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A Hybridization of Constructive Beam Search with
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Abstract—The Far From Most Strings Problem (FFMSP) is to
obtain a string which is far from as many as possible of a given set of
strings. All the input and the output strings are of the same length, and
two strings are said to be far if their hamming distance is greater than
or equal to a given positive integer. FFMSP belongs to the class of
sequences consensus problems which have applications in molecular
biology. The problem is NP-hard; it does not admit a constant-ratio
approximation either, unless P = NP . Therefore, in addition to
exact and approximate algorithms, (meta)heuristic algorithms have
been proposed for the problem in recent years. On the other hand,
in the recent years, hybrid algorithms have been proposed and
successfully used for many hard problems in a variety of domains.
In this paper, a new metaheuristic algorithm, called Constructive
Beam and Local Search (CBLS), is investigated for the problem,
which is a hybridization of constructive beam search and local search
algorithms. More specifically, the proposed algorithm consists of two
phases, the first phase is to obtain several candidate solutions via
the constructive beam search and the second phase is to apply local
search to the candidate solutions obtained by the first phase. The best
solution found is returned as the final solution to the problem. The
proposed algorithm is also similar to memetic algorithms in the sense
that both use local search to further improve individual solutions.
The CBLS algorithm is compared with the most recent published
algorithm for the problem, GRASP, with significantly positive results;
the improvement is by order of magnitudes in most cases.

Keywords—Bioinformatics, Far From Most Strings Problem, Hy-
brid metaheuristics, Matheuristics, Sequences consensus problems.

I. INTRODUCTION

THE Far From Most Strings Problem (FFMSP) is a
combinatorial optimization problem which receives, as

its inputs, a set S of strings of the same length m over an
alphabet and a positive integer d not greater than m and asks
for a string of length m over the alphabet which is far from
as many strings in S as possible [1], [2], [3], [4], [5]. In
other words, it is to maximize the number of input strings,
i.e. those in S, which are far from the output string. The
criterion for two strings to be far (from each other) is to
have their hamming distance equal to or greater than the input
integer d. FFMSP belongs to a more general class of problems
called sequences consensus, which includes such problems as
finding similar regions in a given set of DNA, RNA, or protein
sequences and have applications in Bioinformatics and coding
theory [6], [7], [8], [2], [9], [10]. Among other sequences
consensus problems are Closest String Problem (CSP) [11],
[12], [13], Closest SubString Problem (CSSP) [14], [15], [16],
[17], [18], Farthest String Problem (FSP) [19], [4], Farthest
SubString Problem (FSSP) [2], [20], Close to Most Strings
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Problem (CMSP) [3], [20], Distinguishing SubString Selection
problem (DSSS) [21], and Distinguishing String Selection
Problem (DSSP) [3], [20], [22], which are also known as string
selection and comparison problems.

FFMSP has been proved to be NP-hard [1], [3]. Therefore,
no PTIME algorithm is (currently) known to solve every
instance of FFMSP to optimality [23]. It does not admit a
constant-ratio approximation either, unless P = NP [1], [3].

In the recent years, heuristic and metaheuristic algorithms
for FFMSP have been proposed. Meneses et al. devised a
heuristic algorithm which consists of a greedy constructive
phase followed by an iterative improvement, a greedy per-
turbative, phase [4]. Festa proposed a Greedy Randomized
Adaptive Search Procedure (GRASP) and reported improved
results over the algorithm suggested by Menses et al. [5].
The GRASP metaheuristic was originally devised by Feo and
Resende [24], [25]. It involves the execution of a number
of iterations, where each iteration consists of a constructive
phase followed by a local search phase which are, respectively,
similar to, but not quite the same as, the constructive and
iterated improvement phases in the Meneses et al.’s algorithm.
The construction phase in (each iteration of) GRASP builds a
candidate solution by specifying the values of the underlying
variables one at a time. The variable-value selection criterion
is based on a heuristic function; but not always the best
choice is made. Instead, a restricted candidate list (RCL)
of options, based on the underlying heuristic function, is
developed from which a candidate is randomly selected. The
local search phase receives the candidate solution made by
the construction phase and tries to improve it, e.g. through
an iterated improvement algorithm such as hill climbing. Two
main parameters in a typical GRASP are RCL-size and itr-
num. The former determines the number of candidates in RCL
and can be adjusted to make an appropriate balance between
greediness and randomness in the construction phase. The
latter specifies the (maximum) number of iterations GRASP
executes its pair of construction and local search phases. The
best candidate solution, based on the underlying problem’s
objective function, found over all the iterations is returned
as the final output of GRASP. For detail on GRASP and its
variants, the reader may refer to the annotated bibliography
by Festa et al. [26], [27].

