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Abstract—The effect of a time delay on the transmission on 
dengue fever is studied.  The time delay is due to the presence of an 
incubation period for the dengue virus to develop in the mosquito 
before the mosquito becomes infectious.  The conditions for the 
existence of a Hopf bifurcation to limit cycle behavior are 
established.  The conditions are different from the usual one and they 
are based on whether a particular third degree polynomial has 
positive real roots.  A theorem for determining whether for a given 
set of parameter values, a critical delay time exist is given.  It is 
found that for a set of realistic values of the parameters in the model, 
a Hopf bifurcation can not occur.  For a set of unrealistic values of 
some of the parameters, it is shown that a Hopf bifurcation can occur.
Numerical solutions using this last set show the trajectory of two of 
the variables making a transition from a spiraling orbit to a limit 
cycle orbit. 

Keywords—Dengue fever transmission, time delay, Hopf 
bifurcation, limit cycle behavior  

I. INTRODUCTION.

NSIGHTS into the behavior of systems can often be 
achieved through a mathematical modeling of the system. 

The models are usually expressed as a set of differential 
equations obtained from physical laws, Newton’s second law 
or from the basic principle that the time rate of change of the 
number of members in a category is equal to the numbers 
entering minus the numbers leaving.  The last method is the 
main one used to obtain models for chemical and biochemical 
reactions.  Mathematical modeling has undergone a 
renaissance in recent years. This has occurred because much 
of biology and medicine is now discussed in terms of 
molecular biology processes.  The full force of mathematical 
modeling can now be applied to these processes. 

 In this paper, we are interested in the effects of a time 
delay caused by an incubation period in the virus development 
on the transmission of dengue fever.  Dengue fever (DF) is an 
illness that is characterized by a moderately high fever, 
extreme pain in and stiffness in the joints, a rash and a 
reduction in the white blood cells [1].  These symptoms are 
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caused by the toxins produced by one of the four serotypes of 
a virus belonging to the genus Flavirus, in the family 
Flavicidae.  In many cases, the illness is asymptomatic and an 
infection can only be determined through serologic tests.  A 
second infection by this virus can result in a more virulent 
form of the disease, dengue hemorrhagic fever (DHF).  From 
its first appearance in the Philippines in 1953, DHF has 
become the most important arthropod-borne viral diseases of 
human’s [2].   It has been estimated that there are between 50 
and 100 million cases of dengue fever (DF) a year, over 
250,000 cases of dengue haemorrhagic fever (DHF) with 
approximately 10,000 infant deaths due to the latter form of 
this disease.

 Time delays can play a very import role in the dynamics of 
real systems.  Martin and Ruan [3] showed that a time delay in 
a generalized Gause-type predator-prey model could cause a 
stable equilibrium to become unstable.  Khan and Greenhalgh 
[4] have studied the consequences of there being a time delay 
in the effects of vaccination on the spread of diseases in an 
epidemic.  Xiao and Chen [5] have studied a predator-prey 
model and showed that a time delay can cause in their model, 
a transition from a stable equilibrium to an unstable one and 
then a transition back to a stable one.  Other recent studies 
have been done by Ruan and Wei [6] and by Tam [7]. 
 Most of the above studies have used the Hopf bifurcation 
method [8] to analysis their models.  They did not, however, 
include all the effects of the time delay.  By neglecting one 
term, they obtained equilibrium states, which do not depend 
on the time delay.  In this paper, we included all the effects of 
the time delay and find that the equilibrium state does depend 
on the time delay, .  In Section II, we introduce a model for 
the transmission of the disease, which takes into account a 
delay in the mosquito becoming infectious after it is infected 
with the virus.   This delay leads to the factor exp {- v } ( v

being the death rate or inverse mean life of the mosquitoes) 
appearing in the equations describing the evolution of the 
mosquito populations.  Since the mean life and the delay 
(incubation period) time are of the same magnitude, the 
product v  does not approach zero and so the exponential 
factor can not be dropped, i.e. set to unity.  We also obtain 
here the equilibrium states of the system and the conditions 
for the endemic state to be physically realizable.  In Section 
III, we establish the conditions under which a Hopf 
bifurcation to a limit cycle behavior is possible.  We perform a 
parameter space analysis in Section IV, and show that the 
conditions can not be met when realistic values of the 
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(biological) parameters are used.  Using unrealistic values of 
the parameters however, we find that the conditions for 
bifurcation can be met.  Solving the equations for these 
parameter values, we obtain trajectories in phase space which 
shows a stable spiral node for values of  < c and a limit cycle 
when  = c ( c being the critical delay at which the 
equilibrium state becomes unstable and bifurcates).  Finally in 
Section V, we discuss some implications of our results. 

