
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

317

Abstract—Regression testing is a maintenance activity applied to

modified software to provide confidence that the changed parts are
correct and that the unchanged parts have not been adversely affected
by the modifications. Regression test selection techniques reduce the
cost of regression testing, by selecting a subset of an existing test
suite to use in retesting modified programs. This paper presents the
first general regression-test-selection technique, which based on code
and allows selecting test cases for any programs written in any
programming language. Then it handles incomplete program. We
also describe RTSDiff, a regression-test-selection system that
implements the proposed technique. The results of the empirical
studied that performed in four programming languages java, C#, C++
and Visual basic show that the efficiency and effective in reducing
the size of test suit.

Keywords—Regression testing, testing, test selection, software

evolution, software maintenance.

I. INTRODUCTION
OFTWARE maintenance typically involves code changes
to satisfy customer requirements like fixing bugs, addition

of a new functionality, improving existing functionalities, and
so on. After incorporating the change, the impact is analyzed
and the software is re-validated using regression testing.

Regression testing is performed on modified software to
provide confidence that changes are correct and do not
adversely affects other portions of the software. Regression
testing is expensive; it can account for as much as one-half of
the cost of software maintenance. The cost of selecting
regression test cases to rerun must be lower than the cost of
running the remaining test cases for test selection to make
sense [14].

 The difference between regression testing and development
testing is that, during regression testing, an established test
suite of tests may be available for reuse. The simplest
regression testing technique, retest-all, reruns all test cases in
test suite. But, this technique may take a long time and
resources. An alternative approach, regression test selective

W. S. Abd El-hamid is with the Faculty of Computers and Information,

Menofyia University, Gamal Abdul-nasser Str. Shebin El-Kom, Menofyia,
Egypt (Fax. +2 048 2223694; e-mail: walid_mufic@yahoo.com.)

Sherif. S. El-etriby is with the Faculty of Computers and Information,
Menofyia University, Gamal Abdul-nasser Str. Shebin El-Kom, Menofyia,
Egypt (e-mail: sherif.ali@ci.menofia.edu.eg).

M. M. Hadhoud is with the Faculty of Computers and Information,
Menofyia University, Gamal Abdul-nasser Str. Shebin El-Kom, Menofyia,
Egypt (e-mail: mnhadhoud@yahoo.com).

techniques, in contrast, attempt to reduce the time required to
retest a modified program by selectively reusing tests.

Most regression test selection techniques are white-box
(code based), that is, they select tests based on information
about the data between original code and the modified code
[2], [7], [10], [12], [17], [19], [22]. Only a few techniques are
black-box (specification-based) methods, that is, they select
tests based on architecture and design information represented
with the Unified Modeling Language (UML). But designs for
impact analysis and test selection require the designs to be
complete and up-to date [1], [3], [8], [9].

In this paper we address a general code based regression
test selection technique. Our technique compares the source
code of original program and modified program and
determines the difference between them then selects the test
cases that execute changed code from the original test suite.
The technique has several advantages over other regression
test selection techniques. Unlike many techniques, our
algorithms detect the difference between original and
modified version written in any programming language and
select tests that formerly executed statements that have been
deleted from the original program. The proposed technique is
safe: where it select every test from the original test suite that
can expose faults in the modified program. The main benefit
of this approach is that, in many cases, a small subset of the
test suite is selected, which reduces the time required to
perform the testing.

Finally, our technique is more general than most other
techniques. They handle all language constructs and all types
of program modifications for procedural languages. We have
implemented our algorithms and conducted empirical studies
on several subject programs and modified versions. The
results suggest that, in practice, the algorithms can
significantly reduce the cost of regression testing a modified
program.

The rest of the paper is organized as the following: Section
II Provide background information about regression testing. In
Section III describes our regression test selection algorithm.
The case study results are presented in Section IV. In Section
V we present the related work. Finally, conclude the paper in
Section VI.

II. PROBLEM DEFINITION
Let P' be a modified version of P, and T be the test suite

used to test P. During regression testing of P', T and
information about the testing of P with T are available for use
in testing P'.