In this paper, a new metaheuristic algorithm, called Con-
structive Beam and Local Search (CBLS), is investigated for
the problem. As its name stands, the proposed algorithm is
a hybridization of constructive beam search and local search
algorithms. More specifically, the CBLS algorithm consists of
two phases of constructive and local search procedures. In the
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constructive phase, several candidate solutions are obtained
using the constructive beam search algorithm, which are then
used as the starting points in the search space for further im-
provement via local search. The best solution found is returned
as the final solution to the problem. The proposed algorithm
is also similar to memetic algorithms in the sense that both
use local search to further improve individual solutions [28].
The CBLS algorithm uses a novel heuristic function proposed
by the author in [29]. However, it extends the use of the
heuristic function to the constructive beam search phase as
well. In other words, the heuristic function is used not only to
evaluate complete solutions for the purpose of local search
but also to evaluate and compare partial solutions for the
purpose of constructive beam search. The CBLS algorithm is
compared with the state-of-the-art algorithm published in the
literature which is a GRASP algorithm by Festa [5], over not
only random but also real data. The experimental results show
that the proposed algorithm outperforms the state-of-the-art,
in most of the cases by orders of magnitude.

Although the ideas proposed in this paper are general
and not restricted to a particular alphabet, we develop the
theoretical and experimental results as in [4], [5], based on
the four-letter alphabet of Σ = {A,T,C,G}. The letters A, T,
C, and G stand, respectively, for Adenine, Thymine, Cytosine,
and Guanine, which are four different bases in DNA strands.
Similar results can be obtained, by possibly minor changes,
based on other alphabets.

The rest of the paper is organized as follows. The next
section provides problem definition and basic notations used in
the paper. In Section 3, the estimated Gain-per-Cost heuristic
is described. A triangle, called Δ-triangle, which is used to
determine the estimated Gain-per-Cost heuristic for candidate
solutions is explained in Section 4. Section 5 proposes the
hybrid heuristic function h

f,G̃pC
(.). These are mainly from

the author’s previous research in [29]. The CBLS algorithm
is presented in Section 6. Experimental results are reported in
Section 7, and Section 8 concludes the paper.

II. PRELIMINARIES

Let s be a string of length m. We use sk, where k is an
integer such that 1 ≤ k ≤ m, to denote the kth character of
s. Let s1 and s2 be two strings of the same length m. The
hamming distance between s1 and s2 is denoted by dH(s1, s2)
and defined as

∑m
k=1

δ(sk
1 , s

k
2), where:

δ(sk
1 , s

k
2) =

{
1 if sk

1 �= sk
2

0 otherwise
(1)

The Far From Most Strings Problem is defined as follows:
FFMSP:
Instance: a pair < S, d >, where S is a set of strings
s1, s2, . . . , sn, n > 1, all of the same length m over an
alphabet Σ and d is an integer, called distance threshold, such
that 1 ≤ d ≤ m.
Output: a string X of length m > 0 over the alphabet Σ.
Maximize: the number of strings sk ∈ S such that
dH(X, sk) ≥ d.

In the rest of the paper, we consistently use the following
notations. We use the pair < S, d > to denote the underlying
instance of FFMSP. We assume that S = {s1, s2, . . . , sn}; that
is, the input strings are denoted by the small letter s indexed
from 1 to n, where n > 1 is the number of the input strings.
Note that, since S is a set, the input strings are all assumed to
be distinct. We use (possibly indexed) X to denote a candidate
solution. We use m to denote the length of the strings and
assume that m > 0. We use Σ as the alphabet of the characters
used in any input string and assume |Σ| > 1. The objective
function for FFMSP is denoted by f(.). That is, f(X) is the
number of strings in S whose distance from X is at least d,
where X is a candidate solution. The value f(X) is called
the objective value for the solution X . For simplicity, we use
dj(X) to denote dH(X, sj), j = 1, 2, . . . , n. That is, dj(X) is
the hamming distance between sj and X . We say that a string
sj is far from X if dj(X) ≥ d; it is otherwise near X . The
set of strings in S which are near X is denoted by Near(X).
The cost of a string sj is defined as cj(X) = d− dj(X). We
further define

fj(X) =

{
1 ,if dj(X) ≥ d;
0 ,otherwise

(2)

Therefore,

f(X) =
n∑

j=1

fj(X) (3)

Example 1: Let < S, 3 > be an instance of FFMSP,
where S = {s1, s2, s3}, s1 = "GATTG", s2 = "GATCA",
s3 = "CTCGA", and consider the candidate solution X =
"GATTC". Then, n = 3, m = 5, d = 3, d1(X) = 1,
d2(X) = 2, d3(X) = 5, c1(X) = 2, c2(X) = 1, and
c3(X) = −2. The input strings s1 and s2 are near X ,
whereas s3 is far from it. Therefore, f1(X) = f2(X) = 0
but f3(X) = 1. That is, Near(X) = {s1, s2}.

By a walk of length L, or for short an L-walk, L ∈ N, 1 ≤
L ≤ m, where N is the set of natural numbers, from a point
Xold in the search space we mean to alter the values of exactly
L distinct characters of Xold, resulting in a new point Xnew in
the search space such that dH(Xold, Xnew) = L. We call L the
length and the points Xold and Xnew, respectively, the source
and the destination of the walk. We extend the definition to
the case L = 0, for no-walk, in which case Xold = Xnew.
An L-walk is called random if each point Xj in the search
space such that dH(Xold, Xj) = L is equally-likely to be its
destination, where Xold is the source of the walk.