II. MATHEMATICAL MODEL OF DENGUE FEVER TRANSMISSION

 II.a Mathematical Model. 
To formulate a model for dengue fever transmission, one 

needs to know what the transmission cycle of this disease is.  
The infection in the human begins when an infectious 
mosquito bites a human and injects a large number of dengue 
viruses of one strain into the blood of the human.  There, the 
virus develops and causes either a symptomatic or 
asymptomatic infection in the person.  The illness resulting 
from the infection last for about one to two weeks.  During 
this time, the infected person is immune to further infection by 
all of the four dengue virus strains.  After the person recovers, 
he keeps his immunity to the infecting strain but losses the 
temporary immunity he had to the other strains.  To simply 
matters, we have assumed in our model there is only one 
strain present.  If a susceptible mosquito bites a person while 
he has a high count of virus in his blood, virus could enter into 
the mosquito and mosquito is said to be infected.  It then takes 
from 3 to 14 days (the incubation period) for the virus to 
develop inside the mosquito before the mosquito is able to 
transmit the disease to a human by its bite. 

 To represent the transmission process, we divide the human 
population into three classes, susceptible, infectious and 
recovered (S’, I’ and R’) and the mosquito population into two 
classes, susceptible and infectious, S’v and I’v.  The time rate 
of change in the number of subjects in each class is equal to 
the number of subjects entering into the group minus the 
number leaving the group.  This gives for the different human 
population classes  

T
h

v h
bdS'(t)

N S'(t)I ( ) S'(t)
dt N c

t        (1a) 

h
v h

T

bdI'(t)
S'(t)I' ( ) ( r)I'(t)

dt N c
t      (1b) 

and
dR'(t)

rI'(t) R'(t)h
dt

 .         (1c) 

The time rate of change of the number of susceptible 
mosquitoes S’v is

( t )v v
(t)v v v

T

(t)
dS' b

A S' I'(t) S'
dt N m

b mh h    (1d) 

and of the infected mosquitoes is         

-(t)v v v(t- ) (t)v v v
T

dI' b
S' I'(t- )e I'

dt N c
     (1e) 

Since we are interested in the time rate of change of the 
infectious mosquitoes at time t and since it takes  number of 
days for the infected mosquitoes to become infectious, we 
should be interested in the number of susceptible mosquitoes 
who bit an infected human at the time t - . not at the time t.  
Between the times t and t - , a portion of these infected 
mosquitoes would have died.  Taking into account all of these 
additional considerations, we get In the above, NT is the total 
host population; A, the recruitment rate of female mosquitoes; 

, the human birth rate; h ( v), the death rate of the humans 
(mosquitoes); h ( v), the probability that a bite by an infected 
mosquito (human) on a susceptible human (mosquito) will 
result in a new infection; r, the rate at which the infected 
human recovers; b, the biting rate of the mosquito and c is the 
number of other animals the mosquitoes can fed on.  The 
derivation of the contact term is given in ref. 9. 

 Adding Eqns. (1a) - (1c) together and  Eqns. (1d) to (1e), 
we obtain  

T
T

T
dN

( )Nhdt
where N S' I' R'          (2a) 

and

=S '+I 'v v v
dNv =A- N where Nv vdt

      (2b) 

If we assume that the total human and mosquito population 
remains constant, we have h and NV = A/ v.  Dividing 
the human classes by the total human population and the 
mosquito classes by the total mosquito populations, we get the 
densities for each class.  We also have S + I + R = 1 and Sv + 
Iv = 1 where the absence of the prime denotes a density.  
Because of these two constraints, only three equations are 
needed to define the model which we take to be  

dS
SI Svh h hdt

 ,       (3a)    

h v h
dI

SI ( r)I
dt

         (3b) 

and
dI (t) -v vS (t- )I(t)e I (t)v v v vdt

     (3c) 

where
            bv v              (4a) 
and

b mh h                            (4b) 
with m being the ratio between the total number of mosquitoes 
and total number of humans and where we have set c = 0.  In 
Eqn. (3c), we have replaced I(t- ) by I(t) since the density of 
infectious humans is not expected to vary much over the 
period  which is much less then the life time of a human.
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 II.b Equilibrium States and Their Stabilities.  

The equilibrium states are obtained by setting the RHS of 
Eqns. (3a) to (3c) to zero.  Doing this, we get two equilibrium 
states, the disease free state, Eo =(0, 1, 0) and the endemic 
equilibrium state, E1 = (Iv*, S*, I*) where 

v

v
v

v

v

     ,v

v

I*

I * e
I* e 1

          (5a)  

v

v

v h

v h
o

I* e 1

S*
r

1 R I*e

v

v
       (5b) 

where

v h

v h

v
o

v
o

R e 1
 I*

r
R e

       (5c) 

with 

      
2

v h

v h
o

b m
R

( r)
           (5d) 

As we see, S*, I* and Iv* are functions of the delay time .
This would not be true if we had dropped the exponential 
factor, exp{- v }.  Since I*  0, we need 

Ro exp{- v }  1           (6) 

For the equilibrium point E1 to exist,  must lie in the range 
0   (ln Ro)/ v.  The factor R = Ro exp{- v } is called the 
basic reproduction number and it is the number of secondary 
infections resulting from a primary infection.  When it is less 
than one, the disease-free state is the equilibrium state; if it is 
greater one, then the endemic state is the equilibrium state. 

