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Abstract—A simple microstructure optical fiber design based on 

an octagonal cladding structure is presented for simultaneously 
controlling dispersion and leakage properties. The finite difference 
method with anisotropic perfectly matched boundary layer is used to 
investigate the guiding properties. It is demonstrated that octagonal 
photonic crystal fibers with four rings can assume negative 
ultra-flattened dispersion of -19 + 0.23 ps/nm/km in the wavelength 
range of 1.275 µm to 1.68 µm, nearly zero ultra-flattened dispersion of 
0 ± 0.40 ps/nm/km in a 1.38 to 1.64 µm, and low confinement losses 
less than 10-3 dB/km in the entire band of interest. 
 

Keywords—Finite difference modeling, group velocity 
dispersion, optical fiber design, photonic crystal fiber.  

I. INTRODUCTION 
NDEX guiding microstructure optical fibers(MOFs) or holey 
fibers [1] usually consist of a hexagonal arrangement of 

microscopic air-channels running down length of the silica 
based fiber, surrounding a central solid silica core. Inclusion of 
air-holes in the cladding creates sufficient index difference 
between the core and the cladding to guide light by the 
mechanism of total internal reflection (TIR). One of the 
appealing characteristics of such fibers is that their dispersion 
and modal properties can be controlled significantly by varying 
the size of the air-holes, their number, and their positions. PCFs 
exhibit a number of unique properties including wide range 
single mode operation, zero dispersion at visible wavelengths, 
super high or low nonlinearities, high birefringence, and 
ultra-flattened dispersion [2]-[5]. Therefore, PCFs are so 
attractive in controlling application specific dispersion and 
modal properties. 

Control of fiber’s chromatic dispersion is crucial for 
practical applications to optical fiber communication systems, 
dispersion compensation, and nonlinear optics [3]. Moreover, 
as there is a finite number of air-holes in the cladding, guided 
modes of PCF are intrinsically leaky, control of 
leakage/confinement losses are also crucial. Therefore, the 
issue of controlling chromatic dispersion keeping confinement  
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losses to a value below the Raleigh scattering level has 
witnessed a dramatic growth of efforts over the past years. 
Various index guiding PCFs with remarkable dispersion and 
leakage properties [6]-[12], have been reported to date 
including PCFs design with uniform optimized air-holes 
[7]-[9], modulating air-holes in radial directions [6, 10, 11], and 
PCFs with a defected core [12]. Among these designs, since the 
PCFs in. [7]-[9] are not so attractive in the light of confinement 
loss. These PCFs with small uniform d/Λ require many rings 
layer to reduce confinement losses below the Raleigh scattering 
limit. Moreover, adding additional rings to these existing 
designs in order to reduce the confinement losses may alter 
both the required dispersion accuracy and nonlinearity. 
Regarding the PCFs in [6, 10, 11], air-hole modulation show 
significant reduction in the number of rings but with a 
consequent increase in number of design parameters.  The PCF 
in [12] require sub micrometer adjustment for the central defect 
air-hole dimension to ensure dispersion accuracy in flatness. 
This scenario depicts that still there is rooms to continue efforts 
to design simple PCF structures for low loss wideband 
ultra-flattened dispersion.  

Beside the hexagonal arrangement of air-holes, other 
structures such as square [13], octagonal [14], decagonal [15], 
and circular [16] arrangement of air-holes for PCF have also 
been proposed. Among these non-hexagonal PCFs, the 
octagonal PCFs (O-PCFs) are reported to have such attractive 
features as low confinement losses and inherently high 
nonlinearity [13, 17] in comparison to hexagonal PCFs. This 
features of the O-PCFs are explored in this work to design 
dispersion flattened PCFs. 

In this paper, we propose four ring PCF structures that can 
assume ultra-flattened chromatic dispersion and low 
confinement losses in a broad range of wavelength. A 
comparison of the properties of these PCF with some of the 
remarkable designs [6]-[12] in the light of flat dispersion, low 
confinement loss, design simplicity is also presented that show 
novelty of the proposed PCFs. PCFs with such properties as 
wide band ultra-flattened chromatic dispersion, relatively high 
nonlinearity, and low confinement losses may pave the way for 
applications in optical parametric amplification, wavelength 
conversion, and all optical signal processing.  

