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Abstract—Liquid-liquid extraction is a process using two im-

miscible liquids to extract compounds from one phase without high 
temperature requirement. Mostly, the technical implementation of 
this process is carried out in mixer-settlers or extraction columns. In 
real chemical processes, chemicals may have high viscosity and 
contain impurities. These impurities may change the settling behavior 
of the process without measurably changing the physical properties 
of the phases. In the current study, the settling behavior and the af-
fected parameters in a high-viscosity system were observed. Batch-
settling experiments were performed to experimentally quantify the 
settling behavior and the mixer-settler model of Henschke [1] was 
used to evaluate the behavior of the toluene + water system. The 
viscosity of the system was increased by adding polyethylene glycol 
4000 to the aqueous phase. NaCl and Na2SO4 were used to study the 
influence of electrolytes. The results from this study show that in-
creasing the viscosity of water has a higher influence on the settling 
behavior in comparison to the effects of the electrolytes. It can be 
seen from the experiments that at high salt concentrations, there was 
no effect on the settling behavior. 
 

Keywords—Coalescence; electrolytes; liquid-liquid separation; 
high viscosity; mixer- settler.  

I. INTRODUCTION 
IQUID-liquid extraction is one important separation 
process in chemical industries besides distillation. The 

principle of the separation has been studied by many research-
ers such as Jeelani and Hartland [2], Henschke et al. [3].  

The main step of liquid-liquid extraction is to contact both 
phases for mass transfer to occur. To enhance the mass trans-
fer, the interfacial surface area is increased by creating disper-
sion. The direction of the dispersion depends on the system 
itself, as well as the phase ratio of the two liquids. For further 
treatment the separation of the phases is necessary. To under-
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stand better and to investigate the settling behavior of the 
dispersion, batch settling experiments can be used. The 
processes during the batch settling according to Henschke [1] 
are shown in Fig. 1 schematically for the lighter phase being 
dispersed.  

When the mixing is stopped, the droplets start sedimenting 
to the top. At the boundary of the continuous phase the drop-
lets coalesce to the bulk of the dispersed phase. Plotting the 
boundary between dispersed bulk and continuous phase over 
time, the coalescence curve can be constructed. Accordingly, 
the sedimentation curve is derived from the height parting the 
droplet free continuous phase from the sedimentation zone, 
where droplets still sediment towards their bulk. If the sedi-
mentation is faster than the coalescence of the droplets a dense 
packed zone forms. In this zone drop-drop coalescence occurs, 
causing the drop diameter to increase. 

 

 
Fig. 1 Schematic representing the curves during a batch settling-

experiment according to Henschke [1] 
 
Henschke [1] and Henschke et al. [3] gave a complete over-

view of the description of drop sedimentation during the set-
tling experiment. Since the sedimentation curve almost 
represents a linear curve, the swarm sedimentation velocity of 
the drops Sv  can be determined. Henschke [1] applied the 
model of sedimentation for drop swarms which was developed 
by Pilhofer and Mewes [4]. This model is valid for Archi-
medes numbers  
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larger than 1 and volume fractions of the dispersed phase ( 0ε ) 
between 0.06 and 0.55. 

Then the sedimentation velocity of swarm drops sv  can be 
determined from: 

 
( )
32,0c

0cs
s

-1Re
dv

ρ
εη

=
                                

(2) 

 
Pilhofer and Mewes used the equation: 
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to calculate the Reynolds number for sedimentation, with the 
parameter: 
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which is derived from the Hadamard–Rybczynski factor:
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The parameter q used in (3) depends on the volume fraction 