Let Xold and Xnew be, respectively, the source and the
destination of an L-walk and sj be a string in S. We define
Δj for this L-walk as dj(Xnew) − dj(Xold). If the walk is
random, Δj will be a random variable. We use PrL(Δj = k),
k ∈ Z, where Z is the set of proper numbers, to denote the
probability for the random variable Δj to take the value k as
the result of a random L-walk. Similarly, we use, for example,
PrL(Δj ≤ k), k ∈ Z, to denote the probability for the random
variable Δj to take any value less than or equal to the value k
as the result of a random L-walk. We still keep Pr(.)- without
index- to denote the conventional probability function and also
Ex(.) to denote the statistical expectation function.
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III. THE ESTIMATED GAIN PER COST HEURISTIC

In this section, the Estimated Gain per Cost (G̃pC) heuristic
evaluation function is proposed. Some preliminaries are first
required.

Definition 1: Let Xold be a candidate solution and sj be a
string in Near(Xold). By a fix for sj from Xold, we mean an
L-walk whose source and destination are, respectively, Xold

and Xnew such that dj(Xnew) = d. We assume that the walk
is designed independently from the other strings in S, i.e. it
can be treated as a random L-walk with respect to such strings.
Informally-speaking, a fix for a string sj from the current
candidate solution is to alter exactly L characters of the current
candidate solution, where L = d − dj , in such a way that sj

is far from the resulting candidate solution Xnew in order
to contribute 1 unit to the (new) objective value f(Xnew).
However, since the walk is random with respect to the other
strings, f(Xnew) is still a random variable, for n > 1.

Definition 2: Let Xold be a candidate solution, and sj be
a string in Near(Xold). The potential gain, or for short the
gain, of sj with respect to Xold is denoted by gj(Xold) and
defined as the expected value of f(Xnew), where Xnew is the
destination of a fix for sj from Xold.

The next theorem shows that the gain of a string sj as
defined above can be calculated if the probability distribution
for Δj , with respect to the underlying L-walk, is known.

Theorem 1: Let Xold be a candidate solution and sj be a
string in Near(Xold). Then:

gj(Xold) = 1 +
n∑

k=1
k �=j

PrL(Δk ≥ ck(Xold)) (4)

where L = cj(Xold)
To prove this we first provide a lemma.

Lemma 1: Let Xold be a candidate solution and sk be a
string in S. Then the probability for the string sk to be far
from the destination Xnew of a random L-walk from Xold is
PrL(Δk ≥ ck(Xold).

Proof: The probability for the string sk to be far from
Xnew is:

Pr(fk(Xnew) = 1)= Pr(dk(Xnew) ≥ d)

= PrL(Δk ≥ d− dk(Xold))

= PrL(Δk ≥ ck(Xold))r (5)

We now prove the theorem.
Proof:

gj(Xold) = Ex(f(Xnew))

= Ex(

n∑
k=1

fk(Xnew))

= Ex(fj(Xnew) +
n∑

k=1
k �=j

fk(Xnew))

= Ex(1 +
n∑

k=1
k �=j

fk(Xnew))

= 1 + Ex(

n∑
k=1
k �=j

fk(Xnew))

= 1 +
n∑

k=1
k �=j

Ex(fk(Xnew))

= 1 +
n∑

k=1
k �=j

Pr(fk(Xnew) = 1)

= 1 +
n∑

k=1
k �=j

Prcj(Xold)(Δk ≥ ck(Xold))

Definition 3: Let X be a candidate solution and sj be a
string in Near(X). The gain-per-cost of sj , with respect to
X , is defined as the ration of its gain gj(X) to its cost cj(X).
The Gain-per-Cost of X is denoted by GpC(X) and defined
as the average of the gain per costs of the strings in Near(X).
That is:

GpC(X) =
1

|Near(X)|
∑

sj∈Near(X)

gj(X)

cj(X)
(6)

where |Near(X)| �= 0; it is defined as to be zero if
|Near(X)| = 0.

Given a candidate solution X , the gain-per-cost of a string
sj in Near(X), as defined above, is a measure which is
directly proportional to its gain but is conversely-proportional
to its cost. Informally-speaking, the higher the expected value
of the number of strings far from the destination of a fix for
sj is, the higher its gain-per-cost will be. On the other hand,
the lower its cost is, the higher its gain-per-cost will be. The
Gain-per-Cost measure of X is the average of such gain-per-
cost values, over strings in Near(X). Base on this definition,
we propose the Gain-per-Cost of a candidate solution X as
a heuristic to indicate the closeness of X to better candidate
solutions, i.e. those with higher objective values.