III,  Bifurcation Conditions for the Endemic 
Equilibrium State. 

 III.a Basic Theorems. 
 To establish the conditions for the stability of the endemic 
state, we introduce the following two theorems:  

Theorem 1.  The equilibrium point of Eqns. (3a) –(3c) 
is stable if and only if every characteristic root of the 
matrix J has a real part not greater than zero, and 
those with zero real part are zero.  It is asymptotically 
stable if and only if every characteristic root of J has 
nega-tive real part. 
Theorem 2.  Let x* = x*(a) be an equilibrium point of 
a system of first order differential equations given by 

dx
F({x};a)

dt

where F(  ) is a column vector and let the Jacobian 
matrix at an equilibrium point be defined as 

Fi( ) D F(x*,a) (x*,a)  i,j 1,2,.,n  ,x x j
aJ

if J(a) has a pair of complex eigenvalues, (a) = u(a) 
 iv(a) such that 

i.      u(ac) = 0  , 
ii.      v(ac) = v* > 0 

c
du

iii. (a ) 0
da

where ac is called a critical value of the bifurca-
ion parameter ‘a’, and no other eigenvalues with 
zero real part exist, the system undergoes a 
transition to a limit cycle about the point (x*,ac).

The proofs of these two theorems can be found in ref. [8]. 

III.b. Application to the Present System.
Whether the equilibrium point of the given system 

undergoes a Hopf bifurcation to a limit cycle behavior is 
determined by whether the eigenvalues of the Jacobian for the 
system of equations satisfy the two theorems.  The presence of 
a -dependence in the equations requires modifications of the 
usual conditions for a Hopf bifurcation.  To see this, we 
diagonalizing the Jacobian and obtain the following 
characteristic equation 

- vP( , ) Q( , )e 0                        (8) 
where
                     P( ) = 3 + ao( ) 2 + bo( )  + a2( )             (9a) 

and     Q( ) = a1( ) 2 + b1( )  - a3( )                    (9b) 

with ao( ) = 2 h + r + hIv*,                                 (10a) 

                       a1( ) = vI*exp{- v } ,                                (10b) 

      a2( )= ( h + hIv*)( v( h  r) v hS*exp{- v }) + 

v h
2S*Iv* exp{- v }    ,

(10c)

    a3( ) = - exp{- v }(( h + hIv*) h  r) vI* + h h vS*Iv*) ,

                                                                                           (10d) 
          bo( ) = ( h + hIv*)exp{- v }( h v  r) +

v( h  r) – v hS*exp{- v },                   (10e) 

and

    b1( ) = ((2 h + r + hIv*) vI* + v hS*Iv*)exp{- v }  .
(10f)

The characteristic equations obtained by Ruan and Wei [6] 
and by Klan and Greenhalgh [4] for their models are of form 

3 + a 2 + b  + c = de-          ,                (11a) 

while the characteristic equation studied by Tam [7] has the 
form 

3 + a 2 + (b + ce- )  + d = fe-                    (11b) 
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The constants (a, b, c, d, f) in Eqns. (9) and (10) are defined in 
the respective references.  The important thing to note is that 
none of the constants depend on .
 To determine the conditions for Hopf bifurcation, we 
apply the technique used in refs. [4] and [6].  Substituting  = 
u + iv (where u and v are real numbers and may be functions 
of ) into Eqn. (7) and separating the real and imaginary parts, 
we get 

3u( )v( )2 - u( )3 - ao( )(u( )2 - v( )2) - bo( )u( ) - a2( ) = 
    [{a1( ) (u( )2 - v( )2) + b1( )u( ) - a3( )}cos(v( ) ) + 

       {2a1( )u( )v( ) + b1( )v( )}sin(v( ) )]e-u    
 (12) 

and

     v( )3 - 3u( )2v( )-2ao( )u( )v( ) - bo( )v( ) = 
            [{2a1( )u( )v( )+) + b1( )v( )}cos(v( ) ) –
 {a1( ) (u( )2 - v( )2) + b1( )u( ) - a3( )}sin(v( ) )]e-u    . 

                                                                                          (13) 
We now set c.  At this value of , u( c) = 0.  Denoting 
v( c) as v*,  Eqns (12) and (13) become  

               ao( c)v*2 - a2( c) =
b1( c)v*sin(v* c) - (a1( c)v*2 + a3( c))cos(v* c)     (14a) 

         v*3 - bo( c)v* =
    b1( c)v*cos(v* c) +(a1( c)v*2 + a3( c))sin(v* c)

(14b)

Squaring both equations and adding them together, we get 

          f( ) = 3 + c1( c
2 + c2( c c3( c                   (15) 

where  = v*2 and 

                       c1( c ao( c
2 - a1( c

2 - 2bo( c
2         ,         (16a) 

   c2( c  bo( c
2 - 2ao( c a2( c  - b1( c

2 - 2a1( c a3( c         
(16b)

and

c3( c a2( c
2 - a3( c

2                (16c) 

It should be noted that the coefficients c1( c , c2( c  and c3( c

are real.  The value of the critical point c is usually deter-
mined from the requirement that u( c  = 0.  In the method used 
here, the critical point is determined from the requirement that 
at least one root of Eqn. (15) be real and positive, otherwise v 
= o ( o being the root of the equation) would be imaginary.  
The existence of an imaginary part of the eigenvalues depends 
on whether equation has a positive real root.  We now state 
the conditions under which Eqn. (15) has a positive real root. 