Regression Test Selection Technique for Multi-
Programming Language

Walid S. Abd El-hamid, Sherif S. El-Etriby, and Mohiy M. Hadhoud

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

318

Fig. 1 Original program P and its modified P'

A number of safe regression-test-selection techniques that

vary in precision and efficiency have been presented (e.g., [2],
[7], [10], [17], [19]). We can view these techniques as a
family of regression-test-selection techniques that use
information about the program's source code to select T'. Fig.
1 illustrates a general regression-test-selection system.

Fig. 2 A general regression test selection technique

In this system, a program P is executed with a test suite T.

In addition to the results of the execution the pass/fail
information the system records coverage information about
which entities in P are executed by each test case t. The types
of entities recorded depend on the specific regression-test-
selection technique. After all test cases have been run, the
coverage information is compiled into a coverage matrix that
associates each t in T with the entities that it executes. In
addition to computing coverage information, these techniques
compare P and P', and identify in P a set of dangerous
entities. After dangerous edges have been identified, the select
tests component of the regression-test-selection system uses
the dangerous entities and the coverage matrix to select the
test cases in T to add to T'.

Rothermel and Harrold outline the following approach to
regression testing to solve this problem (T is the original test
suite):

1- Identify changes made to P by creating a mapping of
the changes between P and P'.

2- Use the results of step 1 to select a set T' subset of T
that may reveal change-related faults in P'.

3- Use T’ to test P'.
4- Identify if any parts of the system have not been

tested adequately and generate a new set of tests T''.
5- Use T'' to test software

III. OUR REGRESSION TEST SELECTION
Our algorithm, TestSelection, given in Fig. 3, takes as input

an original version of a program (P), a modified version of
that program (P') and the test suite T for P. The algorithm
outputs a set that contains tests that are modification-
traversing for P and P'.

TestSelection performs its comparison first at the class, then
at the method level and finally at the node level. The
algorithm first compares each class in P with the like named
class in P', and produces sets of class pairs (C). For each pair
of classes, TestSelection then matches methods in the class in
P with methods having the same signature in the class in P';
the result is a set of method pairs (M). Then the algorithm
constructs Enhanced CFGs (ECFGs) for the two methods and
match nodes in the two ECFGs. Finally TestSelection call
procedure compare, passing E and E' as parameters and return
T', the set of test cases selected.

Fig. 3 TestSelection Algorithm

A. Class Level
TestSelection begins its comparison at the class level (line

2). The algorithm matches classes that have the same fully-
qualified name; the fully-qualified name consists of the
package name followed by the class name. Matching classes
in P and P' are added to C. Classes in P that do not appear in
set C are deleted classes, whereas classes in P' that do not
appear in set C are added classes. In the example programs in

Algorithm TestSelection
Input: P : original program
 P': modified program
 T : test set used to test P
Output: T ': the subset of T selected for use in regression testing
P'
Begin:
1: T '=Ø
2: compare classes in P and P ; add matched class pairs to C
3: for each pair (c, c') in C do
4: compare methods; add matched method pairs to M
5: for each pair (m ,m') in M do
6: create ECFGs G and G' for methods m and m' with
entry nodes E and E'
7: T ' = T ' U Compare(E,E')
8: end for
9: end for
10: return T '
11: end TestSelection

Program P

Public class A{
Void f1(){….}
Void f2(){….}
Void f3(){….}
}
Public class B extends A{

Void f4 (){….}
}
Public class X{….}
Public class D{
Void f5(A a)
{
a.f1();
}
}

Modified Program P'

Public class A{
Void f1(){….}
Void f3(){….}

}
Public class B extends A{
Void f1(){….}
Void f4(){….}
}

Public class D{
Void f5(A a)
{
a.f1();
}
}
Public class Y{….}

Test suite for P
Execute P/

Record
Coverage

Identify
Dangerous

Entities

Select
Tests

Program P

Program P

Program P'

T'

Dangerous Entities

Coverage Matrix

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

319

Fig. 1, we consider class X in original program P as deleted
class and class Y in modified program P' as added class.

B. Method Level
After matching classes, TestSelection compares, for each

pair of matched classes, their methods (lines 3–4). The
algorithm first matches each method in a class with the
method with the same signature in another class. Then, if there
are unmatched methods, the algorithm looks for a match based
only on the name. This matching accounts for cases in which
parameters are added to (or removed from) an existing method
which we found to occur in practice and increases the number
of matches at the node level. Pairs of matching methods are
added to M. Like the approach used for classes, methods in P
that do not appear in set M are deleted methods, whereas
methods in P' that do not appear in set M are added methods.
In the example programs in Fig. 1, we consider method f2()
in class A in original program P as deleted method and
consider method f1() in class B in modified program P' as
added method.