The problem, however, with the Gain-per-Cost of candidate
solutions as defined by Definition 3 is that, for each possible
length of the random walks, it requires the probability, or
equivalently the cumulative, distribution function for Δk, as
stated by Theorem 1, which can be different for different
strings sk in S. In this paper, we do not intend to determine
these probability distribution functions for every string sk ∈ S.
Instead, we estimate them with the probability distribution
function for a random variable Δ (with no index) which
corresponds to a random string as a representative for the
strings in S. The variable Δ, with respect to a random L-
walk, is then defined as dH(s,Xnew) − dH(s,Xold), where
X is a random string, as opposed to one in S, and Xold

and Xnew are the source and destination of the random
L-walk, respectively. Of course, this estimation can loose
information. Nevertheless, as the experimental results indicate,
the use of the heuristic evaluation function based on this
approximation still improves state-of-the-art considerably. Our
proposed estimated Gain-per-Cost (G̃pC) heuristic evaluation
function is then the following (unless |Near(X)| = 0 in which
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Xold Xmid Xnew

• • •
(L−1)−Walk︷ ︸︸ ︷(1)−Walk︷︸︸︷

�

Xnew = "CTGAT"

Xmid = "ATGAT"

Xold = "ACGTC"

Fig. 1. An L-walk, L > 0, may be considered as an (L−1)-walk followed
by a 1-walk. Sample source and destination points for L = 4 are displayed
at the right.

case G̃pC(X) is defined as 0):

G̃pC(X) =
1

|Near(X)|
∑

sj∈Near(X)

g̃j(X)

cj(X)
(7)

where g̃j(X) represents the estimated gain of a string sj , with
respect to X , defined as:

g̃j(X) = 1 +
n∑

k=1
k �=j

Prcj(Xold)(Δ ≥ ck(Xold)) (8)

The probability distribution for the random variable Δ is
derived in the next section.

IV. PROBABILITY DISTRIBUTION FUNCTION FOR Δ

In this section, the probability distribution function (PDF)
for the random variable Δ with respect to a random L-walk is
derived. For simplicity, in this section we use pL(.) to denote
this function; that is, pL(k) = PrL(Δ = k), L ∈ N0, k ∈ Z,
where N0 is the set of natural numbers including zero. By
definition, we now this for the case L = 0:

p0(k) =

{
1 ,if k = 0;
0 ,otherwise

(9)

The following theorem gives a recursive formula to deter-
mine the probability distribution for Δ, for L > 0.

Theorem 2: Let s be a random string and Δ =
dH(s,Xnew) − dH(s,Xold), where Xold and Xnew are the
source and the destination, respectively, of a random L-walk,
L > 0. Then:

pL(k) =
1

2
pL−1(k) +

1

4
(pL−1(k − 1) + pL−1(k + 1)) (10)

Proof: Since L > 0, the random L-walk can be con-
sidered as a random (L − 1)-walk followed by a random 1-
walk with the constraint that the latter does not change any
character already changed by the former. Let Xmid denote the
destination of the random (L − 1)-walk, which is the source
of the subsequent random 1-walk (see Figure 1). Let k be the
index of the character changed as the result of the 1-walk. That
is, Xmid and Xnew are different in their kth characters, where
1 ≤ k ≤ m. Note that Xold and Xmid cannot, therefore, be
different in their kth characters. There exist altogether three
possible cases:

i sk = Xk
mid and sk �= Xk

new

ii sk �= Xk
mid and sk = Xk

new

iii sk �= Xk
mid and sk �= Xk

new

In case (i), the kth character of s is the same as the kth

character of Xmid which has to be different from the kth

character of Xnew, hence dH(s,Xnew) = dH(s,Xmid) + 1.
In case (ii), similarly, the kth character of s is the same as the
kth character of Xnew which has to be different from the kth

character of Xold, hence dH(s,Xnew) = dH(s,Xmid) − 1.
Finally, in case (iii), the kth character of s is different from
both the kth character of Xmid and the kth character of Xnew,
hence dH(s,Xnew) = dH(s,Xmid). These imply:

−1 ≤ dH(s,Xnew) − dH(s,Xmid) ≤ 1 (11)

The probabilities for each of these cases to happen are as
follows. Note that Xk

mid and Xk
new has to be different because

of the 1-walk and that we have assumed Σ = {A,T,C,G},
hence |Σ| = 4. The probability for case (i) is 1

4
(for any

possible value for Xk
mid, sk can equally-likely take four values

one of which satisfies sk = Xk
mid). Similarly, the probability

for case(ii) is 1

4
(for any possible value for Xk

new, sk can
equally-likely take four values one of which satisfies sk =
Xk

new). What remains makes the probability for case(iii) , i.e.
1 − ( 1

4
+ 1

4
) = 1

2
.

