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Abstract—An accurate procedure to determine free vibrations of 

beams and plates is presented. 
The natural frequencies are exact solutions of governing vibration 

equations witch load to a nonlinear homogeny system. 
The bilinear and linear structures considered simulate a bridge. 

The dynamic behavior of this one is analyzed by using the theory of 
the orthotropic plate simply supported on two sides and free on the 
two others.  The plate can be excited by a convoy of constant or 
harmonic loads. The determination of the dynamic response of the 
structures considered requires knowledge of the free frequencies and 
the shape modes of vibrations. Our work is in this context. Indeed, 
we are interested to develop a self-consistent calculation of the Eigen 
frequencies. 

The formulation is based on the determination of the solution of 
the differential equations of vibrations. The boundary conditions 
corresponding to the shape modes permit to lead to a homogeneous 
system. Determination of the noncommonplace solutions of this 
system led to a nonlinear problem in Eigen frequencies. 

We thus, develop a computer code for the determination of the 
eigenvalues. It is based on a method of bisection with interpolation 
whose precision reaches 10 -12. Moreover, to determine the 
corresponding modes, the calculation algorithm that we develop uses 
the method of Gauss with a partial optimization of the "pivots" 
combined with an inverse power procedure.   The Eigen frequencies 
of a plate simply supported along two opposite sides while 
considering the two other free sides are thus analyzed.  The results 
could be generalized with the case of a beam by regarding it as a 
plate with low width. 

We give, in this paper, some examples of treated cases. The 
comparison with results presented in the literature is completely 
satisfactory. 

 
Keywords—Free frequencies, beams, rectangular plates. 

I. INTRODUCTION 
ANY researchers have studied the vibrations of plates 
and their displacement because of its importance in 

engineering applications. Indeed, rectangular plates are 
commonly used as structural components in many branches of 
modern technology namely mechanical, aerospace, electronic, 
optical, marine and structural engineering. So, there is a 
particular need for access to highly accurate eigenvalues for 
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plates and beams. For example, Wu and Dai [1] used the 
transfer matrix method to determine the natural frequencies 
and mode shapes of a multi-span of beams. They applied the 
technique of mode superposition to study the dynamic 
performances of the considered beam subjected to moving 
loads. Moussu and Nivoiti [2] have determined an elastic 
constant of orthotropic plates by modal analysis. Later, D.J 
Gorman [3] uses a computed method to determine Eigen 
values for a completely free orthotropic plate by using a 
superposition method. He also [4], use the superposition 
method to obtain accurate analytical type solutions for the free 
in-plane vibration of rectangular plates with uniform, 
symmetrically distributed elastic edge supports acting normal 
to the boundaries. 

In all this above work, the authors have determined initially 
the free frequencies in order to predict the dynamic behaviour 
of the studied structures. 

     In addition, an excellent reference source concerning 
vibration of such plates may be found in the work of Leissa 
[5, 6]. We can find exact characteristic equations for 
rectangular thin plates having two opposite sides simply 
supported. However, the analysis of thick plates has been 
presented by Lim and all [7]. 

In this paper, this dynamic behaviour is analysed using the 
orthotropic plate theory and modal superposition. So, we 
present an accurate method to calculate the free vibrations. 
The strategy presented is based on the bisection method with 
interpolation to determine the eigenfrequencies. However, to 
determine the corresponding modes, we use a Gauss method.  

We present numerical examples for a beam model and a 
plate one. This method can also be applied to the case of a 
bridge under moving loads considered as an orthotropic 
rectangular plate.  

II. FORMULATION OF THE PROBLEM 
A schematic of a two dimensional plate is shown in Fig. 1. 

It’s a rectangular plate with its left and right edges simply 
supported and the other two opposite edges free. If, it’s also 
solicited by an external load F, the governing equations of 
motion of this orthotropic plate can be written, according to 
Huffington and Hoppman [8] as follows: 
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XD , YD , XYD : flexural rigidities of the plate in the x , y and    

xy direction .  
KD    : twisting rigidity of the plate.  
XYG    : Shear modulus. 

ρ      : mass density of plate material. 
 h     : thickness of the plate . 
w(x,y,t) : displacement of plate in the z direction. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Considered plate 
 

Let us note that the side effects (shearing and rotational 
inertia) are neglected. The resolution of the differential 
equation governing the movement is obtained by using the 
modal superposition method and the integral of convolution, 
by the separation of the temporal and space variables [9]. 
Thus, the dynamic response to the point (x,y) of the plate and 
at the moment t is expressed in the form of series according to 
the following expression [ 10 ]: 
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Where:   ( )xyYyxU mnmnm .sin).(),( ,, θ=       ,        ).sin()( ,, ttq nmnm ω=           
and                    a

mm πθ .=  

 
 U m , n(x,y)  is the mode shape, ωm,n  is the natural frequency 

witch correspond to the mth mode in the x direction and the nth 
mode in the y one. 