of the dispersed phase ( 0ε ): 
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The friction coefficient 
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can be calculated with the help of the Reynolds number in an 
infinitely extended fluid. A model was developed by Ishii and 
Zuber [5] which is given as follows: 
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Henschke [1] developed an approach for the Reynolds 
number for sedimentation which is valid for Archimedes 
number between 1 and 2: 
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Moreover, Hartland et al. [2] developed the equation for 
predicting sedimentation and coalescence profiles in terms of 
the slope of the coalescence curve and the height of the dense 
packed zone. When the sedimentation is complete, sedimenta-
tion and height of dense packed zone can be described as in 
(11) to (13) respectively. 
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The height of dense packed zone between 0 < t < t’ can be 

described as: 
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For t ≥ t’, the height of the dense packed zone is: 
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The model of Hartland et al. [2] does not describe the coa-

lescence times iτ which depends on the drop deformation. 
However, Henschke et al. [3] gave a complete description of 
drop deformation and the coalescence parameter. The success-
ful model from Henschke [1] and Henschke et al. [3] has been 
used in the Settler program developed by AVT-TVT, RWTH 
Aachen University, Germany and CEET, Graz University of 
Technology, Austria. This program allows users to design 
horizontal and vertical settlers for clear systems based on a 
simple settling experiment on laboratory scale.  

In an industrial scale, impurities such as electrolytes even in 
trace amounts may have a significant impact on process opera-
tion and process efficiency. These impurities may change the 
settling behaviour although their effect on the phase properties 
cannot be detected. Until now, the design method has mostly 
been validated for simple systems. For technically more rele-
vant systems e.g. with high viscosity which is often encoun-
tered in the industries or impurities, systematic validation is 
still required. Thus in this work, the influence of impurities 
such as electrolytes and high viscosity has been investigated.  

II.  MATERIALS AND METHODS 

A. Materials 
Polyethylene glycol with a specified mean molecular 

weight of 4000 g/mol was obtained from Sasol Germany 
GmbH. The toluene used for the experiments was a toluene 
distillation from TVT-AVT, RWTH Aachen University, Ger-
many. NaCl (analytical grade) and Na2SO4 (analytical grade) 
were obtained from Merck GmbH Germany and Sigma-
Aldrich, respectively.  
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further increase in the settling time. For salt concentrations 
above a certain limit of 200 mmol/L Na2SO4 and 100 mmol/L 
NaCl a further increase of the salt concentration does not af-
fect the settling time any further. 
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Fig. 5 Influence of salt on the settling time 

 
In the case of the volume phase ratio (o/a) of 2/1, it was ob-

served that sodium sulfate has a higher effect than sodium 
chloride. The settling time decreases with increasing concen-
tration of sodium chloride and it becomes nearly constant for 
salt concentration above  200 mmol/L. For sodium sulfate, the 
settling time is rapidly declining when 50 mmol/L of the salt 
were added. For the Na2SO4 concentrations above 
100 mmol/L only a slight effect on the settling time could be 
observed. 

These results agree with the investigated behavior for the 
MIBK + water system, investigated by Effertz [6]. Additional-
ly, the result of the settling time as a function of salt concen-
tration for the system 1-butanol + water at the volume phase 
ratio (o/a) of 5/2 varied NaBr and NaCl concentrations from 
10-3 to 103 mol/m3 showed that a little amount of salt has a 
strong influence on settling behavior. Increasing salt concen-
tration from 10-3 to 1 mol/m3 increases settling time by several 
decades and subsequently further increasing salt concentration 
from 10 to 100 mol/m3 results to reduce settling time down to 
that of salt-free systems [8].  

Furthermore, Soika and Pfennig [9] also studied the volume 
phase ratio (o/a) of 2/5, their results showed that the settling 
time of this system was different when different salts were 
added and by increasing salt concentration, settling time de-
creased.  

C. Influence of Viscosity 
In the experiments on varying viscosity, the concentration 

of NaCl and Na2SO4 were fixed at 100 mmol/L of water. Both 
volume phase ratios (o/a) of 1/2 and 2/1 were studied. The 
viscosity of the aqueous phase for each system is shown in 
Table I.  