By definition of Δ, we have:

pL(k) = PrL(dH(s,Xnew) − dH(s,Xold) = k) (12)

Let A and B denote, respectively, (dH(s,Xnew) −
dH(s,Xmid)) and (dH(s,Xmid) − dH(s,Xold)). Then:

pL(k) = Pr(A+B = k) (13)

From Inequation 11, we know −1 ≤ A ≤ 1, hence:

pL(k) = Pr( ( A = −1 ∧ B = k + 1) ∨ (14)
( A = 0 ∧ B = k) ∨
( A = 1 ∧ B = k − 1))

Since the three disjoint cases in the right-hand side of the
equation are mutually exclusive, the probability in the right-
hand side can be written as the sum of the probabilities for
those three cases. That is:

pL(k) = Pr (A = −1 ∧ B = k + 1) + (15)
Pr (A = 0 ∧ B = k) +

Pr (A = 1 ∧ B = k − 1)

Since A can take any of the values -1, 0, or 1 independently
from the value of B, the conjoint conditions within each of
the three probabilities in the right-hand side are independent.
Therefore:

pL(k) = Pr(A = −1) × Pr(B = k + 1) + (16)
Pr(A = 0) × Pr(B = k) +

Pr(A = 1) × Pr(B = k − 1)

= Pr(A = −1) × pL−1(k + 1) +

Pr(A = 0) × pL−1(k) +

Pr(A = 1) × pL−1(k − 1)

On the other hand, Pr(A = −1), Pr(A = 0), and Pr(A =
1) are, respectively, equal to the probabilities for the cases (i),
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(iii), and (ii), which are 1

4
, 1

2
, and 1

4
, respectively. Therefore:

pL(k) =
1

2
pL−1(k) +

1

4
(pL−1(k − 1) + pL−1(k + 1)) (17)

Note that pL(k) is zero for k > L. This can be derived
both as a corollary from the above theorem and directly from
the fact that as a result of an L-walk, L characters are only
changed.

Corollary 1: Let T (., .) be a function from N0 × Z to N0,
recursively defined as:

T (0, k) =

{
1 ,if k = 0;
0 ,otherwise

T (L, k) = T (L−1, k−1)+2T (L−1, k)+T (L−1, k+1), L > 0
(18)

Then,

pL(k) =
T (L, k)

4L
, L ≥ 0, k ∈ Z (19)

Proof: We prove this by mathematical induction on L.
Base Case: When L = 0, 4L = 1, and the lemma holds using
Equation 9.
Induction Hypothesis: We assume that it holds for L = t.
That is:

pt(k) =
T (t, k)

4t
, k ∈ Z (20)

Induction Step: We prove that it also holds for L = t+ 1:
Using Theorem 2:

pt+1(k) =
1

4
pt(k − 1) +

1

2
pt(k) +

1

4
pt(k + 1) (21)

=
1

4

T (t, k − 1)

4t
+

1

2

T (t, k)

4t
+

1

4

T (t, k + 1)

4t

=
1

4t+1
(T (t, k − 1) + 2T (t, k) + T (t, k + 1))

=
T (t+ 1, k)

4t+1

We provided the above corollary in order to present the
probability distribution for Δ using a triangle of integers,
called Δ-triangle, in a fashion similar to that of Khayyam-
Pascal binomial coefficients triangle [30], [31], using dynamic
programming. The two-variable function T (., .) as defined in
the above Corollary is presented in Figure 2. Starting from
L = 0, the Lth row presents T (L, k) for various k as specified
underneath the triangle. However, T (L, k) is nonzero only
for −L ≤ k ≤ +L. Therefore, there are altogether 2L + 1
nonzero values for T (L, k), which are shown in the Lth row
of the triangle, each corresponding to one value for k. The zero
values for T (L, k), i.e. for |k| > L are implicit and not shown;
only the nonzero ones make the triangle. Only the first seven
rows, for L = 0 to L = 6, of the triangle are displayed, but
it can be extended to subsequent rows following the recursive
definition of T (., .) (see Equation 18); each value is derived
from three values of the previous row: the value just above and
its just right and just left values. Note that one of these three
values is zero, hence outside the triangle, when determining
the left-most or the right-most value in a row.

1

1 2 1

1 4 6 4 1

1 6 15 20 15 6 1

1 8 28 56 70 56 28 8 1

1 10 45 120 210 252 210 120 45 8 1

1 12 66 220 495 792 924 792 495 220 66 12 1

k : −6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6

L :

0

1

2

3

4

5

6

Fig. 2. The first seven rows of the Δ-triangle developed to determine the
probability distribution function for the random variable Δ. The value pL(k),
i.e. the probability PrL(Δ = k), is obtained by dividing the integer specified
at the row L and the column k by the value 4L. For example, p3(2) is
6
43

≈ 0.09.

Using the above corollary, the value for pL(k) can then
be obtained by simply retrieving T (L, k) from the Δ-triangle
and dividing it by 4L. Recall that pL(k) is zero for |k| > L.
Among interesting properties of the Δ-triangle are (i) the left-
most and the right-most numbers in each row are always 1, (ii)
the largest number in each row corresponds to k = 0, (iii)the
triangle is symmetric with respect to the k = 0 axis, (iv) the
numbers are all integers, and (v) there are 2L+ 1 numbers in
the Lth row which sum up exactly to 4L.

Having derived the probability distribution function for the
random variable Δ, the following example, though simple,
illustrates how the value of G̃pC(X) is calculated for a
candidate solution X .