Substituting equation (03) in equation (01), we obtain:     
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Moreover, we take into account the boundary conditions on 
the edges of the structure at y=0 and y=b. Those stipulate that 
the shearing action, the bending moment as well as the torque 
one are null at these ends. Then, we can write the system of 
equations (5): 
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The solutions of the equation (4) depend on the properties 
of the plate considered. We can obtain the three following 
cases according to the value of the rigidity coefficient of the 
plate: 
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The parameters rimn  depend on the physical properties of 
the plate considered and the modes of vibrations retained [ 9]. 
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By introducing the form of the shape modes in the four 

boundary conditions and by considering the different cases, 
we obtain three homogeneous linear systems:   [ M].[X ] = 0. 

X  is a vector such as: [ X ] = [ X 1mn   X 2mn   X 3mn    X 4mn  ] 
T and M is a matrix wich coefficients m ij  depend on the 
boundary conditions.  Thus, in each of the three cases defined 
previously according to the coefficient of rigidity, we replace 
the value of Y mn (y) by the suitable form (06, 07 or 08) in the 
equations (05). We obtain the value of the matrix M in the 
three cases considered 1  [ 11 ]: 

1. Case of : [ ]1  DDx <  

 
1to simplify the writing of the matrices, we will note   θ the value  θ m, and 

ri  the values rimn  
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 To obtain noncommonplace solutions, it is necessary that 

the determinant of the system will be null. Writing this 
determinant permits us to lead to the frequencies equation. 
Knowing that the parameters rimn  are not independent 
variables but are fonction of  the pulsation  ω (equations 09), 
the resolution of the frequencies equation is not easy and then 
requires an adequate data-processing treatment. 

We seek to determine the pulsations  ω checking this 
equation. For that, we develop a code which calculates the 
eigenvalues of the frequencies equation. It is based on a 
bissection method with interpolation wich precision reaches 
10 -12.   

This method permits to record the eigenvalues of the 
frequencies corresponding to the different mode of vibration. 
For each index m, we find an infinity of solutions m=1…,  ∞ 

(Fig.2). Each solution is then located by a double index ωrs.   
A zoom of Fig. 2 shows the values of the Eigen frequencies 

determined by dichotomy.   
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Fig. 2 Evaluation of the free frequencies 

 

III. RESULTS AND DISCUSSIONS 
We consider in this study a structure with a 3.678m long 

and 0.1m x 0.025 m uniform cross section. The material 
Young’s modulus is 2.1x109 N/m2. The mass density is 2300 
Kg/m3 and the Poisson ratio is 0.3. 

The modes are defined by a double index m and n relating 
to x and y directions. The Fig. 4 indicates the natural 
frequency for two widths of the plate. These frequencies 
correspond to mode shape mainly in the y direction. The 
results are favourably compared with existing ones [9]. They 
can easily be applied to the case of a beam, by considering a 
very mean width of the plate. For simplicity of representation, 
we illustrate on the figure only the frequencies corresponding 
to the modes of inflection. The comparison is completely 
satisfactory.  

Zoom 
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We can easily observe the influence of the width of the 

plate on the natural frequencies, parameterised by the mode, 
on Fig. 5. For a given mode (Fig. 6), this one presents a 
monotonous growth while passing from a beam to a plate. 

In addition, Fig. 7, presents, the principal modes of 
vibration obtained in the case of a beam and Fig. 8 in the case 
of a plate one. The mode (1,1) is that of lower own pulsation .  

 
a) mode (1,1) 

              
b) mode (2,1) 
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c) mode (3,1) 

 
Fig. 7 a-b-c  Mode shape , case of beam with 0.1m width 
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b) mode (2,1) 
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Fig. 8 a-b-c Mode shape, case of plate with 1.8m width 

 

IV. CONCLUSION 
A computational procedure to calculate natural frequency is 

presented. It’s as well applicable to the case of the beams as 
that of the plates. The frequencies obtained are proportional to 
the number of mode considered. The general vibratory 
movement of the structure considered is the sum of all the 
modal movements. 

The results which we present are compared with those 
present in the specialized literature and this comparison is 
completely satisfactory. 

The calculation thereafter of the integral of Duhamel, in 
order to determine the component of variable displacement 
with time, will in the future permitt to determine the total 
displacement of the structure. As an application of this work, 
we will consider a study of moving loads on a bridge deck 
modelled as an orthotropic rectangular plate. 
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