LEMMA.  Let  and  be the two turning points of f( ),
i.e., the roots of  df( )/d  = 3 2 + 2c1( )  + c2( ) = 0 and 

 = f( )f( ).

i.    If c3( ) < 0, then f( ) has at least one positive real 
root. 
ii. If c3( )  0, c2( ) < 0 and  < 0, then f( ) has positive 
      simple roots. 
iii. If c3( )  0, the necessary conditions for f( )

to have no positive real roots are either 
a. c1( )2 < 3 c2( )
b.  c1( )2 = 3 c2( )
c.  c1( )2 - 3 c2( ) > 0 and  > 0 or 
d.  c1( )2 - 3 c2( ) > 0 and  < 0, c1( ) > 0 and c2( ) > 
0.

Proof of the above Lemma is given in the Appendix I. 
 Finally, we have to show that du( /d .  This is done 
by taking the total derivative of Eqns. (12) and (13) with 
respect to  and then setting  = c.  Doing this, we get 

c cdu(  = ) dv(  = )
B  + C  + D = 0

d d
  (17) 

and

c cdu(  = ) dv(  = )
-C  + B  + E = 0

d d
  (18) 

with 

  B = (2a1v*- cb1v*)sin(v* c *) +
    (b1+ *(a1v*2 +a3))cos(v* c *) - 3v*2 + bo  ,     (19a) 

                  C = (b1+ c(a1v*2 +a3))sin(v* c) –
    (2a1v*- cb1v*)cos(v* c) – 2aov*   ,     (19b) 

              D = ((a1v*2 +a3)v*+b1v*)sin(v* c) +
          (b1v*- a1’v*2 –a3’)cos(v* c) + a2’ – ao’v*2      (19c) 

and

 E = (a1’v*2 +a3’-b1v*2)sin(v* c) + ((a1v*2

                     +a3)v*+b1’v*)cos(v* c) + bo’v*      (19d) 

where the prime denotes a derivative with respect of  and ao,
a1, etc and which are then evaluated at c.  Applying 
Crammer’s rule to Eqns. (17) and (18), we get 

c
2 2

du( ) EC BD

d B C
             (20) 

where

         EC – BD = v*2{3v*4 + 2(ao
2 – a1

2 –2bo)v*2 +
                             (bo

2 – b1
2 –2(aoa2 + a1a3))}  .       (21) 

For du( c /d , EC – BD = v*2g(v*)  0 and so 

              g(v*) = 3v*4 + 2(ao
2 – a1

2 –2bo)v*2 + 
                              (bo

2 – b1
2 –2(aoa2 + a1a3))  0.          (22) 

Looking at the Lemma, we see that g(v*) is equal to df( )/d ,
evaluated at  = c.  The roots of df( )/d  = g( =v*) = 0 are 
the two turning points,  and  with  = c.   Since one of the 
requirements we have established for the existence of 
imaginary part of the eigenvalue is f( )f( ) < 0, v* can not be 
either ( c) or ( c), otherwise the product would be equal to 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:10, 2007

497

zero and not less than zero.  Thus, EC - BD  0 and so for the 
model described by Eqns. (3a) – (3c), we have du( c /d

 provided a critical point exists in the interval of allowed .
 All of the above discussion can be collected together to 
form a new theorem; 

Theorem 3. Concerning the endemic state of 
our system, Eqns. (3a) – (3b), if either 
i. c3( ) < 0 or 
ii. c2( ) < 0 and ( ) <0, for all  [0, lnRo)/ v),

then a Hopf bifurcation can arise as  passes through c where 
c is the critical time delay that satisfies conditions i, ii, and iii 

of Theorem 2. Theorem 3 differs from Theorem 2 by the 
additional requirement that  [0, (lnRo)/ v).  This condition 
insures that the endemic state is an allowed state, one where all 
the population densities are positive. 
  The fact that c2, c3 and  are functions of  leads to some 
new consequences.  To see why, we note that it is possible to 
find a value of  ( ) in the interval [ 0, (lnRo)/ v ) for which 
either c2( *) = 0 or  c3( *) = 0 or ( *) = 0.  One of these *
will divide the interval into two sub intervals, [0, *) and [ ,
(lnRo)/ v) in which different conditions can hold.  We can 
then ask, “what are the conditions that we can impose on the 
two regions which will affect the stability or instability of the 
endemic state?”  This question has been touched on by Xiao 
and Chen [5].  The answer is given by the following theorem. 