Example 2: Consider the instance < S, 3 > and the candi-
date solution given in Example 1. That is, S = {s1, s2, s3},
s1 = "GATTG", s2 = "GATCA", s3 = "CTCGA", and
X = "GATTC". Recall that c1(X) = 2, c2(X) = 1, and
c3(X) = −2. Therefore, Near(X) = {s1, s2}. Then:

g̃1(X) = 1 + Prc1(X)(Δ ≥ c2(X)) + Prc1(X)(Δ ≥ c3(X))

= 1 + Pr2(Δ ≥ 1) + Pr2(Δ ≥ −2)

= 1 + (
5

16
) + (

16

16
)

=
37

16

Similarly,

g̃2(X) = 1+Prc2(X)(Δ ≥ c1(X))+Prc2(X)(Δ ≥ c3(X)) = 2

Therefore,

G̃pC(X) =
1

2
(
g̃1(X)

c1(X)
+
g̃2(X)

c2(X)
) =

1

2
(
37

32
+ 2) =

101

64

V. THE HYBRID HEURISTIC EVALUATION FUNCTION

In this section, a hybrid heuristic evaluation function
h

f,G̃pC
(.) is proposed which combines the objective evalu-

ation function f(.) and the estimated Gain-per-Cost heuristic
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evaluation function G̃pC(.). In order to restrict the application
of G̃pC(.) to the discrimination between candidate solutions
with the same objective value, as explained in Section 1,
this combination should be designed in such a way that f(.)

dominates G̃pC(.). That is, ∀Xi ∈ Σm and ∀Xj ∈ Σm:

f(Xi) > f(Xj) ⇒ h
f,G̃pC

(Xi) > h
f,G̃pC

(Xj) (22)

We propose the hybrid heuristic evaluation function as
h

f,G̃pC
(X) = η.f(X)+ G̃pC(X), where η is a constant. The

following theorem shows that if η is greater than the number
of input strings n then the requirement 22 will be met.

Theorem 3: For an arbitrary candidate solution X ,
G̃pC(X) ≤ n.

Proof: Since |S| = n, the objective value f(X) is upper
bounded by n. This implies that the (estimated) gain of a
string, by its definition, with respect to any candidate solution,
is also upper bounded by n. On the other hand, the cost of an
arbitrary string sj in Near(X) has to be at least 1. Therefore,
the (estimated) gain-per-cost of a string cannot be greater than
n either. This means, by Equation 7, that G̃pC(X) ≤ n.

Based on this theorem, we use n+1 as the value for η, and
the heuristic evaluation function will be the following:

h
f,G̃pC

(X) = (n+ 1).f(X) + G̃pC(X) (23)

Given a candidate solution X , h
f,G̃pC

(X) can be deter-
mined in O(nm + n2), provided that we pay a memory cost
and a one-off time cost of O(m2) each. We first create a
two-dimensional array to keep the Δ-triangle (see Figure 2)
which implicitly presents the probability distribution function
(PDF) for Δ. Only the first m rows of the triangle are
needed, because the length of a walk is not greater than
the length of the strings. However, in order to be able to
retrieve PrL(Δ ≥ k) for each possible k in O(1), as used
in Equation 8, we construct another two-dimensional array to
store the cumulative distribution function (CDF) for Δ (note
that PrL(Δ ≥ k) = 1−PrL(Δ ≤ k−1)). The memory cost to
define these arrays and the one-off time cost to populate them
with the PDF and CDF values using dynamic programming are
O(m2) each. On the other hand, the costs cj(X) of the input
strings sj and the set Near(X) can be determined in O(nm).
Consequently, retrieving the CDF values in O(1), G̃pC(X)
can be calculated in O(nm + n2) by Equations 7 and 8.
Therefore, h

f,G̃pC
(X) can be determined using Equation 23

in O(nm+n2), having paid the memory and the one-off time
costs of O(m2).

VI. THE CBLS ALGORITHM

Prior to presenting the proposed CBLS algorithms, we need
to extend our terminology, presented in Section 2, to cater for
partial solutions used in the beam search. By a partial solution,
we mean a solution string of length m whose characters are not
all specified. For this purpose, some definitions and notations
regarding partial solutions are provided next. For simplicity,
and without loss of generality, we assume that the question
mark character ? does not belong to the alphabet, and we
use it to denote an unspecified character. In other words,

a partial solution is a string of m characters, each either a
letter in Σ or unspecified ?, whereas a complete solution is
a string of m characters, each a letter in Σ. In the rest of
the paper, we denote a solution (either complete or partial)
by a (possibly indexed) small letter x. By an unassigned
(respectively assigned) position of a solution x, we mean an
integer k, 1 ≤ k ≤ m, such that xk = ? (respectively xk �= ?).
The set of unassigned and the set of assigned positions of
a solution x are denoted by U(x) and A(x), respectively.
Note that U(x) = {} in the case x is a complete solution.
A solution x is called empty if A(x) = {}. In order to cater
for partial solutions, we also need to extend our notations and
definition for hamming distance between strings. We extend
the definition for the hamming distance between a solution
x and an input string si as di(x) =

∑
k∈A(x)

δ(xk, sk
i )).