C. Node Level
TestSelection uses the set of matched method pairs (M) to

perform matching at the node level. First, the algorithm
considers each pair of matched methods (m,m') in M, and
builds ECFGs G and G' for m and m' (lines 5–6).

When comparing two methods m and m', the goal of our
algorithm is to find, for each statement in m, a matching
statement in m', based on the method structure. Thus, the
algorithm requires a modeling of the two methods that (1)
explicitly represents their structure, and (2) contains sufficient
information to identify differences and similarities between
them. Although CFGs can be used to represent the control
structure of methods, traditional CFGs do not suitably model
many object oriented constructs. To suitably represent object-
oriented constructs, and model their behavior, we define the
ECFG. ECFGs extend traditional CFGs and are tailored to
represent object-oriented programs as shown in Fig. 4.

Fig. 4 ECFGs for D.f5 in P and P' (Fig. 1)

Finally, TestSelection calls procedure Compare given in
Fig. 5, passing E and E' as parameters. Compare identifies
differences between nodes in G and G' (line 7), and creates
and returns T ', the set of test cases selected for the change
between nodes.

 procedure Compare(N, N')
input : N and N ' : nodes in G and G'
output : T' : set of test cases for changed node
begin
1. mark N " N '-visited "
2. for each successor C of N in G do
3. L = the label on edge (N, C)
4. C ' = the node in G' such that (N ', C ') has label L
5. if C is not marked "C '- visited"
6. if not LEquivalent (C, C ')
7. return TestsOnEdge ((N, C))
8. else
9. Compare(C, C ')
10. endif
11. endif
12. endfor
13. end Compare

Fig. 5 Compare algorithm

The function Compare is called with pairs of nodes N and
N', from G and G', respectively, that are reached
simultaneously during the algorithm’s comparisons of
traversal trace prefixes. Given two such nodes N and N',
Compare determines whether N and N ' have successors whose
labels differ along pairs of identically labeled edges. If N and
N' have successors whose labels differ along some pair of
identically labeled edges, test that traverse the edges are
modification-traversing due to changes in the code associated
with those successors. In this case Compare selects those tests.
If N and N' have successors whose labels are the same along a
pair of identically labeled edges, Compare continues along the
edges in G and G' by invoking itself on those successors.

Fig. 5 describes Compare’s actions more precisely. When
Compare is called with ECFG nodes N and N ', Compare first
marks node N " N '-visited" (line 1). After Compare has been
called once with N and N ' it does not need to consider them
again, this marking step lets Compare avoid revisiting pairs of
nodes. Next, in the for loop of lines 2-12, Compare considers
each control flow successor of N. For each successor C,
Compare locates the label L on the edge from N to C, then
seeks the node C ' in G' such that (N ', C ') has label L; Next,
Compare considers C and C '. If C is marked “C ' -visited,”
Compare has already been called with C and C ', so Compare
does not take any action with C and C '. If C is not marked “C
'-visited,” Compare calls LEquivalent with C and C '. The
LEquivalent function takes a pair of nodes N and N ' and
determines whether the statements S and S' associated with N
and N ' are lexicographically equivalent. If LEquivalent(C,C ')
is false, then tests that traverse edge (N, C) are modification-
traversing for P and P' ; Compare uses TestsOnEdge to
identify these tests and adds them to T '. If LEquivalent (C,C ')
is true, Compare invokes itself on C and C 'to continue the
graph traversals beyond these nodes.

IV. CASE STUDY RESULTS
To evaluate our approach for regression test selection, we

used RTSDiff to perform two empirical studies. Our study
utilized two software subjects: Calculator and Sorting. Each
software subject consists of an original version P, several

Entry

Call a.f1()

A.f1() A.f1()

Exit

Entry

Call a.f1()

B.f1() A.f1()

Exit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

320

modified versions (V1,…,Vn) and a set of test cases that used
to test P. These softwares are written in four programming
languages: Java, C#, C++ and VB.Net.

The first subject for our studies is the implementation of the
Calculator software that implemented in Java, C#, C++ and
VB.Net programming languages. We obtained three versions,
along with a test suite that had been used to test the software.