Theorem 4. Suppose the interval [0, (lnRo)/ v) is 
divided into two sub intervals by , [0, *) and [ ,
(lnRo)/ v).  If in the interval [0, *), only conditions 
i. or ii. (at least one positive real root of Eqn. (15) 
exist) of the Lemma is satisfied and in the interval  
[ , (lnRo)/ v), only condition iii. (there is no 
positive real root) is satisfied, then there is no 
critical value of  in the interval [0, (lnRo)/ v) at 
which a bifurcation occurs. 

The proof of this theorem is given in Appendix II. This 
theorem allows us to determine if a bifurcation is possible for 
a given set of parameter values. 

IV. NUMERICAL RESULTS AND CONCLUSIONS

IVa Realistic Parameter Values.
 Our bifurcation analysis begins with picking the values of 
the parameters in our model.  The endemic state will be a 
stable spiral node if the basic reproduction number R > 1 
(defined by Eqn. (6)).  Its actual value can be determined from 
observations.  If T2 is the observed doubling time during the 
initial stage of the epidemic, then R = {(ln T2)/ v+1}.  Based 
on the measured doubling times in the growth of infected 
people during the 1990-91 dengue fever endemic in Sao Paulo 
State, Marques et al., [10] determined the basic reproduction 
numbers for twelve cities in the state to be between 1.6 and 
2.5.  The values of the parameters picked should be such that 
if we substitute the values into the expression for the basic 
reproduction number, Eqn. (6), we should obtain a value of R 

of the same magnitude as the values observed in nature, i.e., in 
the range 1 < R < 10. 

   The values of some of the parameters in the model are 
dictated by reality, e.g. the death rates of the humans and 
mosquitoes, the duration of the infectious period in the 
human, etc.  As we have pointed out, a person infected with 
the dengue virus is only infectious during the viremia period, 
which lasts around three days.  The recovery rate should be 
equal to 1/3 per day and not the inverse of the length of the 
illness.  The values of the parameters determined by nature are 

h = 0.000039 per day, corresponding to a life expectancy of 
70 years; v = 0.059 per day, corresponding to a mosquito 
mean life of 17 days and b = 1.  While one full bite provides 
enough blood meal for three days, the eating habbits of the 
Aedes aegypti and Ae. albopictus mosquitoes are such that the 
meal can be interrupted by the slightest movement of the 
blood provider.  Therefore, it takes more than one bite per 
three days to get a full meal.  We have assumed it takes three 
bites to get a full meal, giving b = 1.  The values of the other 
parameters must be such their substitution into eqn. (5) yields 
a R in the desired range.   Since we will be treating  as the 
bifurcation parameter, we first look at the case of  = 0.  The 
basic reproduction number would now be given by eqn. (5d), 
Ro.  Using the following values of h, v and m,  0.5, 0.75 and 
0.1, respectively, we get a R = 1.91.  We have numerically 
solved Eqns. (3a) to (3c) using the values of the parameters 
given.  In Figure 1, we have plotted the trajectory of the 
solution in the Iv-I phase space and we indeed see a stable 
spiral node. 

  We will now determine whether the system can undergo a 
Hopf bifurcation to a limit cycle as  is increased.  As we just 
showed, the endemic state is stable when  = 0. Theorem 4
will be used to establish whether a critical value c (the point 
at which the stable endemic state loses its stability and 
trajectory becomes a limit cycle) exists in the interval [0, 
11.02).  The number 11.02 is just the value of (lnRo)/ v.  In 
Figure 2, we have plotted the values of c2( ), c3( ) and ( ) as 
a function of , using the same numerical values for the other 
parameters.   As we see from Figure 2, c3( )  0 for  [0, 
11.02), c2( ) < 0 for  [0, 11.014) and  0 for  [0, 
4.48) and [11.018, 11.02).  Some of the conclusions drawn 
from Figure 2a. could also be obtained analytically. If we 
evaluate c2( ), c3( ) and ( ) at  = (lnRo)/ v, we find 

           c2(  = (lnRo)/ v) = h
2 ( h + v + r)2 > 0   , 

                               c3(  = (lnRo)/ v) = 0 

and

4 2 4 2lnR (2 r) ( r) ( r)o h h v h v v 0
27v

These are the same results we obtained by looking at Figure 2.  
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Looking at Figure 2., we can identify  as being 4.48.  This 
will given us two sub intervals I1 = [0.4.48) and I2 = [4.48, 
11.02).  In I1, c2 < 0 and  < 0 while in I2, condition iii. of the

          1.a 

1.b

1.c
Fig. 1. Stable Spiral Trajectory.  Numeric-ally solving Eqns. (3a) - 
(3b) for  = 0 using the following set of parameter values { h = 0.5, 

v = 0.75, h = 0.000039, v= 0.059, r = 0.33, b = 1 and m = 0.1}.  
With this set of values, Ro = 1.91 which is within the range of 
biological acceptable values.  As we see, the trajectories in the Iv-S
and I-S phase plane spirals into the endemic equilibrium state.  The 
trajectory in the Iv-I also spirals in, although this is not clearly 
evident.