Note that this is consistent with the general definition for
the hamming distance between strings as di(x) shrinks to
dH(x, sj) when x is a complete solution. Let x be a solution,
k a position between 1 and m inclusive, and c a character in
Σ. The solution obtained by the setting xk = c is denoted by
x|(k, c). Similarly, the Gain-per-Cost heuristic is extended to
be used for partial solutions as well, where we use, as for the
objective function for partial solutions, the following:

f(x) =

n∑
i=1

min{di(x), d} (24)

Having defined and extended the required notations and
definitions, we now present the CBLS algorithm, shown in
Figure 3. As can be seen in the presented pseudo code, the
algorithm consists of two main phases of beam search and
local search. The beam search algorithm, in its standard form,
is a deterministic, yet heuristic, tree search. It is similar to
the breath-first search algorithm except that it does not keep
all the leaves but only β of them, where β > 0 is called
the beam size. It turns to a pure constructive greedy heuristic
in the case β = 1; it also turns to the exhaustive breath-first
search if β is large enough to keep all the leaves. Therefore, the
beam size β may be thought of as a control parameter to make
an appropriate balance between greediness and exhaustiveness
and is usually used to avoid otherwise exponential complexity.

The outcome of the constructive beam search algorithm in
the first phase of CBLS is several complete candidate solutions,
which are then used as the stating point for local search in the
search space. More specifically, the local search algorithm,
which is a first-move hill-climbing algorithm, is applied to
each of the solutions obtained by the first phase trying to
achieve improved solutions, the best of which will be returned
as the final solution. The heuristic function used in the beam
search algorithm is h(x) = (n + 1)f(x) + G̃pC(x), where
f(x) =

∑n
i=1

min{di(x), d} (see equation 24). Similarly, the
heuristic function used in the local search algorithm is the
hybrid heuristic function of Equation 23, i.e. h

f,G̃pC
(X) =

(n+ 1).f(X) + G̃pC(X).
The speed of CBLS depends on the adopted local search

algorithm; it can also be controlled by appropriately setting the
beam size parameter. Since its first phase is the polynomial-
time constructive beam search and its second phase is the hill-
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Require: S = {s1, s2, . . . , sn}, n > 1,each si a string of
length m > 1

Ensure: a string x of the length m
{initialization:}
construct the Δ-triangle
{phase 1: constructive beam search:}
B ← {the empty solution}
for k = 1 to n do
C ← {}
for all xi ∈ B do

for all ch ∈ Σ do
C ← C ∪ {xi|(k, ch)}

end for
end for
{calculate heuristics:}
for all xi ∈ C do

calculate heuristic value h(xi)
end for
{selection:}
B ← a set of β best members of C {with respect to the
heuristic values}

end for
{phase 2: local search:}
bestSoFar ← an arbitrary solution in B
for all xi ∈ B do
xi ← localSearch(xi)
if f(xi) > f(bestSoFar) then
bestSoFar ← xi

end if
end for
return bestSoFar

Fig. 3. The pseudo code for the algorithm CBLS

climbing local search, it is quite fast in practice, except for too
large beam sizes.

VII. EXPERIMENTAL RESULTS

To evaluate the proposed CBLS algorithm, we implemented
and compared it with the most recent algorithm published
in the literature for the purpose of FFMSP, which is GRASP
proposed in [5] as the current state-of-the-art. The algorithms
were implemented in Java and run on a Pentium 4 Desktop
machine with 3.21 GHz clock speed and 2 GB of RAM. As
for the GRASP parameters, we set RCL−Size to 2, which we
found the best. However, in order to provide fair comparison,
we did not use a fixed value as for the itr− num parameter.
Instead, we measured the time taken by CBLS, with β = 10,
and allowed GRASP to run for the same amount of time.

We examined and compared the algorithms on various
instances of FFMSP with different sizes. We considered three
different values of 100, 200, and 300 as for the number
of strings n. For each value vn for n, we considered three
different values of vn, 2vn, and 4vn as for the length of
strings m. Finally, for each pair of values < vn, vm > for
< n,m >, we considered three different values of 0.75vm,
0.85vm, and 0.95vm as for the distance threshold d. These

make 3 × 3 × 3 = 27 different types of instances altogether.
By the type of an instance in this section, we mean the triple
of values for its < n,m, d >.

The algorithms were evaluated on both random and real
data. For each instance type, we generated 10 random in-
stances, hence 27 × 10 = 270 random instances altogether.
For real data, we used 3 instances for each type making
27 × 3 = 81 real instances altogether. So, the algorithms
were examined over the total of 270 + 81 = 351 instances.
The random data was generated by the standard Java pseudo-
random number generator. The real data were obtained from
the sequence data produced by the US Department of Energy
Joint Genome Institute 1 and curated at the Virginia Bioinfor-
matics Institute 2.

The results for both random and real data are presented in
Table I. The first column in this table shows the instance types.
The second (FG) and the third (FC) columns report the ob-
jective values of the solutions returned by GRASP and CBLS,
respectively, on random instances. The fourth column (α%)
calculates the improvement percentage on random instances
defined as FC−FG

FC
× 100. The next three columns report the

same quantities as those of the second to the fourth ones,
respectively, but for real instances. In addition, the last row
in the table shows the average of improvement percentage for
both random and real data. The figures are rounded up to one
decimal figure.