II. THE PCF MODEL 
Fig.1 shows a simple geometry for the proposed dispersion 

flattened PCFs (hereinafter DF-PCF) with optimized air-hole 
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diameters d1, d2, and pitch Λ1. Since periodicity in the 
cladding region is not essential to confine the guiding light in 
the high index core region [10], air-hole diameter on the first 
ring is scaled down to shape dispersion property while diameter 
of air-holes on outer rings are kept larger for better field 
confinement. Pitch Λ1 is related to Λ2 by the relation Λ2 ≈ 
0.765Λ1. In contrast to a conventional hexagonal PCF 
(H-PCF), octagonal PCFs have isosceles triangular unit lattices 
with a vertex angle of 450. Due to such lattices, O-PCFs 
contain more air-holes in the cladding region with the same 
numbers of rings than H-PCFs. In O-PCFs, the total number of 
air-holes for rings 1, 2, 3, 4, and 5 are respectively 8, 24, 48, 80, 
and 120, whereas in a regular triangular lattice, the number of 
air-holes is 6, 18, 36, 60, and 90, respectively. This results in a 
higher air-filling ratio and a lower refractive index around the 
core, thereby providing strong confinement ability. As there are 
eight air holes on the first ring and is placed in an octagonal 
rotational symmetry, O-PCF results in similar fundamental 
field distribution as that of the standard step index fibers [14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Cross-section of the proposed four rings PCF with air-hole 
diameters d1, d2, and pitch Λ1.  
 

The following sections present numerical simulation tools 
and simulation results of this fiber for two different set of 
optimized parameters.  

III. DESIGN METHOD AND EQUATIONS 
The computational window was divided by 181 uniform 

grids in both the x and y axes and was surrounded by 8 PML 
layers. To model the leakage anisotropic PML layers were 
used.  Once the modal effective index neff is obtained by 
solving an eigenvalue problem drawn from the Maxwell 
equations using the FDM [15, 17], chromatic dispersion D, 
effective area Aeff and confinement loss Lc, can be given by 
[15] the following equations:  

2

2 ]Re[
λ

λ
d

nd
c

D eff−=                                      (1) 

dxdyE

dxdyE
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∫∫= 4

22 ][
                       (2) 

]Im[686.8 0 effnkLc ×=                                (3) 

where, Re[neff] is the real part of neff, λ is the wavelength, c 
is the velocity of light in vacuum, Im[neff] is the imaginary part 
of neff, and k0 is the free apace wave number. E is the electric 
field distribution derived by solving an eigenvalue problem 
drawn from Maxwell’s equations. The material dispersion 
obtained from Sellmeier formula is directly included in the 
calculation. Hence, D in (1) corresponds to the total dispersion 
of the PCF. 

Using two sets of optimized parameters of the PCF in Fig.1 
two dispersion flattened PCFs have been designed. One with 
negative dispersion-flattened characteristics and another with 
nearly zero dispersion-flattened characteristics. 

A. Negative dispersion-flat PCF 
Fig.2 shows wavelength dependence of chromatic dispersion 

of the proposed negative DF-PCF for optimum design 
parameters.  Optimizing the parameters d1, d2, and Λ1 
chromatic dispersion of -19 + 0.230 ps/nm/km is obtained 
(dispersion variation 0.23 ps/nm/km) in a wavelength range of 
1.275 to 1.68 μm (405 nm) for Λ1 = 1.70 μm, d1/Λ1 = 0.27, and 
d2/Λ1 = 0.58. For optimization of the parameters a simple 
technique is applied. First a relative air-hole dimension d2/Λ1 
is chosen in the range of 0.5 to 0.8. Larger value is chosen for 
better field confinement. Then a value of d1/Λ1 is calculated by 
examining the dispersion curves. Fig. 2 depicts that the 
octagonal structure is more efficient in tailoring dispersion 
because modulating only dimension of the first ring it is 
possible to obtain wideband ultra-flattened dispersion. As a 
result such PCFs have a modest number of design parameters, 
two air-hole diameters and a pitch. 