Lemma holds, i.e., no positive real root of eqn. (15) exist 
[Note that for  [4.48, 11.018),  > 0 and c2 < 0 and  for 
interval [0, (lnRo)/ v) when the above values of the parameters  
are used. The above conclusion is not surprising.  It has been 
pointed out that the limit cycles predicted by a mathematical 

[11.018, 11.02),  < 0 and c2 > 0].  Therefore by Theorem 4,
there is no critical delay time in the analysis of the underlying 

           2.a 

            2.b 

2.c
Fig.  2.  Dependence of c2( ), c3( ) and ( ) on the time delay 
using realistic values of the parameters. The values used are the 
same as those used to generate Figure 1, i.e., { h = 0.5, v = 0.75, h =
0.000039, v= 0.059, r = 0.33, b = 1 and m = 0.1}.  The incubation 
period  is varied between 0 and 11.02 which is the value of (ln 
1.91)/ v.  As is seen, c2( ) is negative for  < 11.01, c3( ) is positive 
over the entire range of   and ( ) is negative in the range [0, 4.48), 
positive in [4.48, 11. 018) and negative again in [11.018, 11.02).  The 
point * divides the entire interval into two sub intervals, I1 and I2.
In I1, the conditions for a positive real root of eqn. (12) while in I2,
the conditions for eqn. (12) to have no positive real roots hold. 

equation does not always occur when biologically relevant 
values are used.  In a seminal paper, Caughley [11] proposed a 
simple predator-prey model to describe an elephant-tree 
ecosystem.  He found that the elephants and trees could 
coexist in a stable limit cycle with a frequency of oscillation 
of approximately 270 years.  Duffy et al., [12] has questioned 
this hypothesis. They found that using realistic parameter 
values, limit cycles were highly unlikely.  Instead, their 
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parameter analysis showed that an equilibrium state was more 
likely.  In their paper, Khan and Greenhalgh [4] found that 
while a Hopf bifurcation was theoretically possible in their 
model, it would not occur under most realistic conditions.  For 
a bifurcation to occur, the disease that they would be 
vaccinating against would be one for which the chances of 
dying from the diseases are greater than that of recovering.  In 
addition, the fraction of newborns, who are effectively 
vaccinated at birth (immunity being passed from the mother) 
is just below its critical threshold value.  Such a disease 
probably does not exist. 

 IV.b Unrealistic Parameter Values. 
To determine whether it is possible that there are 

parameter values such that a Hopf bifurcation is possible, we 
have picked a set of parameter values ( h,, v, h , v ,b ,r ,m) 
for which the basic reproduction number would be unphysical, 
i.e., not between 1 and 3.  The set chosen (0.00001, 1.0, 
0.0000456, 0.058, 170 ,0.02, 0.2  gives a Ro = 57.67.  We 
have plotted on Figure 3, the values of c3( ) over the range  0 
<  < 81.09, the value of (lnRo)/ v.  While we have varied  up 
to 81.09,  should have been varied up to 17, the life time of 
the mosquito. 

Fig. 3. Dependence of c3( ) on the time delay  using parameter 
values which produce an unrealistic Ro.  The values of the parameters 
used are h = 0.00005, v = 1, h = 0.000046, v= 0.05, r = 0.02, b = 
170 and m = 0.2.  These values give a Ro = 57.67.  We have varied 
between 0 and 81.09 (ln 57.67)/ v).  As we see, c3( ) < 0 over the 
entire range of .

.If the mosquito dies before it becomes infectious, the 
transmission of the disease can not be maintained and the 
epidemic ceases.   As we see, c3( ) is negative over the entire 
range of .  According to Theorem 3, the critical delay c exist
in the interval {0, 81.09].   We then systematically varied 
(keeping the same values for the other parameters) starting 
from  = 0 and attempted to solve eqn.(15).  Doing this, we 
found *= 9.5.  To truly see whether the system bifurcates, 
we have solved Eqns. (3a) - (3b) for  = 9.0 < *.  The 
trajectory of the solution in the Iv-I phase space is plotted in 
Figure 4a.  As we see, the solution spirals into the equilibrium 
point (0.809, 0.142, 0.002).  Changing  to the critical value 
9.5, we get a stable limit cycle orbit (Figure 4b).  Increasing 
to beyond the critical value, i.e.,  = 10 > *, we get the 
trajectory shown in Figure 4c.  It is an outward spiral going 

away from an unstable equilibrium point.  As we have 
mentioned, the endemic states depend on the time delay.  At 
= 9.5, the equilibrium state is (0.805, 0.143, 0.002).  It 
becomes an unstable point located at (0.801, 0.144, 0.002) 
when  = 10. 

Fig. 4. Trajectories of (Iv(t), I(t)) for three values of .   Numerical 
solutions of Eqns. (3a) – (3b) using the parameter values used to 
obtain Figure 3.  The critical value of  was found to be * = 9.5.  
(4a) Stable spiral trajectory when  = 9.0 < * is used.  (4b) Limit 
cycle orbital is obtained when  is set to  (9.5).  (4c) Unstable 
spiral trajectory when  = 10.0  > *.