Fig. 6 shows the results for the four programming
languages for Calculator software, the figure shows the
percentage of test cases that were selected for each version of
this software.

0

10

20

30

40

50

60

70

Java C# C++ VB.Net

Programming Language

Pe
rc

en
ta
ge

 o
f T

es
t C

as
es

 S
el
ec

te
d

Version 1
Version 2
Version 3

Fig. 6 Percentage of test cases selected for Calculator Software.

We have analyzed the versions of the software and results

are tabulated in Table I.

TABLE I
RESULTS OF CALCULATOR SOFTWARE CASE STUDY

% Test cases
recommended Language

V1 V2 V3

% of average
test cases

recommended

% of test
effort
saved

Java 26 29 54 36 64
C# 31 25 56 37 63

C++ 57 30 58 48 52
VB.Net 38 29 44 37 64

The second subject for our studies is the implementation of

the Sorting software that implemented in Java, C#, C++ and
VB.Net programming languages. We obtained four versions,
along with a test suite that had been used to test the software.

Fig. 7 shows the results for the four programming languages
for Sorting software, the figure shows the percentage of test
cases that were selected for each version of this software.

0

10

20

30

40

50

60

70

80

Java C# C++ VB.Net

Programming Language

Pe
ce

nt
ag

e
of

 T
es

t C
as

e
S
el
ec

te
d

Version 1
Version 2
Version 3
Version 4

Fig. 7 Percentage of test cases selected for Sorting Software

We have analyzed the versions of the software and results

are tabulated in Table II.

TABLE II
RESULTS OF SORTING SOFTWARE CASE STUDY

% Test cases
recommended

Language
V1 V2 V3 V4

% of average
test cases

recommended

% of test
effort
saved

Java 24 44 38 68 43 57
C# 44 38 48 62 48 52

C++ 28 34 58 58 44 56
VB.Net 38 58 64 76 59 41

V. RELATED RESEARCH WORK
Typically regression test selection techniques are either

code-based or model-based. Code-based techniques [2], [7],
[10], [12], [13], [17], [19] use the information obtained from
two different versions of the code to analyze the change
impact and select the tests.

Chianti [6] and JDiff [4] are comprehensive techniques for
managing changes in Java programs. Chianti selects
regression tests after analyzing the change impact analysis
whereas JDiff performs only change impact analysis. As both
these tools analyses the changes at statement level and are
specific to Java programming.

In the case of model based techniques [1], [3], [8], [9], [14],
[15] change information is obtained through two versions of
models constructed during the requirements analysis phase or
system design phase. But this techniques are used only when
design are available in UML.

Reference [14] present an approach to identifying change
impact analysis using UML sequence, use case and class
diagrams. Their approach is somewhat different as their major
focus is on the code based test cases, so mapping is between
change identification at design level and its impact on code
based test cases, which implies that the tester would have to
wait for the code to develop and then test it using code-based
test cases.

Reference [15] use UML activity diagrams to detect
changes in design and then use a traceability matrix between
activity diagram and the test suite. It covers activities at an
abstract level and does not cover the attributes of a class.
Also, it does not support object-oriented features.

Reference [8] propose a regression testing technique based
on UML sequence and class diagrams. Their approach does
not take into account the pre and post conditions of the
operations which affect behavior of a class.

Our technique is based on code model to allow regression
test selection for all programs written in any programming
language.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented the first general regression test

selection technique that based on code generation. Our
technique handles most of the programming language where
we applied our technique on java, C#, C++ and Visual basic
software. We also present a tool called RTSDiff that
implement our technique. With RTSDiff we performed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

321

empirical studies to evaluate the effectiveness of our
technique. Our empirical studies indicate that the technique
can be effective in reducing the size of the test suite for
software written in any programming language, but this work
detect only the static change in the software.

Our future improving the efficiency of the tool to can detect
the dynamic change in object oriented, gathering additional
subjects, performing empirical studies to evaluate the
effectiveness of our technique and applying this technique on
large software.

REFERENCES
[1] L.C. Briand, Y. Labiche and S. He, "Automating regression test

selection based on UML designs", 2008, pp 16-30.
[2] Anjaneyulu Pasala, Yann G. Rothermel, M.J. Harrold, J. Debhia,

Regression test selection for C++ software, Journal of Software Testing,
Verification, and Reliability, 2000 pp 77–109.