 
Fig. 2 Optimum dispersion curve of the proposed DF-PCF for Λ1 = 

1.70 μm, d1/Λ1 = 0.27, and d2/Λ1 = 0.58. 
 

Λ1 

d1 

 d2 

a 
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Fig.3 Wavelength dependence of the effective area and confinement 
losses of the negative DF-PCF for Λ1 = 1.70 μm, d1/Λ1 = 0.27, and 
d2/Λ1 = 0.58.  
 

Moreover such PCFs with only one defected innermost ring 
can assume relatively smaller effective area than that of the 
PCFs with two or more defected rings. Fig. 3 shows effective 
area and confinement loss of the fiber for optimum design 
parameters. It is clear that effective area at 1.55 μm is 7.9 μm2 
whereas it was 13.2 μm2 for the case of H-PCF with two 
defected rings [6]. The confinement loss is also less than 0.01 
dB/km in the entire band of interest. Therefore, we have shown 
successfully that modulation of air-hole diameter of only the 
first ring is sufficient to achieve negative ultra-flattened 
dispersion and low confinement loss in a broad range of 
wavelengths. Fig. 4 shows optical field intensity of the x 
polarization component of the guided mode at 1.55 μm 
wavelength. The red color indicates the highest intensity and 
the blue the lowest. It depicts that the field has confined well 
within the core. Fibers with such properties as wideband 
negative dispersion-flattened characteristics, relatively smaller 
effective area, and low confinement loss may find its way in 
various nonlinear applications and simultaneously can act as a 
short length dispersion compensator.     
 

       
Fig. 4 Mode field profile of the fiber at 1.55 μm for Λ1 = 1.70 
μm, d1/Λ1 = 0.27, and d2/Λ1 = 0.58. 
 

B. Nearly-zero dispersion-flat PCF 
Figure 5 shows dispersion characteristic of the DF-PCF for 

another set of optimized parameters. For the new set : Λ1 = 
2.30 μm, d1/Λ1 = 0.28, and d2/Λ1 = 0.58; ultra-flattened 
dispersion curves 0 ± 0.40 ps/nm/km is obtained in a 1.38 to 
1.64 μm (260 nm band centered at 1.55 μm).  The parameters 
are optimized in a similar way as described in subsection 3.1.  

 
Fig.5 Dispersion characteristics of the DF-PCF for Λ1 = 2.30 
μm, d1/Λ1 = 0.28, and d2/Λ1 = 0.58. 

 
Fig.6 Wavelength dependence of the effective area and confinement 
losses of the negative DF-PCF for Λ1 = 2.30 μm, d1/Λ1 = 0.28, and 
d2/Λ1 = 0.58.  

        
Fig.7 Mode field profile of the fiber at 1.55 μm for Λ1 = 2.30 
μm, d1/Λ1 = 0.28, and d2/Λ1 = 0.58. 

Fig.6 shows effective area and confinement loss of the fiber 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:8, 2010

1213

 

 

for the new optimized parameters. Due to increased pitch value 
effective area this time is relatively larger but still it is less than 
10 (9.6 μm2) at 1.55 μm. The confinement loss is seen to be less 
than 0.001 dB/km in the entire band of interest. PCFs with such 
a small group velocity dispersion and negligible third order 
dispersion can find its way in different applications in nonlinear 
regimes. Fig. 7 shows optical field intensity of the x 
polarization component of the guided mode at 1.55 μm 
wavelength. It depicts that the field has confined well within 
the core. 