 The two most obvious unrealistic parameters are the biting 
rates of the mosquitoes and the recovery rate of the human.  
For the system to bifurcate, we need a mosquito that would 
bite 170 times a day.  Even though the Ae. Aegypti mosquito is 
a mosquito which will take a new bite if her meal is 
interrupted, 170 interruptions would be too much to expect.  A 
recovery rate of 0.02 per day requires the viremia stage last 
for at least fifty days.  This is not a characteristic of dengue 
infection.  In addition, the choice of parameters used  is 
unrealistic since they would also lead to an unrealistically 
large number of secondary infections. 
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IV. DISCUSSION

 The annual cycle seen in the incidence of dengue fever 
(dengue Hemorrhagic fever) in Bangkok, Thailand between 
1966 and 1998 by Hay et al.,[13] is not indicative of a limit 
cycle.  We have shown that the appearance of a limit cycle in 
the transmission cycle of dengue fever is highly unlikely.  The 
annual cycles arise from the seasonal variations, which occur 
in many of the parameters in the model.  Dowell [14] has 
classified the causes of these cycles into three groups: 
pathogen appearance and disappearance, environmental 
changes and host behavior changes.  Statistical significant 
correlation’s between epidemic cycles and cycles of 
temperature, humility, rains or winds have been found.  
Dowell has pointed out that the seasonal variations should be 
distinguished from the periodic behaviors, which would be 
intrinsic to the model.  Hay et al., also drew attention to this 
when they remarked that the focus of future research on 
mosquito borne diseases should be on combining the extrinsic 
(climate changes) determinants with the intrinsic 
determinants. 

ACKNOWLEDGEMENTS

 One of the authors (IMT) would like to thank the Thailand 
Research Fund (TRF) for financial support. 

REFERENCES

 [1] D.J. Gubler DJ, Dengue and Dengue Hemorrhagic Fever, Clin.
Mirobiol. Rev. 11 (1998) 480. 

[2] World Health Organization, Dengue hemorrhagic fever: diagnosis, 
treatment, prevention and control, 2nd Ed. (1997) WHO.. 

[3] A. Martin and S. Ruan, Predator-prey models with delay and prey 
harvesting. J. Math. Biol. 43 (2001) 247. 

[4] Q.L.A. Khan, D. Greenhalgh,  Hopf bifurcation in epidemic models 
with a time delay in vaccination. IMA J. Math. Appl. Med. Bio. 16 
(1998) 113. 

[5] Y. Xiao, L. Chen, Modeling and analysis of a predator-prey model 
with disease in prey.  Math. Biosci. 171 (2001) 59. 

[6]  S. Ruan, J. Wei,  On the zeros of a third degree exponential 
polynomial with application to a delay model for control of 
testosterone secretion. IMA J. Math. Appl.  Med. Biol.18 (2001) 41.

[7] J. Tam, Delay effect in a model for virus replication.  
IMA J. Math. Appl. Med. Biol. 16 (1999) 29. 

[8] J.E. Marsden, M. McCracken, The Hopf Bifurcation 
 and Its Application, (Springer-Verlag, Berlin(1976)). 
[9] L. Esteva, C. Vargas C, Analysis of a dengue disease transmission 

model. Math. BioSci. 150 (1998) 131. 
[10]  C.A. Marques, O.P. Forattini, E. Massad,.  The basic reproduction 

number for dengue fever in Sao Paulo state, Brazil: 1990-1991 
epidemic. Trans. Roy. Soc. Trop. Med Hyg. 88 (1994), 58. 

[11] G Caughley,  The elephant problem-an alternative hypothesis. East
Aft. Wildl. J. 14 (1976) 265. 

[12] K.J. Duffy, B.R. Page, J.H. Swart, V.B. Bajic, Realistic parameter 
assessment for a well known elephant-tree ecosystem model reveals 
that limit cycles are unlikely. Ecol. Mod. 121 (1999) 115. 

[13] SI Hay, MF Myers, DS Burke, DW Vaughn, T Endy, N Ananda, GD 
Shanks, RW Snow, DJ Rogers, Etiology of interepidemic periods of 
mosquito-born disease. PNAS 97 (2000) 9335. 

[14] S. Dowell,  Seasonal variation in host susceptibility and cycles of 
certain infectious diseases. Emer. Inf. Dis. 7 (2001) 369. 

[15] Y. Kuang, in: Delay differential equations with appli-cation to 
population dynamics, (Academic Press, New York, 1993) page 66. 

APPENDIX I

Poof of the Lemma: 
 To establish condition i., we first note that with c3( ) < 0, 
f( =0) would be negative.  At , f( ) would be positive.  
F( ) would have to cross the f( ) = 0 axis in the interval 
[0, ], thus showing that at least one of the roots is real and 
positive.  Condition ii. is more complicated to established.  If 
c2( ) < 0, one of the turning points (say  ) would be positive 
while the other (say ) would be negative.  The condition  < 
0 means that the sgn f( ) = - sgn f( ), i.e., if f( ) is in the 
upper half plane, then f( ) is in the lower half plane or vice 
versa .  The condition c3( ) > 0, means that f(0) would now be 
positive.  f( ) would remain positive and f(- ) would be 
negative.   Since  is the positive valued turning point, the 
signs of f(0) and f( ) requires that f( ) be in the lower half -
f( ) plane.  The f( ) would have to cross the f( ) = 0 axis at 
two points somewhere between 0 and  and between  and .