[3] ick LH, Fady A, Appala Raju G and Ravi P Gorthi, “Selection of
regression test suite to validate software applications upon deployment
of upgrades”, 19th Australian Software Engineering conference, 25-28
March 2008, pp 130-138.

[4] Ravi P Gorthi, Anjaneyulu Pasala, Kailash KP and Benny Leong,
"Specification-based approach to select regression test suite to validate
change software", 15th Asia-Pacific Software Engineering conference,
2008, pp 153-160.

[5] Apiwattanapong, T., Orso, A., and Harrold, M.J., “JDiff: A Differencing
Technique and Tool for Object--Oriented Programs”, Journal of
Automated Software Engineering, Vol 14, No. 1, March 2007, pp 3-36.

[6] Anjaneyulu P, Yannick LH Lew, and Ravi Prakash G, “How to Select
Regression Tests to Validate Applications upon Deployment of
Upgrades”, Vol. 6, No. 1, 2008, pp 55 – 62.

[7] Xiaoxia R, Barbara G R, Maximilian S and Frank T, “Chianti: A
prototype change impact analysis tool for Java”, Proceedings of 27th
International Conference on Software Engineering (ICSE), St. Louis,
USA, May 15-21, 2005, pp 664-665.

[8] T. Koju, S. Takada, N. Doi, "Regression test selection based on
intermediate code for virtual machines", Proceeding of International
Conference on Software Maintenance (ICSM 03), 2003 , pp 1-10.

[9] Orest P, Hunay U, and Andrews A, "Regression Testing UML Designs",
Proceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM), Philadelphia, Pennsylvania, September 24-27,
2006, pp254-264.

[10] A. Ali, A. Nadeem, M.Z. Iqbal, M. Usman, "Regression testing based on
UML design models", 13th IEEE International Symposium on Pacific
Rim Dependable Computing, 2007, pp 85-88.

[11] A. Orso, N. Shi and M.J. Harrold, "Scaling regression testing to large
software systems", Proceeding of the 12th ACMSIGSOFT International
Symposium on Foundation of Software Engineering, 2004, pp 241-251.

[12] G. Rothermel, M.J. Harrold, "Analysing regression test selection
techniques", IEEE Transactions on Software Engineering , 1996, pp
529–551.

[13] M. Skoglund and P. Runeson, "A Case Study of The Class Firewall
Regression Test Selection Technique on a Large Scale Distributed
Software System" IEEE, 2005, pp74-83.

[14] E. Martins and V.G. Vieira, "Regression test selection for testable
classes", ENCS 2005, pp 453-470.

[15] L.C. Briand, Y. Labiche, G. Soccar, "Automating impact analysis and
regression test selection based on UML designs", International
Conference on software Maintenance, 2002, pp 252-261.

[16] Y. Chen, R.L. Probert, D.P. Sims, Specification based Regression test
selection with risk analysis, in: Proceedings of Conference of the Center
for Advance Studies on Collaborative Research, 2002.

[17] H. Agrawal, J.R. Horgan, E.W. Krauser and S.A. London, "Incremental
Regression Testing", Proceedings of IEEE Conference on software
Maintenance,1993, pp 348-357.

[18] M.J. Harrold, J.A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S.
Sinha, S.A. Spoon, Regression test selection for java software, in:
Proceedings of ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’01), 2001, pp 312-
326.

[19] T. Apiwattanapong, A. Orso, M.J. Harrold, "A differencing algorithm
for object-oriented programs", Proceedings of the 19th IEEE
International Conference on Automated Software Engineering (ASE
2004), 2004, pp 2–13.

[20] G. Rothermel, M.J. Harrold, "A. Safe, Efficient regression test selection
technique", ACM Transactions on Software Engineering and
Methodology, 1997, pp 173–210.

[21] Baradhi G and Mansour N, "A Comparative study of Five Regression
Testing Algorithms", Proceedings of Australian Software Engineering
Conference (ASWEC), Sydney, Australia, 1997, pp 174-183.

[22] Graves T L, Harrold M J, Kim J, Porter A and Rothermel M, "An
empirical Study of Regression Test Selection Techniques", ACM
Transactions on Software Engineering and Methodology, Vol. 10, No. 2,
April 2001, pp 184-208.