As can be seen in Table I, CBLS performs at least as good as
GRASP in 100% of the 54 cases. In one random and eight real
cases, both of the algorithms achieve the maximum value n,
hence zero improvement percentage. In all the other 45 cases,
CBLS outperforms GRASP. In 17 out of the 54 cases (i.e. about
30% of cases), where GRASP fails to give a nonzero objective
value, the improvement percentage is 100%; CBLS never gives
a zero objective value. Even in some of the cases where
GRASP gives nonzero objective values, the improvement is
by orders of magnitude, e.g. for the (100,100,95) random and
real cases. On average, CBLS achieves 62.4% and 53.1%
improvemnts over GRASP for random and real instances,
respectively. This shows the strong effectiveness of the CBLS
algorithm. In general, this efectiveness is more clearly seen in
the cases in Table I where GRASP performs poorly giving low
objective values.

In order to observe the relative behaviors of the algorithms
over longer time, we increased beam size in CBLS. More
specifically, we tried the algorithm for beam sizes of 20, 40,
70, and 100 as well. Again, we measured its run time and let
GRASP run for the same amount of time for fair comparison.
We performed these longer experiments on the random and
real instances with n = 200, m = 400, and d = 340, i.e.
moderate value for each. As before, we used 10 random and
3 real instances and measured the improvement percentage, α,
which are depicted in Figure 4. As can be seen in Figure 4, not
much improvement is made as the result of longer execution,
and CBLS still keeps its remarkable distance from GRASP in
these longer runs.

1http://www.jgi.doe.gov
2http://www.vbi.vt.edu
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TABLE I
COMPARISON OF THE (AVERAGE) NUMBER OF FAR STRINGS RETURNED

BY GRASP (FG) AND CBLS (FC ) OVER BOTH RANDOM AND REAL
INSTANCES

(n,m,d) Random Real
FG FC α% FG FC α%

(100,100,75) 95.9 100 4.1 100 100 0

(100,100,85) 20.2 30.2 33.2 48 58.7 18.2

(100,100,95) 0.8 7.6 89.5 2 9.4 78.6

(100,200,150) 97.9 100 2.1 100 100 0

(100,200,170) 7.2 28.3 74.6 26.4 49 46.3

(100,200,190) 0 5.7 100 0.4 6.7 95

(100,400,300) 100 100 0 100 100 0

(100,400,340) 2.1 29.5 92.9 17.7 53 66.7

(100,400,380) 0 4.7 100 0 5.7 100

(200,200,150) 186.2 200 7 199.7 200 0.2

(200,200,170) 7 32.1 78.2 48.4 80.4 39.9

(200,200,190) 0 5.4 100 0 7.7 100

(200,400,300) 192.3 200 3.9 200 200 0

(200,400,340) 1.6 32.3 95.1 19.7 65.4 69.9

(200,400,380) 0 3.9 100 0 6 100

(200,800,600) 199.2 200 0.5 200 200 0

(200,800,680) 0 26.5 100 9.4 71.7 87

(200,800,760) 0 3.2 100 0 3.7 100

(300,300,225) 272.1 294.6 7.7 299.7 300 0.2

(300,300,255) 2.9 34.6 91.7 37 93 60.3

(300,300,285) 0 3.8 100 0 4.4 100

(300,600,450) 284.6 300 5.2 300 300 0

(300,600,510) 0.6 27.7 97.9 17 91.7 81.5

(300,600,570) 0 2.3 100 0 1.4 100

(300,1200,900) 296.3 300 1.3 300 300 0

(300,1200,1020) 0 23.9 100 8.7 95.7 91

(300,1200,1140) 0 1.1 100 0 1.4 100

Average 62.4 53.1

VIII. CONCLUSION

In this paper, a hybrid algorithm called Constructive Beam
and Local Search (CBLS) was proposed for the Far From
Most Strings Problem, which belongs to the class of se-
quences consensus problems, and which has applications in
Bioinformatics. The proposed algorithms is based on a hybrid
of constructive beam search and iterated improvement local
search. In fact, the algorithm is obtained by replacing the
first phase of the GRASP algorithm with constructive beam
search. The algorithm has also been partly inspired from
memetic algorithms, where local search is applied to individual
solutions obtained, for example, by genetic algorithms. The
use of such hybridization of algorithms has recently been
increased for a variety of problems in various domains.

The proposed CBLS algorithm was compared with the most
recently published algorithm for the problem, GRASP, known
as the current state-of-the-art. The comparison was made on
both random and real data with significantly positive results;
the improvement was by orders of magnitudes on average.
Due to its success with respect to FFMSP, a possible avenue
for future work is to adapt the proposed algorithm to address
other problems of the sequences consensus family. It may
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Fig. 4. Comparison of the (average) number of far strings returned by GRASP
and CBLS for various beam sizes of 10, 20, 40, 70, 100, over both random
(up) and real (down) problem instances of n = 200, m = 400, and d = 340.

even be modified to try on other NP-hard discrete optimization
problems in Bioinformatics and other disciplines.
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