 Since the coefficients c1( , c2(  and c3(  are real 
numbers, the roots of f( ) = 0, the roots must be either all real 
or one real and a pair of complex conjugates.  If z1, z2 and  z3

are the three roots, then c3(  = - z1z2z3.  If  c1( )2 < 3 c2( ),
then there is only one real root.  Calling this root z1, we get –
z1{(Re z2)2 +(Im z2)2 }.  Since this is just c3( ) and c3( )  0, z1

must be negative.   The condition c1( )2 = 3 c2( ) leads to two 
of the roots being double roots leaving c3( ) = -z1z2

2.  For this 
to be greater or equal to zero, z1 must again be negative.   The 
conditions c1( )2 – 3 c2( ) > 0 and  > 0 means that two 
turning points exist and that both f( ) and f( ) lie in the same 
(upper or lower half) plane.  Now, however, f( ) does not 
cross the f( ) = 0 axis between  and , meaning that we do 
not have a positive real root.  The last condition for the non 
existence of a positive real root, c1( )2 – 3 c2( ) > 0 and  < 0, 
c1( ) > 0 and c2( ) > 0 is established by noting that the two 
turning points appear in the left half plane.  The crossing of 
f( ) with the zero axis occurs between 0 and -  at a , leading 
the root to be negative. 

APPENDIX II

Proof of Theorem 4. 
 We first introduce three delay times, i*, j* and k*
defined by c2( i*) = 0, c3( k*) = 0 and ( j*) = 0.  There may 
be more than one value of each of these critical delays since 
c2( i*) = 0, c3( k*) = 0 or ( j*) = 0 could have more than one 
root. * could be either i*, j* or k*.  Picking it to be 
max{ i*, j*, k*} or to be min{ i*, j*, k*}, we find that it 
can not be in the region satisfying any of the conditions of the 
Lemma (i.e. all the conditions are expressed as being less than, 
not equal to zero).  I1 and I2 are the intervals [0, *) and [ *,
(lnRo)/ v), respectively. The roots of Eqn. (8) can be viewed 
as a continuous function of the time delay , i.e.,  [See 
Lemma 5.1 in ref. 5 or Theorem 1.4 in the textbook of Yuang 
Kuang [15]]. At  = 0, we know that the endemic state is 
asymptotically stable (by Theorem 1). Therefore the 
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Re{ ( =0)} would be negative and   = 0  would lie on the 
left hand side (LHS) of the complex -plane.  As  moves 
from I1 to I2,  would enter into the right half plane (RHS) 
by crossing the imaginary axis.  Then the endemic state would 
be unstable and Re{ (  > *)} would be positive.  Now 
consider what will happen if the critical time delay c lies in I1.
Since the transversality condition holds in I1, a bifurcation will 
occur at c.  Therefore, as  passes c, the endemic state 
becomes unstable, i.e., Re{ c  I1} would be in the RHS 
of the complex -plane.  As  approaches *, ) should be 
approaching the boundary from the right 

d ( )c 0
d

  , 

it cannot cross the imaginary axis to get into the RHS since it 
is already in the RHS.  This inconsistency requires that there 
be no c in I1.  If, however, there were two critical time delays 
in I1, the present arguments would not apply.  Our theorem 
only applies if there is only one (or an odd number) critical 
point.

  To complete the proof, we consider what would happen if 
c  I2, notwithstanding the fact that the definition of I2

precludes the presence of c in the interval.  But first we look 
at the stability for  close to (lnRo)/ v.  For  I2,  is on 
the RHS of the complex -plane.  As  (lnRo)/ v, the basic 
reproduction number 

R 1o ve
Also in this limit, S*  1, I* 0 and Iv*  0.  The 
characteristic equiation, Eqn. (8) reduces to 

( 2 + ao  + bo) = 0  

where ao = 2 h + v + r and bo = h( h + v + r).  It is easily 
shown that the two non-zero roots of this equation are real and 
negative.  This means that as  (lnRo)/ v, ( ) must head 
towards the imaginary axis from the right.  We now place c

into I2.  As  passes c, ( ) should cross the imaginary axis 
and move into the LHS of the complex -plane.  As we have 
stated before, as  (lnRo)/ v, ( ) should be moving to the 
left to get close to the imaginary axis.  With c present in I2,

(  > c) is already on the LHS and there is no need to move 
towards the imaginary axis. This contradicts the original 
requirement.  To resolve this, we need c  I2.  Since c  I1

also, c  I1  I2 and no bifurcation is possible in the interval 
0, (lnRo)/ v) if the interval can be divided into two sub 

intervals, one in which conditions i. and ii. of the Lemma hold 
and the other in which condition iii. holds.  (Again we point 
out that the theorem and proof do not apply if there are two 
critical time delays in the interval I1.)