C. Dispersion Tolerance  

To study dispersion tolerance of the O-PCFs here we 
consider a dispersion-flattened case of sub-section 3.2. It is 
known that in a standard fiber draw, 1% variation in fiber 
global diameter may occur [9] unavoidably during the 
fabrication process. It is also reported that dimension of the first 
ring is particularly important as it affect the dispersion slope 
significantly [11]. Therefore, roughly an accuracy of 2% may 
require ensuring required dispersion flatness. To account for 
this issue air-hole diameters d1 and d2 are varied up to ± 5% 
from their optimum values (red lines). Corresponding 
dispersion curves are shown in Figs. 8(a) and 8(b) respectively.  
While varying d1, d2 and Λ1 are kept constant and while 
varying d2, d1 and Λ1 are kept constant respectively. It is 
found that the DF-PCF maintains dispersion flatness within 0 ± 
2.0 ps/ (nm-km) for diameter variation up to order ± 2%. 
Moreover, notice that the dispersion slope characteristics are 
almost insensitive to incremental variations in the air-hole 
diameters. Fig. 9 shows dispersion tolerance of the fiber due to 
changes in the pitch of order ± 1, ± 2 and ± 5% along with the 
optimum dispersion curve (red line). Fig. 9 ensures that design 
accuracy of the fiber for incremental change in pitch during the 
fabrication process is satisfactory as it does not affect the 
dispersion slope significantly. 

D. Comparison between DF-PCFs and Existing PCF 
Designs Negative   

Table 1 compares DF-PCFs properties and some other 
existing designs for ultra-flattened PCFs in the references 
considering the ultra-flattened dispersion range, confinement 
loss, and number of design parameters including the number of 
air-hole ring layers. Nr, NΛ, and Nd correspond to the number 
of rings, pitches, and air-hole diameters used in PCF design, 
respectively. Note that PCFs in [7] to [9] need many rings to 
reduce the confinement losses. Although PCF in [12] is 
attractive in the light of the abovementioned properties, its 
dispersion accuracy is supposed to be low because of the 
central defect air-hole in the core. On the other hand, the 
proposed DF-PCFs has ultra-flattened chromatic dispersion in 
the C band, low confinement loss, and less design complexity, 
i.e., fewer design parameters as well as better fabrication 
tolerance to parameter variations as is demonstrated in section 
4. From the above scenario we hope that octagonal structure 
based dispersion-flattened fibers can be very good alternatives 

to the conventional PCFs especially in the light of dispersion 
tolerance, confinement losses, and number of design 
parameters. 

 
(a) 

 
(b) 

Fig. 8 Dispersion tolerance of the DF-PCF: (a) optimum dispersion 
and effects of variation in d1, (b) optimum dispersion and effects of 
variation in d2. 

 
Fig. 9 Dispersion properties of the DF-PCF for pitch variation of order 
1 to ± 5% around the optimum value (red line). 
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TABLE 1 COMPARISON OF DF-OPCF PROPERTIES WITH SOME 
REMARKABLE DESIGNS 

PCFs 
Design 

ΔD 
ps/nm/km 

Lc 
dB/km 

1FDR 
(nm) 

2NDP 
(Nr, Nd, NΛ) 

Ref. [6] 0.50 - 430 4, 1, 2 

Ref. [10] 0.80 < 0.1 
 

490 4, 1, 4 

Ref. [11] 0.20 0.016 
 

100 4, 1, 4/5 

Ref. [12] 0.40 0.013 
 

506 4, 1, 2 

DF-PCF 0.46/ 
 0.80  

< 0.01/ 
0.001  

405/ 
260 

4, 1, 2 

1FDR- flat dispersion range, 2NDP-number of design 
parameters,  

IV. CONCLUSION 
Two different cases of dispersion-flattened octagonal PCFs 

have been discussed with numerical simulation results. 
Dispersion tolerance and comparison with other existing PCFs 
design are also compared in the light of flattened dispersion, 
confinement loss, and design complexity. It has been 
demonstrated that octagonal photonic crystal fibers with four 
rings can assume negative ultra-flattened dispersion of -19 + 
0.23 ps/nm/km in the wavelength range of 1.275 µm to 1.68 
µm, and nearly zero ultra-flattened dispersion of 0 ± 0.40 
ps/nm/km in a 1.38 to 1.64 µm with low confinement losses 
less than 10-3 dB/km in the entire band of interest. 
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