 
 
 
 

TABLE I 
THE VISCOSITY OF AQUEOUS PHASE FOR EACH SYSTEM 

cNaCl
a cNa2SO4

a cPEG4000
b Viscosityc 

- 100 5 1.99 
- 100 20 9.16
- 100 35 36.84 
- 100 50 120.03 

100 - 5 1.63 
100 - 20 7.76 
100 - 35 27.21 
100 - 50 106.13 

aConcentration is in unit mmol/L of aqueous phase, bconcentration is in unit 
%wt. of aqueous phase, cviscosity is in unit mPa·s 

 
The coalescence and sedimentation curve for the volume 

phase ratio (o/a) of 1/2 are shown in Fig. 6. The results from 
both salts show the same behavior where the organic phase 
(toluene) is dispersed in the aqueous phase (water + PEG4000 
+ salt) and an increase of the viscosity leads to higher settling 
times. This behavior can be explained by previous equations. 
Especially the Archimedes number (1) depends on the physi-
cal properties of the system, therefore by increasing the con-
centration of PEG4000 the physical properties and conse-
quently the settling time of the system change.  

The comparison of the results of NaCl and Na2SO4 at 35% 
and 50% PEG4000 by weight, the settling behavior of both 
salts is the same and the settling times were similar. Therefore, 
it can be concluded that NaCl and Na2SO4 have a small effect 
on the settling time for systems of higher viscosity. 

Fig. 7 shows the influence of viscosity on the settling curve 
of the toluene-water system for both investigated salts for the 
volume phase ratio (o/a) of 2/1. The results from both cases 
show a similar effect, that the settling time increases when 
5%wt. and 20%wt. PEG4000 are added to system. The veloci-
ty of the droplets decreases as the viscosity increases (see Eq. 
2), therefore a longer settling time is required. In the case of 
35%wt. and 50%wt. PEG4000, the organic phase changed to 
be the continuous phase whereas the aqueous phase became 
the disperse phase. Moreover, the addition of 35%wt. and 
50%wt. PEG4000 in aqueous phase caused a decrease in the 
settling time. 
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1/2 at different concentrations of PEG4000 and 100 mmol/L NaCl 

and Na2SO4 
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Fig. 7 Comparison coalescence and sedimentation curve of o/a = 2/1 
at different concentrations of PEG4000 and 100 mmol/L NaCl and 

Na2SO4 
 

In addition, it can be concluded from the results that the 
electrolytes had essentially no effect on the settling time in 
viscous systems. 

IV. CONCLUSION 
The results show that the volume phase ratio (between or-

ganic and aqueous phase) and the system’s viscosity affect the 
settling behavior and the settling time of the system toluene + 
water. The settling time depends on the investigated system. 
Moreover, the influence of electrolytes on settling behavior 
was only little depended on the type of salt since both salts 
showed similar behavior in the toluene + water system. How-
ever, a major criterion is the investigated system. Lastly, the 
investigation of the influence of viscosity on the settling time 
showed that increasing the viscosity results in the increase of 
the settling time. In addition, 100 mmol/L of both salts had no 
influence on settling time and settling behavior in the viscous 
system.  
 
Greek letters 
ε    volume fraction of dispersed phase 
η    viscosity, Pa·s 
ξ    defined by (2) 
ρ    density, kg/m3 
σ    interfacial tension, N/m 
τ    coalescence time, s 
Δ    difference 
Nomenclature 
Ar    Archimedes number 
cw    friction coefficient  
d32  Sauter diameter, m 
h    height, m 
H    Hamaker coefficient, N·m 
KHR   Hadamard–Rybczynski factor 
q    defined by (4) and (5) 
r    radius, m 
Re   Reynolds number  
t    time, s 
v    velocity, m/s 

Subscripts 
0    initial value (after mixing is stopped) 
∞    in infinite extended fluid 
aq   aqueous phase 
c    continuous phase 
d    dispersed phase 
E   end 
i    at the interface 
p    dense-packed zone 
s    sedimentation 
vdW  van der Waals 
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