads to a significant reduction of the 
total number of operations as compare to the classical STFT. 
This reduction in operations is achieved by adapting Fsi, Frsi 
and wn

i according to the local variations of x(t). 

VI.  INTERPOLATION ERROR 
The interpolated samples are calculated by employing the 

level-crossing samples. For the practical AADC, there exist 
uncertainties in the time-amplitude pairs of the level-crossing 
samples [2]. These uncertainties accumulate in the interpola-
tion process and cause to increase the error [4]. Therefore, in 
order to have a fair idea of the interpolation error the exact 
time-amplitude pairs of the level-crossing samples are calcu-
lated by employing the method discussed in [12].  

The mean interpolation error is calculated for each selected 
window by employing Equation 14. The results are summa-
rized in Table V.  

 
TABLE V 

MEAN INTERPOLATION ERROR FOR EACH SELECTED WINDOW 
Window 1st 2nd 3rd 4th 5th 6th 
MIei(dB) -28.9 -28.4 -28.2 -26.1 -26.1 -25.4 

 
Table V shows that the error introduced by the resampling 

process is quite a minor one. In the case of high precision 
applications, the resampling error can be further reduced by 
increasing the AADC resolution M and the interpolation or-
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der [4, 11, 15]. Thus, an increased accuracy can be achieved 
at the cost of an increased computational load. Therefore, by 
making a suitable compromise between the accuracy level 
and the computational load, an appropriate solution can be 
devised for a given application. 

VII. CONCLUSION 
A new tool for the adaptive resolution time-frequency 

analysis has been proposed. The ARSTFT is especially well 
suited for the low activity sporadic signals like electrocardio-
gram, phonocardiogram, seismic signals, etc. It is shown that 
Fsi and Li change by following the x(t) local variations. Crite-
ria to choose the appropriate Fref and Nref are developed. A 
complete methodology of choosing Frsi and wn

i for the ith 
selected window has been demonstrated. It is shown that the 
ARSTFT adapts its time-frequency resolution by following 
the local variations of x(t). It provides a good time but a poor 
frequency resolution for the high-frequency parts of x(t) and 
vice versa. This type of analysis is best suited for most of the 
real life signals [7]. The interpolation error is calculated. A 
higher accuracy can be achieved by increasing the AADC 
resolution and the interpolation order. Thus, a suitable solu-
tion can be proposed for a given application by making an 
appropriate trade off between the accuracy level and the 
computational load. 

The ARSTFT outperforms the STFT. The first advantage 
of the ARSTFT over the STFT is the adaptive time-frequency 
resolution and the second one is the computational gain. 
These smart features of the ARSTFT are achieved due to the 
joint benefits of the AADC, the EASA and the resampling, as 
they enable to adapt Fsi, Frsi, Ni, Nri and wn

i by exploiting the 
local variations of x(t).  

The employment of fast algorithms in place of the DFT for 
the spectrum computation is in progress. It will add up to the 
computational gain of the ARSTFT. Performance comparison 
of the ARSTFT with the MRA techniques in terms of compu-
tational complexity and quality is an area of future research. 
Moreover the performance study of the ARSTFT for the real 
applications is a future task.   
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